PENGARUH KONSENTRASI PENDADAH NIOBIUM PADA LAPISAN n-LiTaO3 TERHADAP SIFAT LISTRIK FOTODIODE p-Si / n-LiTaO3:Nb YANG DIBUAT DENGAN METODE CHEMICAL SOLUTION DEPOSITION TEKNIK SPIN COATING.

(1)

PENGARUH KONSENTRASI PENDADAH NIOBIUM PADA

LAPISAN n-LiTaO3 TERHADAP SIFAT LISTRIK FOTODIODE

p-Si / n-LiTaO3:Nb YANG DIBUAT DENGAN METODE CHEMICAL

SOLUTION DEPOSITION TEKNIK SPIN COATING

SKRIPSI

Diajukan untuk Memenuhi Sebagian dari Syarat Memperoleh Gelar Sarjana Sains Jurusan Pendidikan Fisika FPMIPA UPI

Oleh

ANDIRA MUTTAKIM 0700044

PROGRAM STUDI FISIKA JURUSAN PENDIDIKAN FISIKA


(2)

(3)

Pengaruh Konsentrasi Pendadah Niobium pada

Lapisan n-LiTaO

3

terhadap Sifat Listrik Fotodiode

p-Si / n-LiTaO

3

:Nb yang Dibuat dengan Metode

Chemical

Solution Deposition

Teknik

Spin Coating

Oleh Andira Muttakim

Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana pada Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam

© Andira Muttakim 2014 Universitas Pendidikan Indonesia

Januari 2014


(4)

Skripsi ini tidak boleh diperbanyak seluruhnya atau sebagian,


(5)

LEMBAR PENGESAHAN SKRIPSI

ANDIRA MUTTAKIM 0700044

PENGARUH KONSENTRASI PENDADAH NIOBIUM PADA LAPISAN n-LiTaO3 TERHADAP SIFAT LISTRIK FOTODIODE

p-Si / n-LiTaO3:Nb YANG DIBUAT DENGAN METODE CHEMICAL SOLUTION DEPOSITION TEKNIK SPIN COATING

Disetujui dan disahkan oleh,

Pembimbing 1

Dr. Andi Suhandi, S.Pd., M.Si. NIP. 196908171994031003

Pembimbing 2

Drs. H. R. Aam Hamdani, M.T. NIP. 196601111991011001

Mengetahui,


(6)

(7)

PENGARUH KONSENTRASI PENDADAH NIOBIUM

PADA LAPISAN n-LiTaO3 TERHADAP SIFAT LISTRIK FOTODIODE

p-Si / n-LiTaO3:Nb YANG DIBUAT DENGAN METODE CHEMICAL SOLUTION DEPOSITION TEKNIK SPIN COATING

Andira Muttakim; 0700044; Dr. Andi Suhandi, S.Pd., M.Si.; Drs. H. R. Aam Hamdani, M.T.; Fisika; 2014

ABSTRAK

Telah dibuat prototipe fotodiode p-Si / n-LiTaO3:Nb dengan variasi pendadah Nb

dengan konsentrasi 0 %, 2.5 %, 5 %, dan 7.5 %. Deposisi LiTaO3:Nb di atas p-Si

dilakukan dengan metode Chemical Solution Deposition (CSD) menggunakan teknik Spin Coating. Massa molar LiTaO3:Nb adalah 1,00 M dengan pelarut 2-Methoxyethanol. Fotodiode p-Si / n-LiTaO3:Nb dipanaskan (annealed) pada

temperatur konstan sebesar 1000 °C selama delapan jam. Temperatur dinaikkan dari temperatur ruang hingga 1000 °C selama satu jam. Karakteristik I-V pada fotodiode p-Si / n-LiTaO3:Nb diukur dengan menggunakan alat Keithley I-V meter

dalam keadaan tanpa penyinaran dan dengan penyinaran untuk menentukan nilai

photocurrent, breakdown voltage, dan shunt resistance. Hasil penelitian

menunjukkan fotodiode p-Si / n-LiTaO3:Nb yang dibuat masih belum bisa

memenuhi karakteristik fotodiode yang telah beredar di pasaran. Nilai

photocurrent, breakdown voltage, dan shunt resistance untuk fotodiode yang

beredar di pasaran memiliki nilai sekitar 100 μA, 50-100 V, dan 10-1000 MΩ, sedangkan dalam penelitian ini nilai optimumnya masing-masing hanya 2.73 μA, 4.95 V, dan 0.23 MΩ. Pada fotodiode p-Si / n-LiTaO3:Nb, nilai photocurrent

cenderung menurun seiring dengan penambahan konsentrasi Nb hingga 5 %, nilai

photocurrent meningkat kembali ketika konsentrasi Nb ditambahkan menjadi 7.5

%. Nilai breakdown voltage pada fotodiode meningkat seiring dengan penambahan konsentrasi Nb hingga 5 %, nilai breakdown voltage menurun kembali ketika konsentrasi Nb ditambahkan menjadi 7.5 %. Nilai shunt resistance meningkat seiring dengan bertambahnya konsentrasi Nb hingga konsentrasi 7.5 %.


(8)

(9)

EFFECT OF NIOBIUM DOPING CONCENTRATION IN THE n-LiTaO3

LAYER BASED ON ELECTRICAL PROPERTIES OF PHOTODIODE p-Si / n-LiTaO3:Nb FABRICATED BY CHEMICAL SOLUTION

DEPOSITION METHOD SPIN COATING TECHNIQUE

Andira Muttakim; 0700044; Dr. Andi Suhandi, S.Pd., M.Si.; Drs. H. R. Aam Hamdani, M.T.; Physics; 2014

ABSTRACT

Prototype p-Si / n-LiTaO3:Nb photodiode has been made with 0 %, 2.5 %, 5 %,

and 7.5 % Nb doped concentrations. LiTaO3:Nb was deposited on the top of p-Si

by Chemical Solution Deposition (CSD) method, using Spin Coating technique. LiTaO3:Nb has molar mass 1.00 M with 2-Methoxyethanol solvent. Anneal has

been done at constant temperature of 1000 °C for eight hours. The temperature was raised from room temperature to 1000 °C for one hour. I-V characteristic of p-Si / n-LiTaO3:Nb photodiode was measured by using Keithley I-V meter in

darken and illuminated condition to determine the value of photocurrent, breakdown voltage, and shunt resistance. The results show that p-Si / n-LiTaO3:Nb photodiode still cannot meet photodiode characteristics that have been

commercialized in the market. For photodiode in the market, it has photocurrent, breakdown voltage, and shunts resistance value about 100 μA, 50-100 V, and 10-1000 MΩ respectively, whilst this study only has these value of 2.73 μA, 4.95 V, and 0.23 MΩ respectively. In p-Si / n-LiTaO3:Nb photodiode, photocurrent value

decreases along with addition of Nb concentration up to 5 %, photocurrent value increases when the Nb concentration was increased to 7.5 %. Breakdown voltage value increases along with addition of Nb concentration up to 5 %, Breakdown voltage value decreases when the Nb concentration was increased to 7.5 %. Shunt resistance value increases along with addition of Nb concentration up to 7.5 %.

Keywords: Photodiode, type-p silicon, lithium tantalate, niobium, I-V characteristic.


(10)

DAFTAR ISI

ABSTRAK ... Error! Bookmark not defined. ABSTRACT ... Error! Bookmark not defined. KATA PENGANTAR ... Error! Bookmark not defined. UCAPAN TERIMA KASIH ... Error! Bookmark not defined.

DAFTAR ISI ... v

DAFTAR TABEL ... vii

DAFTAR GAMBAR ... viii

DAFTAR LAMPIRAN ... x

BAB I PENDAHULUAN ... Error! Bookmark not defined.

1.1 Latar Belakang Masalah ... Error! Bookmark not defined. 1.2 Rumusan Masalah ... Error! Bookmark not defined. 1.3 Batasan Masalah... Error! Bookmark not defined. 1.4 Tujuan Penelitian ... Error! Bookmark not defined.

BAB II TINJAUAN PUSTAKA ... Error! Bookmark not defined.

2.1 Fotodiode ... Error! Bookmark not defined. 2.2 Generasi Pembawa Muatan pada Semikonduktor... Error!

Bookmark not defined.

2.3 Kristal Silikon ... Error! Bookmark not defined. 2.4 Litium Tantalat ... Error! Bookmark not defined. 2.5 Pendadah Niobium ... Error! Bookmark not defined. 2.6 Persambungan P-N ... Error! Bookmark not defined.


(11)

2.7 Chemical Solution Deposition (CSD) ... Error! Bookmark not

defined.

2.8 Spin Coating ... Error! Bookmark not defined.1 2.9 Pemanasan (Annealing) ... Error! Bookmark not defined. 2.10 Karakteristik I-V ... Error! Bookmark not defined.

BAB III METODE PENELITIAN ... Error! Bookmark not defined.

3.1 Jenis Penelitian ... Error! Bookmark not defined. 3.2 Tempat Penelitian... Error! Bookmark not defined. 3.3 Alat dan Bahan ... Error! Bookmark not defined. 3.4 Prosedur Penelitian... Error! Bookmark not defined. 3.4.1 Persiapan Kristal Silikon Error! Bookmark not defined. 3.4.2 Persiapan Larutan ... Error! Bookmark not defined. 3.4.3 Deposisi ... Error! Bookmark not defined. 3.4.4 Pemasangan Kontak ... Error! Bookmark not defined. 3.4.5 Karaterisasi Sifat Listrik Error! Bookmark not defined.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN .... Error! Bookmark not

defined.

4.1 Photocurrent ... Error! Bookmark not defined. 4.2 Breakdown Voltage ... Error! Bookmark not defined. 4.3 Shunt Resistance... Error! Bookmark not defined.

BAB V KESIMPULAN DAN SARAN ... Error! Bookmark not defined.

5.1 Kesimpulan ... Error! Bookmark not defined. 5.2 Saran ... Error! Bookmark not defined.


(12)

DAFTAR PUSTAKA ... Error! Bookmark not defined. LAMPIRAN-LAMPIRAN ... Error! Bookmark not defined. RIWAYAT HIDUP PENULIS ... Error! Bookmark not defined.

DAFTAR TABEL

Tabel 2.1 Karakteristik litium tantalat... Error! Bookmark not defined.

Tabel 2.2 Karakteristik atom tantalum dan niobium .. Error! Bookmark not

defined.

Tabel 3.1 Tempat penelitian ... Error! Bookmark not defined.

Tabel 3.2 Alat dan bahan... Error! Bookmark not defined.

Tabel 3.3 Perhitungan massa ... Error! Bookmark not defined.

Tabel 4.1 Konsentrasi niobium dari hasil EDX ... Error! Bookmark not

defined.

Tabel 4.2 Karakteristik fotodiode untuk berbagai tingkat pendadah ... Error!


(13)

DAFTAR GAMBAR

Gambar 2.1 Diagram pita energi dalam kondisi panjar mundur ... Error!

Bookmark not defined.

Gambar 2.2 Model fotodiode persambungan P-N ... Error! Bookmark not

defined.

Gambar 2.3 Skema generasi muatan pembawa Error! Bookmark not defined.

Gambar 2.4 Bagian rata dari penampang kristal silikon Error! Bookmark not

defined.

Gambar 2.5 Model dari LiTaO3 ... Error! Bookmark not defined.

Gambar 2.6 Struktur kristal litium tantalat ... Error! Bookmark not defined.

Gambar 2.7 Dua material dengan konstanta kisi yang sedikit berbeda ... Error!

Bookmark not defined.

Gambar 2.8 Perbedaaan tipe pita energi heterojunction Error! Bookmark not

defined.

Gambar 2.9 Proses spin coating ... Error! Bookmark not defined.

Gambar 2.10 Karakteristik I-V dari empat perangkat ... Error! Bookmark not defined.

Gambar 3.1 Langkah-langkah penelitian ... Error! Bookmark not defined.

Gambar 3.2 Langkah-langkah pencucian kristal silikon Error! Bookmark not

defined.


(14)

Gambar 3.4 Grafik proses pemanasan sampel . Error! Bookmark not defined.

Gambar 3.5 Sketsa pemasangan kontak ... Error! Bookmark not defined.

Gambar 3.6 Proses karakterisasi I-V... Error! Bookmark not defined.

Gambar 3.7 Menentukan photocurrent ... Error! Bookmark not defined.

Gambar 3.8 Menentukan breakdown voltage .. Error! Bookmark not defined.

Gambar 3.9 Menentukan shunt resistance ... Error! Bookmark not defined.

Gambar 4.1 Karakteristik I-V untuk p-Si / n-LiTaO3:Nb 0 % ... Error!

Bookmark not defined.

Gambar 4.2 Karakteristik I-V untuk p-Si / n-LiTaO3:Nb 2,5 % ... Error!

Bookmark not defined.

Gambar 4.3 Karakteristik I-V untuk p-Si / n-LiTaO3:Nb 5 % ... Error!

Bookmark not defined.

Gambar 4.4 Karakteristik I-V untuk p-Si / n-LiTaO3:Nb 7,5 % ... Error!

Bookmark not defined.

Gambar 4.5 Fitting kurva karakteristik I-V dengan penyinaran ... Error!

Bookmark not defined.

Gambar 4.6 Grafik kecenderungan photocurrent ... Error! Bookmark not

defined.

Gambar 4.7 Fitting kurva karakteristik I-V dengan penyinaran ... Error!

Bookmark not defined.

Gambar 4.8 Grafik kecenderungan breakdown voltage. Error! Bookmark not


(15)

Gambar 4.9 Grafik kecenderungan shunt resistance ... Error! Bookmark not


(16)

DAFTAR LAMPIRAN

Lampiran 1 Perhitungan Massa ... Error! Bookmark not defined.

Lampiran 2 Data EDX (Energy-Dispersive X-ray spectroscopy) ... Error!

Bookmark not defined.


(17)

BAB I

1 PENDAHULUAN

1.1 LATAR BELAKANG MASALAH

Fotodiode merupakan sebuah peranti semikonduktor yang memiliki kemampuan mengubah bentuk radiasi cahaya menjadi sinyal listrik. Radiasi yang dapat diterima dapat berupa radiasi panas maupun radiasi elektromagnetik pada spektrum ultraviolet, cahaya tampak, dan gelombang infra merah. Gelombang elektromagnetik yang diterima, akan memindahkan elektron dari tingkat energi valensi ke konduksi, elektron tersebut yang kemudian akan menjadi sinyal listrik.

Fotodiode memiliki kemampuan yang tidak dimiliki oleh peranti deteksi cahaya lain, seperti keluaran arus yang sangat linear terhadap masukkan cahaya, waktu respons yang sangat kecil, ukuran yang kecil, tingkat gangguan rendah, dan stabilitas hasil pengukuran (Betta, 2011). Dengan kemampuan seperti ini, fotodiode tidak hanya dapat dimanfaatkan sebagai detektor cahaya pada lampu otomatis, akan tetapi dapat juga dimanfaatkan untuk penggunaan yang kompleks, seperti sistem penyimpanan optik, spektroskop, fotografi, detektor gelombang laser, dan komunikasi fiber optik (OSI Optoelectronics, 2007).

Fotodiode dibuat dari standar P-N diode yang dimulai pada tahun 1940. Jenis ini merupakan persambungan semikonduktor tipe-p dan tipe-n. Pada tahun 1959 struktur P-I-N telah dijelaskan dalam publikasi ilmiah oleh Gartner. Struktur P-I-N memiliki semikonduktor intrinsik di antara semikonduktor tipe-p dan tipe-n,


(18)

penambahan semikonduktor intrinsik menjadikan fotodiode lebih efisien dalam pengumpulan foton dan kapasitansi daerah persambungan lebih kecil (Poole, 2004).

Jenis fotodiode yang biasa digunakan adalah jenis persambungan P-N, jenis ini adalah yang paling mudah dibuat karena hanya terdiri dari satu sambungan. Selain itu, fotodiode ini memiliki waktu respons yang sangat kecil dengan orde sampai 10-11 detik (Sze & Kwok, 2007).

Bahan yang baik untuk dijadikan sebagai peranti fotodiode adalah bahan yang memiliki efisiensi kuantum tinggi, waktu respons kecil, dan gangguan (noise) rendah (Sze & Kwok, 2007). Efisiensi kuantum pada fotodiode sangat dipengaruhi oleh arus yang dihasilkan pada saat fotodiode disinari oleh cahaya (photocurrent). Breakdown voltage mempengaruhi konstanta waktu RC yang kemudian berdampak pada waktu respons fotodiode. Sedangkan gangguan (noise) dipengaruhi oleh nilai shunt resistance.

Silikon (Si) adalah bahan yang paling banyak dibuat untuk fotodiode, walau demikian bahan lain juga dapat digunakan, seperti penggunaan germanium (Ge) pada fotodiode yang pertama kali dipublikasikan oleh Riesz pada tahun 1962 (Poole, 2004). Silikon dapat digunakan pada panjang gelombang 400-1000 nm, gangguan (noise) yang rendah, dan waktu respons yang kecil. Sedangkan germanium dapat bekerja pada panjang gelombang 900-1600 nm, tetapi memiliki tingkat gangguan yang cukup tinggi dan waktu respons yang besar. Bahan lain yang berhasil dioptimalisasi adalah Indium Gallium Arsenide (InGaAs) yang


(19)

dapat beroperasi pada panjang gelombang 800-1800 nm, tingkat gangguan yang rendah, dan waktu respons yang kecil (Thorlabs, 1999).

Bahan lain yang dapat dimanfaatkan sebagai fotodiode adalah litium tantalat (Salam, 2010), bahan ini memiliki band-gap sebesar 4 eV, sehingga dapat dimanfaatkan untuk mendeteksi cahaya dengan panjang gelombang sekitar 310 nm (ultraviolet). Selain itu bahan ini juga memiliki rentang transparansi yang tinggi dan sifat optiknya tidak mudah rusak (Almaz Optics & Viswanathan, 2012).

Litium tantalat (LiTaO3) memiliki sifat feroelektrik pada temperatur ruang

(Poghosyan, 2003). Sifat penting dari feroelektrik adalah dapat menghasilkan polarisasi listrik secara spontan (Material Innovation and Growth Team, 2006). Litium tantalat memiliki susunan anion dan kation seperti pada kristal perovskite, di mana polarisasi listrik secara spontan lebih mudah terjadi pada struktur kristal

perovskite (Uchino, 2000). Material feroelektrik biasa digunakan sebagai peranti

dalam kehidupan sehari-hari seperti pembuatan NVFRAM, DRAM, sensor inframerah dan juga dapat dijadikan peranti sakelar cahaya. Walau demikian, material feroelektrik sering kali gagal dikomersialisasikan sebagai sensor cahaya karena kurangnya penelitian mengenai jenis material ini (Uchino, 2000).

Untuk menghasilkan fotodiode p-Si / n-LiTaO3 yang memiliki sensitivitas

tinggi dan waktu respons yang kecil, dapat dilakukan dengan menambahkan dadah niobium (Nb). Atom niobium akan mengurangi konsentrasi pembawa muatan positif, yang menyebabkan medan listrik dalam daerah deplesi bertambah


(20)

(Irzaman, Maddu, Syafutra, & Ismangil, 2010). Diharapkan dengan dilakukan pendadahan pada litium tantalat oleh niobium dapat memberikan sifat listrik yang lebih optimal sebagai peranti fotodiode dilihat dari photocurrent, breakdown

voltage, dan shunt resistance.

Pembuatan fotodiode p-Si / n-LiTaO3:Nb dapat dilakukan dengan berbagai

metode, seperti: Sputtering, Metal Organic Chemical Vapor Deposition (MOCVD), atau Chemical Solution Deposition (CSD). Metode CSD merupakan metode yang paling mudah dilakukan, walaupun harus teliti dalam perhitungan stoikiometrinya. Deposisi dilakukan dengan cara menempatkan larutan di atas permukaan substrat yang telah dipersiapkan, kemudian diputar dengan alat Spin

Coater dengan kecepatan putar tertentu (biasanya 3000 rpm). Cara ini merupakan

cara yang mudah dan efektif untuk melakukan deposisi bahan di atas substrat yang rata (Irzaman, et al., 2011).

1.2 RUMUSAN MASALAH

Bertitik tolak dari latar belakang tersebut, maka rumusan masalah dalam penelitian adalah, bagaimana pengaruh konsentrasi pendadah niobium pada lapisan LiTaO3 terhadap sifat listrik fotodiode p-Si / n-LiTaO3:Nb yang dibuat

dengan metode Chemical Solution Deposition dengan teknik Spin Coating?


(21)

Pendadah niobium yang diberikan pada lapisan LiTaO3 memiliki

konsentrasi sebesar 0 %, 2½ %, 5 %, dan 7½ %. Dari sampel yang terbentuk, dilakukan pengujian sifat listrik. Sifat listrik yang penting pada fotodiode adalah sensitivitas yang nilainya dipengaruhi oleh photocurrent, waktu respons yang kecil yang nilainya dipengaruhi oleh breakdown voltage, dan Noise Equivalent

Power (N.E.P.) yang nilainya dipengaruhi oleh shunt resistance. Nilai photocurrent, breakdown voltage, dan shunt resistance dilihat dari karakteristik

I-V yang terbentuk.

1.4 TUJUAN PENELITIAN

Adapun tujuan dalam penelitian ini adalah untuk mendapatkan gambaran mengenai pengaruh variasi konsentrasi pendadahan niobium (Nb) pada lapisan LiTaO3 terhadap nilai photocurrent, breakdown voltage, dan shunt resistance

fotodiode p-Si / n-LiTaO3:Nb yang dibuat dengan metode Chemical Solution Deposition dengan teknik Spin Coating.


(22)

BAB III

3 METODE PENELITIAN

3.1 JENIS PENELITIAN

Metode penelitian yang dilakukan melalui eksperimen yang di laboratorium. Deposisi larutan LiTaO3:Nb dilakukan dengan metode Chemical Solution Deposition (CSD) menggunakan teknik spin coating. Perlakuan khusus diberikan

pada beberapa sampel, kemudian dibandingkan hasil yang didapat.

3.2 TEMPAT PENELITIAN

Penelitian dilakukan di beberapa tempat seperti dijelaskan dalam Tabel 3.1.

Tabel 3.1 Tempat penelitian.

Pengerjaan Tempat

Pemotongan silikon (100) tipe-p

Laboratorium Fisika IPB (Institut Pertanian Bogor) Persiapan larutan LiTaO3:Nb

Deposisi larutan LiTaO3:Nb

Pemanasan (Annealing) Laboratorium Teknik Mesin UPI (Universitas Pendidikan Indonesia) Penimbangan sampel B4T (Balai Besar Bahan dan Barang

Teknik) Bandung

Penganyaman sampel Laboratorium Fisika Material UPI Pemasangan kontak metal Laboratorium Fisika ITB

(Institut Teknologi Bandung) Karakterisasi I-V Laboratorium Fisika IPB


(23)

3.3 ALAT DAN BAHAN

Peralatan dan bahan yang digunakan untuk membuat sampel fotodiode p-Si / n-LiTaO3:Nb dicantumkan dalam Tabel 3.2.

Tabel 3.2 Alat dan bahan.

Alat proses - Alat pemotong dengan mata intan - Aluminum foil

- Kaca preparat

- Timbangan digital dengan ketelitian empat digit - Alat pengaduk/penggetar Bransonic

- Spin coater

- Tungku pemanas hingga 1000 °C Bahan baku - Litium asetat (LiO2C2H3)

- Tantalum pentoxide (Ta2O5)

- Niobium pentoxide (Nb2O5)

- 2-Methoxyethanol (C3H8O2)

- Aseton (C3H6O)

- Metanol (CH4O)

- Hydrofluoric acid (HF)

- Kristal silikon (100) tipe-p - Pasta perak

Alat

karakterisasi

- EDX (Energy-Dispersive X-ray spectroscopy) - Lampu 100 watt


(24)

3.4 PROSEDUR PENELITIAN

Langkah-langkah penelitian dapat direpresentasikan melalui bagan sebagai berikut,

Gambar 3.1 Langkah-langkah penelitian.

3.4.1 PERSIAPAN KRISTAL SILIKON

Silikon yang digunakan dalam penelitian ini adalah kristal Si (100) tipe-p, silikon ini digunakan karena kita ingin membuat fotodiode persambungan P-N. Bahan silikon Si (100) tipe-p dipilih karena akan dibuat sambungan P-N dengan LiTaO3 yang merupakan semikonduktor tipe-n. Selain itu konstanta kisi antara

material kristal silikon (5,430710 Å) dengan litium tantalat (5,154 Å) juga hampir bersesuaian, sehingga memenuhi syarat persambungan P-N.

Persiapan kristal silikon tipe-p Persiapan larutan

Deposisi larutan LNT di atas kristal Si (100) tipe-p

Karakterisasi EDX (Energy-Dispersive X-ray spectroscopy)

Pemasangan kontak untuk memudahkan proses karakterisasi


(25)

Kristal silikon yang digunakan adalah sama untuk semua sampel. Kristal silikon ini dipotong dengan ukuran 0,5 x 0,5 cm dengan menggunakan mata intan. Pemotongan dilakukan dengan sangat hati-hati dan dijaga agar tidak mengotori permukaan kristal silikon. Kemudian kristal silikon dicuci dengan prosedur standar yang telah ditetapkan.

Gambar 3.2 Langkah-langkah pencucian kristal silikon.

Berikut adalah langkah-langkah pencucian kristal silikon: kristal silikon yang telah dipotong-potong direndam dalam larutan aseton kemudian digetarkan dengan alat Bransonic selama 10 menit. Selanjutnya, kristal silikon direndam dalam dye water dan digetarkan dengan alat Bransonic selama 10 menit. Selanjutnya, kristal silikon direndam dalam metanol dan digetarkan dengan alat

Bransonic selama 10 menit. Selanjutnya, kristal silikon direndam dalam larutan

HF + dye water dengan perbandingan campuran (1:5) selama sekitar 30 detik.

Kristal silikon direndam dalam aseton dan digetarkan dengan Bransonic selama 10 menit

Kristal silikon direndam dalam dye water dan digetarkan dengan

Bransonic selama 10 menit

Kristal silikon direndam dalam HF + dye water (1:5) selama ±30 detik

Kristal silikon direndam dalam metanol dan digetarkan dengan Bransonic selama 10 menit

Kristal silikon direndam dalam dye water dan digetarkan dengan


(26)

Langkah terakhir, kristal silikon direndam dalam dye water dan digetarkan dengan alat Bransonic selama 10 menit. Setiap penggantian jenis larutan, kristal silikon dikeluarkan dan dikeringkan. Indikator bersih adalah permukaan kristal silikon yang terlihat mengkilap.

3.4.2 PERSIAPAN LARUTAN

Fotodiode berbahan litium tantalat dengan pendadah niobium yang memiliki persambungan P-N dengan kristal silikon tipe-p dibuat dengan metode CSD (Chemical Solution Deposition). Untuk itu dibuat terlebih dahulu larutan litium tantalat dengan pendadah niobium dengan pelarut 2-Methoxyethanol (C3H8O2).

Gambar 3.3 Langkah pembuatan larutan.

Persamaan reaksi litium asetat dengan tantalum pentoxide menjadi litium tantalat dijelaskan melalui reaksi kimia berikut,

(3.1)

Untuk membuat larutan litium tantalat 1,00 M dengan pelarut 1,25 mL

2-Methoxyethanol, maka massa yang dapat dijelaskan dalam Tabel 3.3.

Tabel 3.3 Perhitungan massa untuk membuat 1,00 M larutan litium tantalat.

Litium asetat Tantalum pentoxide Niobium pentoxide

Litium asetat Tantalum

pentoxide

Niobium

pentoxide 2-Methoxyethanol


(27)

(LiO2C2H3) (Ta2O5) (Nb2O5)

0,0 %

0,164960355 g 0,552365971 g

-

2,5 % 0,014742883 g

5,0 % 0,029485766 g

7,5 % 0,044228649 g

Pencampuran bahan dilakukan berdasarkan stoikiometri yang telah dihitung sebelumnya. Berat masing-masing bahan ditimbang dengan ketelitian empat digit. Setelah bahan dicampur dengan larutan pelarut, kemudian dikocok selama satu jam dengan alat Bransonic agar bahan tercampur dengan merata dan siap untuk dilakukan deposisi.

3.4.3 DEPOSISI

Selanjutnya adalah melakukan deposisi larutan yang telah disiapkan di atas kristal silikon. Proses ini menggunakan alat Spin Coater. Piringan Spin Coater diberi double-tip di tengahnya, kemudian kristal silikon ditempelkan di atasnya. Perlakuan ini diberikan agar kristal silikon tidak terlepas saat piringan berputar. Selanjutnya, larutan yang telah disiapkan diteteskan menggunakan pipet sebanyak saru sampai dua tetes. Kemudian alat Spin Coater diputar dengan kecepatan konstan sekitar 3000 rpm selama 30 detik. Proses penetesan dilakukan sebanyak tiga kali dengan jeda 60 detik setiap selesai satu sesi putaran.

Selanjutnya dilakukan pemanasan (annealing) pada sampel. Proses ini dilakukan dengan tujuan untuk mengurangi terjadinya dislokasi pada bahan


(28)

sehingga meningkatkan konduktivitas listriknya. Proses ini dilakukan pada temperatur konstan 1000 °C selama delapan jam dengan kenaikan temperatur dari temperatur ruang mencapai 1000 °C selama satu jam. Kemudian sampel didinginkan secara alami hingga mendekati temperatur ruang. Sampel dipanaskan satu kali untuk setiap konsentrasi yang berbeda, hal ini dilakukan agar tidak tercampurnya bahan untuk setiap konsentrasi yang berbeda.

Gambar 3.4 Grafik proses pemanasan sampel (tidak berdasarkan skala).

3.4.4 PEMASANGAN KONTAK

Pemasangan kontak dilakukan berdasarkan sketsa berikut,


(29)

Setelah selesai dilakukan proses pemanasan untuk semua sampel, selanjutnya adalah persiapan pembuatan kontak yang meliputi proses penganyaman fotodiode menggunakan aluminum foil. Bahan kontak yang dipilih adalah perak, dikarenakan perak memiliki konduktivitas yang cukup baik, sehingga diharapkan mengurangi series resistance pada fotodiode. Setelah kontak terbentuk maka proses selanjutnya adalah pemasangan kawat tembaga pada kontak dengan menggunakan pasta perak, agar proses karakterisasi fotodiode dapat dilakukan dengan mudah.

3.4.5 KARATERISASI SIFAT LISTRIK

Karakterisasi kurva V ini dilakukan dengan menggunakan alat Keithley

I-V meter.

Gambar 3.6 Proses karakterisasi I-V.

Data keluaran dari alat I-V meter merupakan nilai arus dan tegangan yang kemudian dapat dibuat grafik hubungan tegangan dan arus menggunakan software

Microsoft Office Excel 2013. Arus berada pada sumbu vertikal dan tegangan yang

pada sumbu horizontal merupakan variabel bebas. Sampel diberikan tegangan masukkan antara -10 volt sampai 10 volt. Karakterisasi I-V dilakukan pada dua kondisi yaitu kondisi tanpa penyinaran dan dengan penyinaran cahaya


(30)

polychromatic berdaya 100 watt pada jarak ±5 cm dari sampel. Setelah kurva I-V

didapatkan, perhitungan photocurrent, breakdown voltage, dan shunt resistance dapat dilakukan.

Photocurrent merupakan besar arus yang dihasilkan saat fotodiode disinari

cahaya, arus ini merupakan hasil electron-hole generation. Data ini didapatkan ketika tegangan pada fotodiode sama dengan nol pada grafik I-V, atau dapat juga disebut short-circuit current (Honsberg & Bowden, 2013).

Gambar 3.7 Menentukan photocurrent.

Breakdown voltage merupakan tegangan sebelum proses avalanche terjadi,

dan merupakan batas aman tegangan balik tertinggi yang dapat diberikan pada fotodiode. Untuk peranti yang cukup kecil breakdown voltage terjadi pada saat


(31)

Gambar 3.8 Menentukan breakdown voltage.

Sementara shunt resistance menunjukkan seberapa tahan fotodiode yang terbentuk terhadap cacat internal yang menyebabkan aliran arus listrik yang tidak diinginkan. Nilai ini didapatkan dengan melihat kemiringan kurva di dekat titik pusat (0,0) (Thompson & Larason, 2001).

(3.2)

Gambar 3.9 Menentukan shunt resistance (Keithley Instruments, 2013). Sebagai perbandingan, fotodiode yang beredar di pasaran sebagai pendeteksi spektrum cahaya tampak memiliki nilai photocurrent sekitar 100 μA (Stotlar, 2000), breakdown voltage berkisar antara 50-100 V (United Detector of Technology, 2004), dan shunt resistance berkisar antara 10-1000 MΩ bergantung dari bahan yang digunakan (Thorlabs, 1999).


(32)

BAB V

5 KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Penelitian ini menunjukkan bahwa fotodiode p-Si / n-LiTaO3:Nb yang telah

dibuat masih belum bisa memenuhi karakteristik fotodiode yang telah beredar di pasaran. Adapun nilai photocurrent pada fotodiode p-Si / n-LiTaO3:Nb cenderung

menurun seiring dengan penambahan konsentrasi pendadah Nb hingga 5 %, nilai

photocurrent meningkat kembali ketika konsentrasi pendadah Nb ditingkatkan

menjadi 7,5 %. Nilai breakdown voltage pada fotodiode cenderung meningkat seiring dengan penambahan konsentrasi pendadah Nb hingga 5 %, nilai

breakdown voltage menurun kembali ketika konsentrasi pendadah Nb

ditingkatkan menjadi 7,5 %. Nilai shunt resistance meningkat seiring dengan bertambahnya konsentrasi Nb hingga konsentrasi 7,5 %.

5.2 SARAN

Adapun saran berdasarkan pelaksanaan penelitian ini antara lain,

1. Perlu dilakukan penelitian lebih lanjut mengenai sensitivitas fotodiode p-Si / n-LiTaO3:Nb yang disinari oleh cahaya dengan panjang gelombang tertentu.

2. Perlu dilakukan pengukuran waktu respons fotodiode p-Si / n-LiTaO3:Nb


(33)

3. Perlu dilakukan karakterisasi Ultraviolet-visible spectroscopy (UV-Vis) untuk melihat pengaruh pendadah niobium terhadap koefisien absorpsi.


(34)

DAFTAR PUSTAKA

Adams, T., & Layton, R. (2010). Introductory MEMS Fabrications and

Applications. Berlin: Springer. Dipetik September 19, 2013, dari

http://www.springer.com/978-0-387-09510-3

Almaz Optics, & Viswanathan, B. (2012). Band Edge Data of Oxide and Sulphide

Semiconductors, Lithium Tantalate. (Almaz Optics, Inc.) Dipetik

September 20, 2013, dari Catalysis Database, Almaz Optics: http://www.almazoptics.com/LiTaO3.html,

http://catalysis.eprints.iitm.ac.in/2205/1/band_edge_data.pdf

Beiser, A. (1992). Konsep Fisika Modern (4th ed.). (H. Liong, Penerj.) Bandung, Jawa Barat, Indonesia: Erlangga.

Betta, G.-F. D. (2011). Advances in Photodiodes. Rijeka, Croatia: InTech.

Byrnes, S. (2011, Desember 18). Four I-V Curves. (Harvard University) Dipetik September 24, 2013, dari Wikipedia: http://en.wikipedia.org/wiki/Current– voltage_characteristic

Doherty, R., Hughes, D., Humphreys, F., Jonas, J., Jensen, D. J., Kassner, M., . . . Rollett, A. (1997, April 11). Current Issues in Recrystallization: A Review. Materials Science and Engineering(A238), 219-274. Dipetik September 2013, 2013, dari

http://science.energy.gov/~/media/bes/mse/pdf/reports-and-activities/DohertyMatSciEngA238.pdf

Entner, R. (2007). Modeling and Simulation of Negative Bias Temperature

Instability. Technischen Universität Wien, Fakultät für Elektrotechnik und


(35)

Freshney, P. (2013, Juli 2). Periodic Table Explorer. PTE. Diambil kembali dari http://www.periodictableexplorer.com/

Hellwig, A. (2005, Mei 23). Hexagonal Unit Cell of Lithium Niobate (LiNbO3).

Dipetik Oktober 20, 2013, dari Wikipedia: http://en.wikipedia.org/wiki/File:Linbo3_Unit_Cell.png

Hodes, G. (2002). Chemical Solution Deposition of Semiconductor Films (1st ed.). New York, United States of America: Marcel Dekker, Inc.

Honsberg, C., & Bowden, S. (2013, Maret 28). Short-Circuit Current. (PV Education) Dipetik November 27, 2013, dari PV Education: http://pveducation.org/pvcdrom/solar-cell-operation/short-circuit-current

Humphreys, F., & Hatherly, M. (2004). Recrystallization and Related Annealing

Phenomena (2nd ed.). Oxford: Elsevier. Dipetik Desember 1, 2013

Irzaman, Maddu, A., Syafutra, H., & Ismangil, A. (2010). Uji Konduktivitas Listrik dan Dielektrik Film Tipis Lithium Tantalate ( LiTaO3) yang

Didadah Niobium Pentaoksida (Nb2O5) Menggunakan Metode Chemical

Solution Deposition. Prosiding Seminar Nasional Fisika 2010, 175-183.

Irzaman, Syafutra, H., Darmasetiawan, H., Hardhienata, H., Erviansyah, R., Huriawati, F., . . . Arifin, P. (2011). Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST) Thin Film Doped with Ferric Oxide on p-type Si

(100) Substrate using Chemical Solution Deposition Method. Atom

Indonesia, 37(3), 133-138. Diambil kembali dari http://aij.batan.go.id/index.php/aij/article/view/81/60

Keithley Instruments. (2013). Simplify Your Solar Cell Testing. Dipetik November 27, 2013, dari Keithley: http://www.keithley.com/solar_cell


(36)

Kooij, E., Hamoumi, M., Kelly, J., & Schropp, R. (1997, Oktober). Photoselective Metal Deposition on Amorphous Silicon p-i-n Solar Cells.

Electrochemical Society Letters, CXLIV(10), 271-272.

Lei, H., Xingning, Y., & Xingbi, C. (2003, Januari 1). Increasing Breakdown Voltage of LDMOST Using Buried Layer. Journal of Electronics, XX(1), 29-32. doi:10.1007/s11767-003-0083-x

M. C. Hales, & J. W. Burgess. (1976). Wide Band Monolithic Crystal Filters Using Lithium Tantalate. Electrocomponent Science and Technology, III, 43-49.

Material Innovation and Growth Team. (2006). Functional Material. United Kingdom: Material UK.

Mbodji, S., Ly, I., Diallo, H., Dione, M., Diasse, O., & Sissoko, G. (2012, Januari 1). Modeling Study of N+/P Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). Research Journal of Applied Sciences, Engineering and Technology,

IV(1), 1-7. Dipetik November 22, 2013

Milton, R. (2009, Mei 28). Annealing & Metallurgy: The Different Stages and

Processes. Dipetik Desember 2013, 1, dari SearchWarp:

http://searchwarp.com/swa485416-Annealing-And-Metallurgy-The-Different-Stages-And-Processes.htm

Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Pinol, S., Mestres, N., . . . Tendeloo, G. v. (2004, Juni 18). Chemical Solution Deposition: A Path Towards Low Cost Coated Conductors. Superconductor Science and


(37)

O'Mara, W., Herring, R., & Lee, P. (1990). Handbook of Semiconductor Silicon

Technology. New Jersey, USA: Noyes Publications.

OSI Optoelectronics. (2007, Agustus 17). Photodiode Characteristics and

Applications. Dipetik Oktober 10, 2013, dari OSI Optoelectronics:

http://www.osioptoelectronics.com/application-notes/AN-Photodiode-Parameters-Characteristics.pdf

Peeters, T., & Remoortere, B. v. (2008, Juni 10). Spin Coating. (Fontys Hogenscholen) Dipetik September 22, 2013, dari DAS Core 46 Coatings: http://home.wanadoo.nl/tom.peeters/Subpaginas/spin%20coating.htm

Poghosyan, A. R. (2003, September). Optical Control of Domain Structures in Lithium Tantalate Crystals. Journal of Optoelectronics and Advanced

Materials, V(3), 735 - 740.

Polster, M. (2001, Oktober). Introducing Lithium Tantalate. Crystal Illuminations, hal. 1.

Poole, I. (2004). Photodiode Technology. Dipetik Desember 5, 2013, dari Radio-Electronics: http://www.radio-electronics.com/info/data/semicond/photo_diode/photo_diode.php

Rubiyanto, A., Endarko, & Pramono, Y. (2001). Pengukuran Derajat Koherensi Cahaya Menggunakan Kristal LiTaO3. KAPPA, II(2), 1-4.

Sahu, N., Parija, B., & Panigrahi, S. (2009). Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian Journal of Physics, 193-502.

Salam, R. (2010). Karakterisasi Sifat Listrik LiTaO3 yang Ditumbuhkan dengan Metode Sol-Gel Spin Coating dalam Aplikasinya sebagai Fotodioda.


(38)

Setiawan, A. (2008). Uji Sifat Listrik dan Optik Ba0.25Sr0.75TiO3 yang Didadah Niobium (BSNT) Ditumbuhkan di Atas Substrat Silikon Tipe-P dan Gelas Korning dengan Penerapannya sebagai Fotodiode. Fisika. Bogor: Institut

Pertanian Bogor.

Smallman, R. E., & Bishop, R. (2000). Metalurgi Fisik Modern dan Rekayasa

Material (6th ed.). (S. Djaprie, Penerj.) Jakarta: Penerbit Erlangga.

Stotlar, S. C. (2000). Visible Detectors. Dalam R. W. Waynant, & M. N. Ediger,

Electro-Optics Handbook (2nd ed., hal. 16.1-16.21). McGraw-Hill

Handbooks.

Sutanto, H., Nurhasanah, I., Marhaendrajaya, I., Taufani, A., L., L., Badriyah, & Ambikawati, W. (2008). Penumbuhan Lapisan Tipis Semikonduktor GaN di Atas Substrat Silikon dengan Metode Sol-Gel. Prosiding Seminar

Nasional Rekayasa Kimia dan Proses 2008, 1-5.

Sze, S., & Kwok, K. (2007). Physics of Semiconductor Devices (3rd ed.). New Jersey: Wiley Interscience.

Thompson, P. R., & Larason, T. C. (2001, Januari). Method of Measuring Shunt Resistance in Photodiodes. Measurement Science Conference. Dipetik

November 27, 2013, dari

http://paulrthompson.com/files/measuring_shunt_resistance_in_photodiod es.pdf

Thorlabs. (1999). Tutorials. Dipetik Oktober 14, 2013, dari Thorlabs: http://www.thorlabs.com/tutorials.cfm?tabID=31760

Uchino, K. (2000). General View of Ferroelectrics. New York, United States of America: Marcel Dekker, Inc.


(39)

UDT Sensors. (2002). Silicon Photodiodes Physics and Technology. Hawthorne, California, United States of America. Diambil kembali dari http://measure.feld.cvut.cz/system/files/files/cs/vyuka/predmety/A3M38V

BM/app_notes_02_Silicon_Photodiode_-%20Physics_and_Technology.pdf

United Detector of Technology. (2004). Characteristics and Use of Photodiodes. California. Dipetik November 21, 2013, dari http://unicorn.ps.uci.edu/H2A/handouts/PDFs/photodiode.pdf

University of British Columbia. (2006, September 24). Sol-Gel Deposition. Columbia, Canada. Dipetik Desember 21, 2013, dari http://cme.nuk.edu.tw/download.php?filename=413_d5d4d48c.pdf&dir=p ersonal_subject/&title=%E6%87%89%E7%94%A8%E8%86%A0%E9%

AB%94%E5%8C%96%E5%AD%B8_Lecture+08-%E6%87%89%E7%94%A8%E8%86%A0%E9%AB%94%E5%8C%96% E5%AD%B8_08_Introduction+to+Sol-Gel

Virginia Semiconductor. (2002). The General Properties of Si, Ge, SiGe, SiO2 and Si3N4. Virginia: Virginia Semiconductor. Diambil kembali dari

http://www.virginiasemi.com/pdf/generalpropertiessi62002.pdf

Volk, T., & Wöhlecke, M. (2008). Lithium Niobate - Defects, Photorefraction and

Ferroelectric Switching. (R. Hull, R. Osgood, Jr., J. Parisi, & H.

Warlimont, Penyunt.) Moscow, Russia: Springer.

Yadav, A. (2008). Solid State Devices and Circuits (1st ed.). New Delhi, India: University Science Press.

Zeghbroeck, V. B. (2011). Principles of Semiconductor Devices. (Department of Electrical, Computer, and Energy Engineering at the University of


(40)

Colorado at Boulder) Dipetik September 23, 2013, dari ECEE: http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_8.htm


(1)

Freshney, P. (2013, Juli 2). Periodic Table Explorer. PTE. Diambil kembali dari http://www.periodictableexplorer.com/

Hellwig, A. (2005, Mei 23). Hexagonal Unit Cell of Lithium Niobate (LiNbO3).

Dipetik Oktober 20, 2013, dari Wikipedia:

http://en.wikipedia.org/wiki/File:Linbo3_Unit_Cell.png

Hodes, G. (2002). Chemical Solution Deposition of Semiconductor Films (1st ed.). New York, United States of America: Marcel Dekker, Inc.

Honsberg, C., & Bowden, S. (2013, Maret 28). Short-Circuit Current. (PV Education) Dipetik November 27, 2013, dari PV Education: http://pveducation.org/pvcdrom/solar-cell-operation/short-circuit-current Humphreys, F., & Hatherly, M. (2004). Recrystallization and Related Annealing

Phenomena (2nd ed.). Oxford: Elsevier. Dipetik Desember 1, 2013

Irzaman, Maddu, A., Syafutra, H., & Ismangil, A. (2010). Uji Konduktivitas Listrik dan Dielektrik Film Tipis Lithium Tantalate ( LiTaO3) yang

Didadah Niobium Pentaoksida (Nb2O5) Menggunakan Metode Chemical

Solution Deposition. Prosiding Seminar Nasional Fisika 2010, 175-183. Irzaman, Syafutra, H., Darmasetiawan, H., Hardhienata, H., Erviansyah, R.,

Huriawati, F., . . . Arifin, P. (2011). Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST) Thin Film Doped with Ferric Oxide on p-type Si

(100) Substrate using Chemical Solution Deposition Method. Atom

Indonesia, 37(3), 133-138. Diambil kembali dari

http://aij.batan.go.id/index.php/aij/article/view/81/60

Keithley Instruments. (2013). Simplify Your Solar Cell Testing. Dipetik November 27, 2013, dari Keithley: http://www.keithley.com/solar_cell


(2)

Andira Muttakim, 2014

Kooij, E., Hamoumi, M., Kelly, J., & Schropp, R. (1997, Oktober). Photoselective Metal Deposition on Amorphous Silicon p-i-n Solar Cells.

Electrochemical Society Letters, CXLIV(10), 271-272.

Lei, H., Xingning, Y., & Xingbi, C. (2003, Januari 1). Increasing Breakdown Voltage of LDMOST Using Buried Layer. Journal of Electronics, XX(1), 29-32. doi:10.1007/s11767-003-0083-x

M. C. Hales, & J. W. Burgess. (1976). Wide Band Monolithic Crystal Filters Using Lithium Tantalate. Electrocomponent Science and Technology, III, 43-49.

Material Innovation and Growth Team. (2006). Functional Material. United Kingdom: Material UK.

Mbodji, S., Ly, I., Diallo, H., Dione, M., Diasse, O., & Sissoko, G. (2012, Januari 1). Modeling Study of N+/P Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). Research Journal of Applied Sciences, Engineering and Technology,

IV(1), 1-7. Dipetik November 22, 2013

Milton, R. (2009, Mei 28). Annealing & Metallurgy: The Different Stages and

Processes. Dipetik Desember 2013, 1, dari SearchWarp:

http://searchwarp.com/swa485416-Annealing-And-Metallurgy-The-Different-Stages-And-Processes.htm

Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Pinol, S., Mestres, N., . . . Tendeloo, G. v. (2004, Juni 18). Chemical Solution Deposition: A Path Towards Low Cost Coated Conductors. Superconductor Science and


(3)

O'Mara, W., Herring, R., & Lee, P. (1990). Handbook of Semiconductor Silicon

Technology. New Jersey, USA: Noyes Publications.

OSI Optoelectronics. (2007, Agustus 17). Photodiode Characteristics and

Applications. Dipetik Oktober 10, 2013, dari OSI Optoelectronics:

http://www.osioptoelectronics.com/application-notes/AN-Photodiode-Parameters-Characteristics.pdf

Peeters, T., & Remoortere, B. v. (2008, Juni 10). Spin Coating. (Fontys Hogenscholen) Dipetik September 22, 2013, dari DAS Core 46 Coatings: http://home.wanadoo.nl/tom.peeters/Subpaginas/spin%20coating.htm Poghosyan, A. R. (2003, September). Optical Control of Domain Structures in

Lithium Tantalate Crystals. Journal of Optoelectronics and Advanced

Materials, V(3), 735 - 740.

Polster, M. (2001, Oktober). Introducing Lithium Tantalate. Crystal Illuminations, hal. 1.

Poole, I. (2004). Photodiode Technology. Dipetik Desember 5, 2013, dari

Radio-Electronics:

http://www.radio-electronics.com/info/data/semicond/photo_diode/photo_diode.php

Rubiyanto, A., Endarko, & Pramono, Y. (2001). Pengukuran Derajat Koherensi Cahaya Menggunakan Kristal LiTaO3. KAPPA, II(2), 1-4.

Sahu, N., Parija, B., & Panigrahi, S. (2009). Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian Journal of Physics, 193-502.

Salam, R. (2010). Karakterisasi Sifat Listrik LiTaO3 yang Ditumbuhkan dengan


(4)

Andira Muttakim, 2014

Setiawan, A. (2008). Uji Sifat Listrik dan Optik Ba0.25Sr0.75TiO3 yang Didadah

Niobium (BSNT) Ditumbuhkan di Atas Substrat Silikon Tipe-P dan Gelas Korning dengan Penerapannya sebagai Fotodiode. Fisika. Bogor: Institut

Pertanian Bogor.

Smallman, R. E., & Bishop, R. (2000). Metalurgi Fisik Modern dan Rekayasa

Material (6th ed.). (S. Djaprie, Penerj.) Jakarta: Penerbit Erlangga.

Stotlar, S. C. (2000). Visible Detectors. Dalam R. W. Waynant, & M. N. Ediger,

Electro-Optics Handbook (2nd ed., hal. 16.1-16.21). McGraw-Hill

Handbooks.

Sutanto, H., Nurhasanah, I., Marhaendrajaya, I., Taufani, A., L., L., Badriyah, & Ambikawati, W. (2008). Penumbuhan Lapisan Tipis Semikonduktor GaN di Atas Substrat Silikon dengan Metode Sol-Gel. Prosiding Seminar

Nasional Rekayasa Kimia dan Proses 2008, 1-5.

Sze, S., & Kwok, K. (2007). Physics of Semiconductor Devices (3rd ed.). New Jersey: Wiley Interscience.

Thompson, P. R., & Larason, T. C. (2001, Januari). Method of Measuring Shunt Resistance in Photodiodes. Measurement Science Conference. Dipetik

November 27, 2013, dari

http://paulrthompson.com/files/measuring_shunt_resistance_in_photodiod es.pdf

Thorlabs. (1999). Tutorials. Dipetik Oktober 14, 2013, dari Thorlabs: http://www.thorlabs.com/tutorials.cfm?tabID=31760

Uchino, K. (2000). General View of Ferroelectrics. New York, United States of America: Marcel Dekker, Inc.


(5)

UDT Sensors. (2002). Silicon Photodiodes Physics and Technology. Hawthorne, California, United States of America. Diambil kembali dari http://measure.feld.cvut.cz/system/files/files/cs/vyuka/predmety/A3M38V

BM/app_notes_02_Silicon_Photodiode_-%20Physics_and_Technology.pdf

United Detector of Technology. (2004). Characteristics and Use of Photodiodes.

California. Dipetik November 21, 2013, dari

http://unicorn.ps.uci.edu/H2A/handouts/PDFs/photodiode.pdf

University of British Columbia. (2006, September 24). Sol-Gel Deposition.

Columbia, Canada. Dipetik Desember 21, 2013, dari

http://cme.nuk.edu.tw/download.php?filename=413_d5d4d48c.pdf&dir=p ersonal_subject/&title=%E6%87%89%E7%94%A8%E8%86%A0%E9%

AB%94%E5%8C%96%E5%AD%B8_Lecture+08-%E6%87%89%E7%94%A8%E8%86%A0%E9%AB%94%E5%8C%96% E5%AD%B8_08_Introduction+to+Sol-Gel

Virginia Semiconductor. (2002). The General Properties of Si, Ge, SiGe, SiO2 and

Si3N4. Virginia: Virginia Semiconductor. Diambil kembali dari http://www.virginiasemi.com/pdf/generalpropertiessi62002.pdf

Volk, T., & Wöhlecke, M. (2008). Lithium Niobate - Defects, Photorefraction and

Ferroelectric Switching. (R. Hull, R. Osgood, Jr., J. Parisi, & H.

Warlimont, Penyunt.) Moscow, Russia: Springer.

Yadav, A. (2008). Solid State Devices and Circuits (1st ed.). New Delhi, India: University Science Press.

Zeghbroeck, V. B. (2011). Principles of Semiconductor Devices. (Department of Electrical, Computer, and Energy Engineering at the University of


(6)

Andira Muttakim, 2014

Colorado at Boulder) Dipetik September 23, 2013, dari ECEE: http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_8.htm