Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G) T1 612005039 BAB II

BAB II
DASAR TEORI

Bab dua ini akan membahas tentang dasar teori. Pada bab ini akan dijelaskan
mengenai perkembangan telekomunikasi yang berupa penjelasan mengenai Jaringan generasi
ke-3 (3G), Jaringan LTE dan jaringan generasi ke-4 (4G). Kemudian penjelasan dasar
mengenai OFDM yang merupakan sistem yang dipakai pada sebagian besar jaringan
telekomunikasi, serta penjelasan mengenai PAPR.
Seperti yang telah diutarakan pada bab sebelumnya bahwa pada paper-paper yang
telah dipublikasikan masih belum didapatkan penjelasan secara mendetail baik mengenai
DFTS-OFDM maupun nilai PAPR pada DFTS-OFDM yang membuat DFTS-OFDM menjadi
yang paling tepat untuk digunakan untuk proses uplink pada jaringan 4G.
Pada paper[1] dijelaskan tentang garis besar skema OFDM serta SC-FDMA (DFTSOFDM) namun tidak dijelaskan secara detail mengapa DFTS-OFDM yang baik digunakan
dalam transmisi uplink pada LTE, namun hanya mengatakan bahwa pada DFTS-OFDM nilai
PAPR akan lebih kecil dibandingkan pada OFDM tanpa menyertakan keterangan lebih lanjut
detail dari pernyataan tersebut.
Kemudian pada paper berikutnya[2] menuliskan secara umum perbedaan DFTSOFDM dengan OFDMA pada proses uplink. Pada paper tersebut juga menuliskan tentang
perbandingan nilai PAPR antara keduanya berupa grafik tanpa ada penjelasan yang
mendetail.

7


8
2.1 Perkembangan Telekomunikasi
Teknologi telekomunikasi telah menjadi kebutuhan harian. Dalam satu dekade
terakhir, teknologi telekomunikasi telah berevolusi dari teknologi mahal yang hanya
dapat dinikmati oleh sebagian kecil pengguna menjadi sebuah sistem yang dapat
digunakan oleh sebagian besar populasi dunia. Untuk memahami kerumitan sistem
komunikasi mobile, sangatlah penting untuk memahami dari mana mereka datang dan
bagaimana sistem selular berkembang.
Dalam kurun waktu 10 tahun terjadi perkembangan yang sangat pesat dengan
berbagai penemuan atau inovasi teknologi komunikasi dan pada akhir tahun 90-an
muncul teknologi 2G (Generasi Kedua). Perbedaan utama dari teknologi 1G dan 2G
adalah 1G masih menggunakan sistem analog sedangkan 2G sudah menggunakan sistem
digital. Dengan adanya teknologi Generasi Kedua, maka munculah teknologi selular
yang baru yakni GSM, yang merupakan suatu sistem komunikasi wireless.
Pada

awal tahun 2000-an munculah teknologi generasi 2.5 (2.5 G) yang

mempunyai kemampuan transfer data yang lebih cepat. Yang terkenal dari generasi ini

adalah GPRS (General Packet Radio Service) dan EDGE (Enhanced Data rates for
GSM Evolution). Suatu protokol yang mengatur cara kerja transfer data pada sistem
wireless GSM. Dalam teorinya, kecepatan transfer data EDGE dapat mencapai 384 kbps.
Selanjutnya setelah teknologi 3G pengembangan akan jaringan dan berbagai peralatan
pendukungnya terus dilakukan hingga saat ini lahirlah teknologi LTE (Long Term
Evolution).

9
2.1.1 Proses uplink pada Jaringan 3G
Saat ini standard dari 3G UMTS menyediakan kecepatan maksimum dalam
mengunduh data yaitu sebesar 384 kbps. Namun dengan banyaknya pengguna
maka akan membutuhkan kecepatan transfer data yang lebih tinggi untuk
mendukung layanan data yang membutuhkan laju data yang lebih tinggi. Oleh
sebab itu permintaan akan kenaikan kecepatan data menjadi penting. Hal ini
menghasilkan perkembangan dari teknologi 3G HSPA.
Dengan peningkatan pada trafik data, para operator ingin membawa
peningkatan pendapatan dari transmisi data. Keunggulan lain dari pengenalan 3G
HSPA adalah dapat memasukkan pembaruan perangkat lunak ke dalam sistem.
Jaringan 3G HSPA menggunakan dua protokol, yaitu untuk proses downlink
menggunakan HSDPA (High Speed Downlink Packet Access) dan untuk proses

uplink menggunakan HSUPA (High Speed Uplink Packet Access) yang dapat
diperoleh dari 3G UMTS (Universal Mobile Telecommunication System), agar
dapat menghasilkan kecepatan transfer data yang lebih tinggi.
HSDPA adalah suatu teknologi terbaru dalam sistem telekomunikasi bergerak
yang dikeluarkan oleh 3GPP. HSDPA mempunyai layanan berbasis paket data di
WCDMA downlink data rate mencapai 14.4 Mbps dan bandwidth 5MHz.
HSUPA adalah pasangan teknologi dari HSDPA, namun diaplikasikan pada
proses uplink dari UE (user equipment) ke stasiun pusat (NodeB). HSUPA juga
menyediakan peningkatan kecepatan yang cukup bagi para penggunanya di proses
uplink.

Namun HSUPA tidak menyediakan kapasitas yang sama pada proses

uplink dibandingkan dengan proses downlink dikarenakan karena secara umum
sebagian besar data mengalir dalam arah downlink, atau menuju UE.

10
Pada intinya HSUPA merupakan teknologi yang mirip dengan HSDPA.
Namun tetap ada perbedaan mendasar yang membedakan keduanya,
Diantaranya[3]:

1. Proses uplink pada UMTS bersifat non-orthogonal karena ortogonalitas
yang sempurna tidak dapat dilakukan pada setiap UE. Sebagai akibatnya,
akan banyak gangguan antara transmisi uplink pada sel-sel yang sama.
2. Pada downlink, proses buffering dialokasikan pada NodeB tunggal,
sedangkan pada uplink didistribusikan dengan beberapa UE.
3. Sumber penyebaran data proses downlink adalah pada energi transmisi.
Pada proses uplink, sumbernya terbatas pada level gangguan yang masih
bisa ditoleransi dan ini tergantung pada energi transmisi dari berbagai UE.
HSUPA terdiri dari 2 teknologi dasar yang juga dipakai oleh HSDPA, yaitu
scheduling dan hybrid ARQ[4] :
1. Scheduling
Proses scheduling pada HSUPA sangat diperlukan untuk dapat
mengatur kapan dan di laju data manakah UE diperbolehkan untuk
memancarkan.
Semakin tinggi laju data yang digunakan oleh terminal, maka harus
semakin tinggi energi terminal yang diterima di NodeB agar dapat
mempertahankan Eb/N0 yang diperlukan untuk kesuksesan proses
demodulasi. Dengan meningkatan energi pancaran, UE akan dapat
memancarkan laju data yang lebih tinggi. Namun dikarenakan uplink pada
3G bersifat non-orthogonal, energi yang diterima dari satu UE

menghadirkan pula gangguan untuk terminal lain. Oleh karena itu, sumber
daya yang dipakai bersama untuk HSUPA adalah jumlah gangguan yang

11
masih dapat ditoleransi. Bila level gangguan terlalu tinggi, beberapa proses
pengiriman data di sel tertentu, kanal pengaturan dan pengiriman pada
proses uplink yang tidak terjadwal mungkin tidak dapat diterima
semestinya.

Sebaliknya,

level

gangguan

yang

terlalu

rendah


mengindikasikan jika UE dan kapasitas sistem tidak dimanfaatkan dengan
baik. Oleh sebab itu, HSUPA bergantung pada scheduler

untuk

memberikan data dengan izin pengiriman kepada pengguna untuk dipakai
sebagai laju data tinggi tanpa melebihi batas toleransi maksimum level
gangguan dalam sel.
Pada HSUPA, data yang akan dikirim bertempat di UE. Di saat yang
sama, scheduler yang terletak di NodeB mengatur aktivitas pengiriman
yang berbeda-beda dalam sel. Oleh karena itu, mekanisme komunikasi
antara keputusan scheduling untuk UE dan untuk menyediakan informasi
balik dari UE ke scheduler sangat dibutuhkan.
Kerangka scheduling dalam HSUPA terdiri dari dua bagian penting,
yaitu scheduling grants yang dikirim oleh NodeB scheduler untuk
mengatur pengiriman data pada UE dan scheduling request yang dikirim
oleh UE ke sumber yang meminta.
Scheduling grant mengatur batas maksimum yang diperbolehkan untuk
dipakai terminal E-DCH ke pilot power ratio, pemberian yang besar

mengizinkan terminal memakai laju data yang lebih tinggi, namun juga
membawa lebih banyak gangguan dalam sel. Berdasarkan pengukuran level
gangguan, scheduler mengatur scheduling di masing-msing terminal untuk
mempertahankan level gangguan sesuai target yang diinginkan.

12
Di HSDPA, pengguna tunggal akan dialamatkan pada masing-masing
TTI. Namun untuk HSUPA strategi scheduling mengatur beberapa
pengguna yang dialamatkan secara paralel, alasannya adalah terminal
tunggal tidak dapat memanfaatkan kapasitasnya secara penuh.
Selain permasalahan pada terminal, gangguan antar sel juga harus
dapat ditanggulangi. Walaupun scheduler memperbolehkan UE untuk
mengirim data pada laju data tinggi berdasarkan level gangguan dalam sel
yang dapat diterima, hal ini dapat menyebabkan gangguan yang tidak dapat
diterima oleh sel-sel tetangga. Oleh karena itu dalam soft handover, serving
cells bertanggung jawab dalam proses scheduling. Kemudian UE bertugas
mengawasi informasi scheduling dari seluruh sel.
Keuntungan

dalam


menggunakan

Fast

scheduling

adalah

ia

mengizinkan pengisian koneksi yang lebih mudah. Sejumlah besar
pengguna dapat dimasukkan dalam sistem serta mekanisme scheduling
dapat menangani beberapa pengguna yang membutuhkan pengiriman data
secara bersamaan. Namun bila hal ini menimbulkan level gangguan yang
tidak dapat ditoleransi oleh sistem, maka scheduler akan secara cepat
bertindak dan membatasi laju data yang mungkin dipakai. Tanpa fast
scheduling kendali pengisian harus lebih dapat menjaga batas dalam sistem
bilamana beberapa pengguna mengirimkan data secara terus menerus.


2. Hybrid ARQ dengan perpaduan lunak
Penggunaan Hybrid ARQ dengan perpaduan lunak digunakan untuk
menahan kemungkinan kesalahan pengiriman data. Untuk setiap blok
pengiriman yang diterima pada proses uplink, bit tunggal dikirim dari

13
NodeB menuju UE untuk mengindikasikan kesuksesan decoding atau untuk
meminta pengiriman ulang dari kesalahan yang diterima oleh blok
pengiriman.
Hybrid ARQ dapat dimanfaatkan tidak hanya sebagai penahan terhadap
gangguan yang tiba-tiba, namun juga untuk meningkatkan efisiensi
jaringan, kapasitas dan jangkauan.

2.1.2 Jaringan Long Term Evolution (LTE)
Perkembangan

teknologi

telekomunikasi


sangat pesat. Teknologi

telekomunikasi seluler saat ini mulai bergerak secara kolektif dari 3G menuju
4G. LTE (Long Term Evolution) adalah sebuah nama baru dari layanan yang
mempunyai kemampuan tinggi dalam sistem komunikasi bergerak (mobile). Hal
ini merupakan langkah menuju generasi ke-4 (4G) dari teknologi radio yang
dirancang untuk meningkatkan kapasitas dan kecepatan jaringan telepon
mobile, hal tersebut dapat terlihat dari arsitektur LTE yang lebih sederhana dari
teknologi sebelumnya, penggunaan OFDM, antena cerdas (MIMO), serta
beberapa teknologi pendukung lainnya.
Banyak yang menyebut LTE sebagai “4G”, namun tak sedikit pula yang
menyebut LTE Release 10 atau LTE-Advance sebagai 4G, dengan peluncuran
perdana LTE Release 8 yang lebih dikenal dengan “3.9G”.

2.1.2.1 LTE sebagai kandidat 4G
Teknologi LTE biasanya disebut sebagai

teknologi

4G, namun


kenyataannya LTE yang direalisasikan saat ini belum memenuhi standar
dari teknologi 4G yang sesungguhnya, itulah sebabnya LTE yang ada saat

14
ini masih disebut sebagai generasi 3.9G. Meskipun begitu, pada teknologi
ini

telah

terdapat

beberapa

perubahan dibandingkan dari teknologi

sebelumnya, baik dalam hal teknis maupun aplikasinya. Dari sisi teknis,
perubahan yang dapat dilihat adalah adanya arsitektur yang lebih sederhana
dari teknologi sebelumnya, penggunaan antena cerdas (MIMO), OFDM,
dan lain-lain. Dari sisi aplikasi, user dapat menikmati layanan LTE baik
voice maupun data, semua komunikasi telah full IP, sehingga dapat
menguntungkan user dari segi harga.
Jaringan LTE mampu mentransformasikan pengalaman pengguna
telekomunikasi, memperbarui layanan mobile broadband ke tingkatan baru
sehingga kegiatan mobile seperti browsing internet, mengirim email, video
sharing, serta aplikasi lain akan sangat mudah diakses tanpa ada
interverensi atau keterlambatan.
LTE memiliki Radio Access Network sendiri yang bernama EUTRAN. Jaringan intinya disebut Evolved Packet Core (EPC). EPC bersifat
all-IP dan mudah berinterkoneksi dengan jaringan IP lainnya, termasuk
WiFi, WiMAX, dan XDSL. Untuk menghubungkan UE dengan E-UTRAN
digunakan eNB (e-NodeB). Pada GSM eNB ini adalah NodeB atau BTS,
namun pada LTE eNB terdapat penambahan fungsi dimana beberapa fungsi
BSC (Base Station Controller) juga dilakukan oleh eNB tersebut.

15
Dalam rangka memenuhi persyaratan dari IMT Advanced tentang 4G,
maka LTE mempunyai beberapa persyaratan seperti di bawah ini[1] :
1.

Peak data rate LTE diharapkan untuk memiliki data rate sebesar 100
Mbps untuk downlink, dan 50 Mbps untuk uplink dengan alokasi
spectrum bandwidth 20 Mbps.
Pada standard 4G, 100 Mbps adalah data rate untuk suatu handset yang
bergerak terhadap base station.

2. Mobilitas E-UTRAN harus dioptimalkan untuk kecepatan rendah
dari 0-15km/jam.
3. Spektrum E-UTRA dapat beroperasi pada alokasi

spektrum

yang

berbeda-beda, termasuk diantaranya adalah 1.25 MHz, 1.6 MHz, 2.5
MHz, 5 MHz,10 MHz, 15 MHz, dan 20 MHz baik pada uplink maupun
downlink.
4. Dapat mencapai 200 pengguna aktif dalam 1 sel (5 MHz).
5. User-plane latency kurang dari 5ms.
6. Pilihan spektrum frekuensi yang dapat disesuaikan dengan jaringan saat
ini yaitu band GSM, CDMA, UMTS (450, 700, 850, 900, 1700, 1800,
1900, 2100, 2500 MHz)
7. Mendukung operasi FDD (Frequency Division Duplex) maupun TDD
(Time Division Duplex).
8. Antena MIMO (Multiple In Multiple Out) sudah terstandarisasi.

16
2.1.2.2 Proses uplink pada LTE
Proses uplink berdasar pada transmisi OFDM yang berbeda dengan
proses downlink dimana pada saat uplink memungkinkan efisiensi penguat
terminal yang lebih tinggi.
Penggunaan DFTS-OFDM pada LTE uplink adalah karena pada
DFTS-OFDM memungkinkan terjadinya pemisahan orthogonal pada
pengiriman data. Pemisahan orthogonal itu sendiri berguna untuk
menanggulangi gangguan antara pengiriman data dari terminal yang
berbeda dalam satu sel.
Pada proses uplink bila mengalokasikan bandwidth yang amat besar
untuk proses transmisi dari terminal tunggal bukanlah merupakan cara
yang efisien. Dalam situasi ini, terminal dapat dialokasikan dari sebagian
spectrum yang tersedia hanya dan terminal lain dapat dijadwalkan untuk
mengirimkan data secara parallel dari bagian spectrum yang tersisa.
Dengan kata lain pengiriman data pada proses uplink memungkinkan
bekerja pada TDMA maupun FDMA.

2.1.3 Proses uplink pada Jaringan 4G
Discrete Fourier Transform-spread OFDM (DFTS-OFDM) adalah suatu
teknik multiple access baru yang digunakan untuk uplink pada LTE juga pada
jaringan 4G. Teknik ini dapat pula dikatakan sebagai pengembangan dari OFDM
yang telah ada sebelumnya. Hanya saja pada DFTS-OFDM terdapat penambahan
proses DFT pada transmitter.
Seperti yang telah diketahui bahwa untuk memperoleh kapasitas yang besar,
maka kondisi kanal-kanal yang ada harus selalu dicatat dalam setiap keputusan

17
scheduling, atau yang sering disebut channel-dependent scheduling. Dalam
penggunaan DFTS-OFDM pada tujuan pengiriman uplink, scheduler memiliki
akses baik dalam domain waktu maupun domain frekuensi. Atau dengan kata lain
scheduler dapat memilih pengguna dengan kondisi kanal yang terbaik.
Kemungkinan channel-dependent scheduler dapat bekerja maksimal adalah saat
kanal berubah secara perlahan dalam waktu. Pada Jaringan 4G, keputusan
scheduling diambil sekali dalam 1 ms dan akan mengatur terminal mana yang
diperbolehkan untuk mengirimkan informasi selama interval waktu yang diberikan
serta sumber frekuensi mana proses pengiriman akan terjadi, termasuk laju data
yang dipakai.

2.2 Orthogonal Frequency Division Multiplexing (OFDM)
Dalam bab-bab sebelumnya telah dituliskan bahwa pada proses downlink Jaringan
Generasi Ke-4 (4G) digunakan sebuah teknik transmisi yand bernama Orthogonal
Frequency Division Multiplexing (OFDM). Pada subbab ini akan diterangkan secara
garis besar prinsip dasar dari OFDM, sistematika OFDM serta OFDM sebagai teknik
yang diterapkan pada proses downlink Jaringan 4G.
2.2.1 Prinsip Dasar OFDM
OFDM (Orthogonal Frequency Division Multiplexing) adalah sebuah teknik
transmisi yang menggunakan beberapa buah frekuensi (multicarrier) yang saling
tegak lurus (orthogonal).

18

G
Gambar
2.1 Blok diagram OFDM[1]
Dari Gambar
bar 2.1 dapat dilihat secara jelas proses dari
ri OFDM baik pada
pengirim maupun
upun pe
penerima.
Pada prosess ppengiriman terdiri dari blok-blok serial-to-par
paralel, modulator,
IFFT dan parallel-tto-serial. Deretan data yang akan ditransmis
isikan yaitu deretan
bit-bit serial dikonve
konversikan ke dalam bentuk paralel oleh serial-to-paralel
Converter, sehingga
ngga bila bit rate semula adalah R maka bit rate
te di tiap jalur paralel
adalah R/N dimana
na N adalah jumlah jalur paralel atau jumlah subcarrier.
s
Prinsip
konversi bit seriall ke paralel akan ditunjukkan pada Gambar 2.2..

Gambar 2.2 Modulasi OFDM[3]

19
Sinyal hasil modulasi tersebut terdiri dari Nc yang merupakan modulator
kompleks, dimana setiap modulator berinteraksi dengan satu OFDM subcarrier.
Sehingga sinyal modulasi x(t) pada OFDM dengan interval waktu mTu ≤ t ≤
(m+1)Tu adalah :
…(2.1)
Dimana xk(t) adalah nilai k yang termodulasi oleh subcarrier dengan
frekuensi fk = k.∆f dan ak(m) adalah simbol modulasi yang dipakai pada subcarrier
ke-k selama simbol OFDM ke-m dengan interval waktu mTu ≤ t ≤ (m+1)Tu .
Gambar 2.2 menunjukkan bahwa pada setiap interval simbol OFDM, modulasi Nc
akan ditransmisikan secara paralel.
Jumlah dari subcarrier OFDM berkisar antara kurang dari ratusan hingga
ribuan, dengan range subcarrier spacing antara ratusan kHz turun hingga beberapa
Hz saja. Penggunaan subcarrier spacing ini tergantung pada keadaan lingkungan
dimana sistem itu bekerja, termasuk pemilihan frekuensi saluran radio secara
maksimal dan variasi laju kanal.
Sinyal OFDM hasil modulasi kemudian dialirkan ke dalam Inverse Fast
Fourier Transform (IFFT) untuk mengubah sinyal dari domain frekuensi ke dalam
sinyal domain waktu dengan cara mencuplik sinyal x(t) dengan laju Tss/N. Sinyal
OFDM yang telah diaplikasikan ke dalam IFFT ini kemudian dikonversikan lagi ke
dalam bentuk serial. Setelah disisipi cyclic prefix dengan cara menyalin bagian
akhir simbol sepanjang periode CP (yang digunakan dan ditempatkan pada awal
simbol), barulah data dikirim.
Saat proses penerima, setelah melalui kanal maka sinyal informasi akan
diterima oleh penerima. Pada gambar blok penerima teridiri dari blok-blok serialto-paralel , FFT, demodulasi dan paralel-to-serial. Penerima sinyal yang telah

20
dialirkan ke FFT kemudian didemodulasikan dan dikonversikan ke dalam bentuk
serial oleh paralel-to-serial Converter dan akhirnya kembali menjadi bentuk data
informasi.
Pengertian dari Orthogonal Frequency-Division Multiplex adalah dimana dua
subcarrier OFDM yang termodulasi xk1 dan xk2 yang saling tegak lurus pada
interval waktu mTu ≤ t ≤ (m+1)Tu , yaitu :




0 …(2.2)

dengan k1 ≠k2

2.2.2 Sistematika OFDM
Pada subbab ini akan diterangkan lebuh lanjut mengenai sistematika OFDM
yang meliputi demodulasi OFDM yang terjadi saat proses penerimaan data,
penggunaan IFFT pada modulator begitu pula penggunaan FFT pada demodulator,
serta proses penyisipan cyclic prefix.

2.2.2.1 Demodulasi OFDM
Pada Gambar 2.3 memperlihatkan bahwa proses demodulasi pada
OFDM memiliki sejumlah penghubung untuk tiap-tiap subcarrier.
Orthogonalitas antara dua subcarrier seperti yang dijabarkan pada
persamaan 2.2 terlihat jelas bahwa idealnya dua subcarrier OFDM tidak
akan menyebabkan gangguan terhadap masing-masing subcarrier setelah
proses demodulasi.

21

Gambar 2.3 Demodulasi OFDM[3]
Pada
da

demodulasi

OFDM,

penanggulangan

gangguan

antara

subcarrier-subc
subcarrier OFDM tidak terjadi saat pemisaha
isahan spektrum dari
subcarrier yang
y
ada. Namun orthogonalitas subcarrier--subcarrier OFDM
tersebut berl
berlangsung saat struktur spesifik domain frekue
ekuensi dari tiap-tiap
subcarrierr dikombinasikan dengan pemilihan secara
ara teliti subcarrier
spacing ∆f bernilai sama dengan masing-masing llaju simbol pada
subcarrier (1/T
(1/ u).

2.2.2.2 Implementas
ntasi OFDM menggunakan IFFT/FFT
Pada
da subbab
subba sebelumnya telah dibahas mengenaii m
modulator (Gambar
2.2) serta demodulator
dem
(Gambar 2.3) yang dapat digunaka
unakan sebagai ilustrasi
dari prinsipp dasar
da OFDM. Proses modulasi OFDM dapat
pat diimplementasikan
di
dengan prose
oses IFFT yang diikuti dengan konversi digital
gital-to-analog, seperti
pada Gamba
bar 2.2. Secara umum, dengan memilih IFFT
FT ukuran N yang
sama dengan
an 2m untuk beberapa integer m, modulasi OFDM
OF
akan menjadi
efisien pada
da proses implementasi radix-2 IFFT (Inve
nverse Fast Fourier
Transform) .

22

Gambarr 2.4
2. Modulasi OFDM dengan proses IFFT[3]
Perluu di
diingat bahwa IDFT/IFFT sebagai implement
entasi dari modulator
OFDM adal
dalah salah satu pilihan dalam implementas
ntasi transmitter dan
bukanlah sua
suatu keharusan untuk digunakan di setiap
ap spesifikasi radioaccess.

2.2.2.3 Penyisipan Cyclic
C
Prefix
Pada
da sistem
s
komunikasi, cyclic prefix memiliki
ki definisi
de
mengawali
simbol denga
ngan pengulangan simbol terakhir itu sendiri.
i. Walaupun
W
biasanya
penerima akan
aka membuang sampel dari cyclic prefix terse
rsebut, namun cyclic
prefix memi
miliki 2 tujuan yaitu, untuk menghilangkan
kan ISI dari simbol
sebelumnya
ya dan sebagai pengulangan simbol yang dapa
pat digunakan untuk
proses seder
erhana dalam domain frekuensi, seperti equal
qualisasi dan estimasi
kanal. Agar
ar cyclic prefix dapat beroperasi secara efektif,
if, pa
panjang dari cyclic
prefix harus
us m
minimal sama dengan panjang dari kanal multipath.
mul
Dalam
m memahami orthogonalitas dari subcarrie
arrier adalah dengan
mengetahui
hui bahwa subcarrier yang termodulasi xk(t) pada
pa persamaan 2.1
terdiri dari
ri jumlah integer dari eksponensial kompleks
pleks selama interval
proses demodul
modulasi terintegrasi yaitu

. Namun,
un, ddalam kasus kanal

23
rsive orthogonalitas tiap subcarrier akan hilang.
hi
Alasan dari
time-dispersi
hilangnya orthogonalitas
or
pada subcarrier tersebut adal
dalah korelasi waktu
antara jeda
da demodulator
de
pada satu lintasan akan overlap
erlap dengan batasan
simbol dari
ri lintasan
l
yang berbeda seperti pada Gambarr 2.
2.5. Oleh karena itu,
pada saatt ka
kanal time-dispersive tidak hanya akann terjadi
t
ISI dalam
subcarrier tetapi
te
juga diantara subcarrier.

[5
Gambar 2.5 Perkiraan penerimaan sinyal[5]

Untuk
uk mengatasi masalah ini dan membuat sinyal
sin
OFDM tidak
sensitif terha
rhadap penyebaran waktu pada kanal radio, maka
aka proses transmisi
OFDM mengg
enggunakan penyisipan cyclic prefix.
Pada
da Gambar
G
2.6 tampak bahwa bagian terakhir
khir da
dari simbol OFDM
dikopi dann dimasukkan ke bagian awal dari simbol
bol OFDM tersebut.
Penyisipan cyclic
c
prefix akan meningkatkan panjang sim
imbol OFDM dari Tu
menjadi Tu+TCP, dimana TCP adalah panjang cycl
yclic prefix dengan
pengurangan
an dari simbol OFDM itu sendiri. Dalam Gambar
G
2.6 bagian
bawah, ortho
orthogonalitas subcarrier pada kanal time-di
dispersive

dapat

diwujudkann bila pada penerima hanya membawa simbol
mbol OFDM dengan
interval wakt
aktu

dan tergantung pada rentangg penyebaran waktu

lebih pendek
ndek dari panjang cyclic prefix. Hal ini juga membawa
m
pengaruh
pada ketidakm
dakmunculan ISI pada proses penyisipan cyclic
ic prefix.
pr

24

Ga
Gambar
2.6 Penyisipan Cyclic Prefix
Penyis
yisipan cyclic prefix ini dibawa di keluarann waktu
w
diskrit pada
pengirim IF
IFFT. Sample terakhir NCP

dari blok kelua
luaran IFFT dengan

panjang N akan
a
dikopi dan dimasukkan ke dalam blok awal, menambah
panjang blok da
dari N menjadi N+NCP.
Pada sisi pene
penerima, sample yang bersesuaian dibuang
ng se
sebelum demodulasi
OFDM, seba
bagai contoh : proses DFT/FFT.
Kekura
kurangan dari penyisipan cyclic prefix hanyal
yalah sebagian kecil
dar energi sinyal penerima yang dimanfaatkan
dari
kan oleh demodulator
OFDM, sehi
ehingga mengisyaratkan adanya energi yangg hilang
hi
pada proses
demodulasi.
si.

2.2.3 OFDM untuk downl
nlink pada Jaringan 4G
Sinyal yang di
dikirim dalam setiap slot pada saat proses downlink
dow
digambarkan
oleh sebuah resourc
ource grid yang terdiri dari
OFDM, dengan

= 6 dan

= 110.

subcarrier
ier dan

simbol

25
Jumlah simbol OFDM tergantung pada panjang cyclic prefix dan jarak
subcarrier yang dapat dilihat pada Tabel 2.1.
Setiap elemen dalam resource grid disebut resource element dengan
indeks (k,l) dalam suatu slot, dimana
0, … ,

!"
#( )

0, … ,

!"

#$

% 1 dan '

% 1. Resource block digunakan untuk mendeskripsikan pemetaan

dari kanal fisik tertentu ke resource element (RE).

Tabel 2.1 Parameter resource block untuk downlink[1]

26

Gambar 2.7 Downlink Resource Grid
Pada Gambar 2.7 dapat dilihat bahwa setiap resource block (RB) terdiri
dari 12 subcarrier (dalam ranah frekuensi) dan 7 simbol OFDM (dalam ranah
waktu) jika menggunakan cyclic prefix normal. Bandwidth subcarrier dalam
ranah frekuensi adalah 15 KHz, sehingga bandwidth satu PRB adalah 180 KHz.
Struktur frame diatas menggunakan struktur frame tipe 1 yaitu untuk
operasi band berpasangan (FDD) dimana transmisi downlink dan uplink
beroperasi pada frekuensi berbeda.

27

G
Gambar
2.8 Struktur Frame Tipe 1[6]

Pada Gamba
mbar 2.8 struktur frame tipe 1 ini radio frame
fra
10 ms dibagi
menjadi 20 slot
ot sama
s
sebesar 0.5 ms. Masing-masing subfram
ubframe terdiri dari dua
slot berturut-turut
urut, sehingga satu radio frame terdiri dari 10 subf
subframe[7].
Jaringann 4G juga mendukung untuk operasi TDD
D yang merupakan
struktur frame tipe 2 dengan struktur dasar RB dan RE tetapp sama,
sa
namun dalam
satu PRB sebag
agian subframe digunakan untuk downlink
nk dan sisanya untuk
uplink atau seba
bagai special frame (untuk beralih antara tra
transmisi uplink dan
downlink).
Untuk struk
truktur frame tipe 2, radio frame 10 ms terdi
erdiri dari 2.5 frame
dengan panjangg masing-masing
m
5 ms. Setiap setengah frame
me dibagi menjadi 5
subframe dengan
an panjang masing-masing 1 ms. Pada Gamba
mbar 2.9 frame yang
bukan merupakan
kan special frame dibagi menjadi 2 slot denga
ngan panjang 0.5 ms
tiap subframe. Special
Sp
subframe terdiri dari DwPTS (Downli
nlink Pilot Timeslot),
GP (Guard Per
eriod), UpPTS (Uplink Pilot Timeslot). Ketiganya
Ke
memiliki
panjang masing--masing dengan total panjang 1 ms.

28

Gambar 2.9 Struktur Frame Tipe 2[6]

2.3 Peak-to-Average Power Ratio (PAPR)
Salah satu permasalahan yang penting dalam tugas akhir ini adalah mengenai
Peak-to-Average Power Ratio (PAPR), dimana PAPR merupakan salah satu sebab
dipilihnya sebuah sistem baru pengganti OFDM yang digunakan dalam proses uplink
Jaringan 4G. Pada subbab berikut akan dijelaskan mengenai definisi PAPR secara umum
dan garis besar PAPR pada OFDM.
2.3.1 Definisi PAPR
PAPR adalah perbandingan antara daya puncak sinyal dengan daya rataratanya. PAPR dapat terjadi sebagai hasil superposisi dari dua atau lebih subcarrier
sehingga menghasilkan nilai puncak sinyal yang sangat besar. Hal ini biasanya
disebabkan oleh modulasi masing-masing subcarrier yang dilakukan dengan
frekuensi yang berbeda sehingga menyebabkan beberapa subcarrier mempunyai
fase koheren yang pada akhirnya akan muncul amplitude dengan level jauh lebih
besar dari daya sinyalnya.

29
2.3.2 PAPR pada OFDM
Nilai PAPR yang besar akan menyebabkan sistem membutuhkan komponen
sistem yang memiliki daerah linier yang besar untuk mengakomodasi amplitudo
sinyal. Sedangkan Power Amplifier (PA) adalah salah satu komponen sistem yang
tidak linear. PA yang tidak linear akan menyebabkan distorsi yang sifatnya nonlinear sehingga akan muncul intermodulasi, yaitu frekuensi baru pada sinyal yang
akan ditransmisikan. Intermodulasi menyebabkan terjadinya interferensi di antara
subcarrier dan menyebabkan terjadinya pelebaran spektral dari sinyal keseluruhan.
Secara matematis nilai PAPR dapat dirumuskan dengan[7] :
*+*,

-

atau *+*,

.

10log

…(2.3)

Dimana N adalah jumlah subcarrier.
Dari persamaan 2.3 dapat dikatakan bahwa nilai PAPR pada sistem OFDM
bersifat linear dengan jumlah subcarrier-nya. Saat N sinyal ditambahkan dengan
fase sama, sinyal tersebut akan menghasilkan nilai puncak yang besarnya N kali
dari daya rata-ratanya, sehingga nilai PAPR akan bertambah besar jika jumlah N
diperbesar.

Dokumen yang terkait

Analisis Kinerja Orthogonal Frequency Division Multiplexing pada Sistem DVB-T (Digital Video Broadcasting Terrestrial)

1 33 85

Design And Implementation Of Orthogonal Frequency Division Multiplexing Receiver.

0 5 24

Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G)

0 1 16

Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G) T1 612005039 BAB I

0 0 6

Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G) T1 612005039 BAB IV

0 0 15

Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G) T1 612005039 BAB V

0 0 1

Institutional Repository | Satya Wacana Christian University: Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing pada Jaringan Generasi Keempat (4G)

0 0 7

KINERJA SISTEM COFDM (CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING) PADA KANAL RADIO MOBILE

0 0 5

Estimasi Doppler Spread pada Sistem Orthogonal Frequency Division Multiplexing (OFDM) dengan Metode Phase Difference

0 0 6

SIMULASI PENGARUH PERUBAHAN PARAMETER PHYSICAL OFDM (ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING) PADA JARINGAN MOBILE WIMAX

0 0 11