Contoh Soal Statistik Regresi Korelasi U

SOAL:
Diketahui: Data Sebagai Berikut…

NO
1
2
3
4
5
6
7
8
9
10

Tinggi Badan ( cm ) X
168
173
162
157
160

165
163
170
168
164

Berat Badan ( KG ) Y
63
81
54
49
52
62
56
78
64
61

Ditanya:
-Tentukan Nilai Koefisien Korelasi dan Regresi

-Apakah Nilai Koefisien Signifikan atau Tidak

Jawab:

-Nilai Koefisien Korelasi dan Regresin Menggunakan SPSS
REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X.

-

Regression
Notes

Output Created


15-Mar-2014 22:56:04

Comments
Input

Active Dataset

DataSet1

Filter



Weight



Split File




N of Rows in Working Data

10

File
Missing Value Handling

Definition of Missing

User-defined missing values are treated
as missing.

FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 1

Cases Used


Statistics are based on cases with no
missing values for any variable used.

Syntax

REGRESSION
/DESCRIPTIVES MEAN STDDEV
CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI R
ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X.

Resources

Processor Time


00:00:00.156

Elapsed Time

00:00:00.100

Memory Required

1372 bytes

Additional Memory Required

0 bytes

for Residual Plots

[DataSet1]
Descriptive Statistics
Mean


Std. Deviation

N

Y

62.00

10.499

10

X

165.00

4.830

10


Correlations
Y
Pearson Correlation

Sig. (1-tailed)

N

X

Y

1.000

.946

X

.946


1.000

Y

.

.000

X

.000

.

Y

10

10


X

10

10

FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 2

Variables Entered/Removed

b

Variables
Model

Variables Entered


1

X

Removed

a

Method
. Enter

a. All requested variables entered.
b. Dependent Variable: Y

Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square
a

1

Adjusted R

.946

.896

.883

Change Statistics
R Square Change

3.594

F Change

.896

df1

68.814

df2
1

Sig. F Change
8

.000

a. Predictors: (Constant), X

b

ANOVA
Model
1

Sum of Squares

df

Mean Square

Regression

888.686

1

888.686

Residual

103.314

8

12.914

Total

992.000

9

F

Sig.
a

68.814

.000

a. Predictors: (Constant), X
b. Dependent Variable: Y

Coefficients

a

Standardized
Unstandardized Coefficients
Model
1

B
(Constant)
X

a.

Std. Error

-277.429

40.933

2.057

.248

Coefficients
Beta

95% Confidence Interval for B
t

.946

Sig.

Lower Bound

Upper Bound

-6.778

.000

-371.821

-183.036

8.295

.000

1.485

2.629

Dependent Variable: Y

FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 3

CORRELATIONS
/VARIABLES=X Y
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

-

Correlations
Notes

Output Created

16-Mar-2014 01:00:09

Comments
Input

Active Dataset

DataSet1

Filter



Weight



Split File



N of Rows in Working Data

10

File
Missing Value Handling

Definition of Missing

User-defined missing values are
treated as missing.

Cases Used

Statistics for each pair of variables are
based on all the cases with valid data
for that pair.

Syntax

CORRELATIONS
/VARIABLES=X Y
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Resources

Processor Time

00:00:00.032

Elapsed Time

00:00:00.023

[DataSet1]
Correlations
X
X

Pearson Correlation

Y
1

Sig. (2-tailed)
N
Y

Pearson Correlation
Sig. (2-tailed)
N

**

.946

.000
10

10

**

1

.946

.000
10

10

**. Correlation is significant at the 0.01 level (2-tailed).

FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 4

Untuk Penghitungan Manual Sebagai Berikut:
-

Nilai Koefisien Korelasi

NO
Xi
Yi
Xi²
Yi²
Xi.Yi
1
168
63
28224 3969 10584
2
173
81
29929 6561 14013
3
162
54
26244 2916
8748
4
157
49
24649 2401
7693
5
160
52
25600 2704
8320
6
165
62
27225 3844 10230
7
163
56
26569 3136
9128
8
170
78
28900 6084 13260
9
168
64
28224 4096 10752
10
164
61
26896 3721 10004
Jumlah 1650 620 272460 39432 102732
Ket: x adalah Tinggi Badan
Y adalah Berat Badan

Berdasarkan Tingkat Hubungan Nilai r
Maka: “Terdapat Hubungan Korelasi Yang Sangat Kuat Antara Tinggi Badan dan Berat Badan
Dengan Arah Positif”
FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 5

-

Hipotesis Statistik

Ho: ρxy = 0 (Tidak terdapat hubungan antara tinggi badan dan berat badan)
H1: ρxy ≠ 0 (Terdapat hubungan antara tinggi badan dan berat badan)

Dari tabel t dengan α = 0,05
Diperoleh ttab = t0.025;df=8 = 2,306
Kriteria uji: Karena

( ) α = 0,025 dan df = n-2

df = 10 – 2 = 8

= 8,295> ttab = 2,306 maka Ho ditolak

Kesimpulan: “Bahwa Berat Badan Berpengaruh Signifikan Terhadap Berat Badan”.

FRANDIKA SEPTA (TUGAS REGRESI DAN KORELASI MENGGUNAKAN SPSS)
[email protected] || http://www.frandika-septa.blogspot.com

Page 6