LEEAP Workshop - ABET Accreditation.

Leadership in Engineering
Education Accreditation
Program (LEEAP)

©

ASU Presenters 

Dr. Scott Danielson
Director, VULII
Associate Dean Global Engineering
Ira A Fulton Schools of Engineering, Arizona State University

Dr. Kathy Wigal
Associate Director Curricular Innovation
Global Outreach and Extended Education
Ira A Fulton Schools of Engineering, Arizona State University

©

Workshop Goals

•  Overview
•  Budgeting for ABET Accreditation
•  Leading Continuous Improvement
•  Role of Dean and Faculty
•  Program Educational Objectives
•  Program Outcomes
•  Mapping Objectives and Outcomes

©

Team Roles 
• 
• 
• 
• 

Note taker 
Time keeper 
Reporter 
Facilitator 


 

©

ABET 
An specialized accredita9on organiza9on, 
based in the USA, that accredits programs 
across the world. 

©

ABET’s Organiza9onal Design 
•  ABET is a federation of 33 professional and
technical societies, not connected with the
government.
•  Neither institutions/universities nor
individuals are members of ABET.
•  ABET relies on the services of almost
2,200 volunteers supported by 33 full-time

and seven part-time staff.
Adapted from ABET, Inc. 2014

©

ABET’s Accredita9on Ac9vi9es 
(As of 1 October 2013) 
•  Accredited 3,367 programs at 684 colleges 
and universi9es in 24 countries 
•  Non‐U.S. Programs 
  Accredited 365 programs at 72 ins9tu9ons in 23 
countries  
  Uniform accredita9on criteria, policies and 
procedures used for all visits, regardless of 
loca9on 
Copyright © 2014 by ABET

©

What Does ABET Accredit? 

•  An academic program leading to a
specific degree in a specific discipline
  Not institutions
  Not schools, colleges, or departments
  Not facilities, courses, or faculty
  Not graduates
  NOT a specific curriculum
Adapted from ABET, Inc. 2014

©

Result of ABET Accredita9on 

•  Binary Result: 
•  Accredited 
•  Not Accredited   
•  No rankings issued 

Adapted from ABET, Inc. 2014


©

What Types of Programs Does 
 ABET Accredit? 
•  Academic program leading to a specific degree 
in a specific discipline  
  Assigned commission depends on program name 

•  Applied Science (ASAC): AS, BS, MS 
  Examples: Health Physics, Industrial Hygiene, Industrial & 
Quality Management, Safety Sciences, Surveying & Mapping 

•  Compu9ng (CAC): BS 
  Computer Science, Info Systems, Info Technology 

•  Engineering (EAC): BS, MS 
•  Engineering Technology (ETAC): AS, BS 
Adapted from ABET, Inc. 2014

©


Engineering Accredita8on (EAC) 
General Criteria for Engineering Programs 
•  Criterion 1. Students 
•  Criterion 2. Program Educa9onal Objec9ves 
•  Criterion 3. Student Outcomes 
•  Criterion 4. Con9nuous Improvement  
•  Criterion 5. Curriculum  
•  Criterion 6. Faculty  
•  Criterion 7. Facili9es  
•  Criterion 8. Ins9tu9onal Support 
•  Criterion 9. Program Criteria (if applied) 
©

Cost of ABET Accredita9on 
Some costs are fixed—you don’t have 
control of them.   
 
An example is the fee ABET charges for a 
program to seek accredita9on or the 

yearly fee for an accredited program. 

©

Fixed Costs of ABET Accredita9on 
(as of fall 2014) 

Step 1: Readiness Review (necessary if 
ins9tu9on has no prior experience with 
ABET accredita9on):  $1000 USD   

Adapted from ABET, Inc. 2014

©

Fixed Costs of ABET Accredita9on 
Step 2: Site Visit of Evalua9on Team: 
•  Base Fee: $8000 USD (independent of 
number of programs) 
•  *Program fee: $8000 USD per program 

evaluator (typically one per program & 
min of 3) 
•  Actual travel costs of team (airfare, in‐
country costs) 
*Addi9onal minor fees assessed if special situa9ons apply. 

 

Adapted from ABET, Inc. 2014

©

Fixed Costs of ABET Accredita9on 
Step 3: Annual fees for accredited 
programs: 
•  Base Fee: $1285 USD (independent of 
number of programs) 
•  Program fee: $1285 USD per program 
plus $250 USD curricular fee 
Adapted from ABET, Inc. 2014


©

Total Fixed Costs  
of ABET Accredita9on 
$9000 USD base fee for ini9al process 
$8000 USD per program + travel costs for 
     site visit 
$1285 USD annual fee ager accredited  
$1285 USD per program ager accredited  
 

Adapted from ABET, Inc. 2014

©

ABET Fee website for interna9onal 
programs: 
hip://www.abet.org/accredita9on/get‐
accredited‐2/cost‐of‐accredita9on/fees‐

for‐programs‐outside‐the‐u‐s/ 
Video on ASU Innova9on Showcase 
hips://vimeo.com/101467903 

© 

Interna9onal Engineering Alliance 
•  Organiza9on has fostered various 
interna9onal agreements or accords 
•  Interna9onal agreement between 
bodies responsible for accredi9ng 
engineering degree programs 
•  The agreements provide recogni9on 
of the “substan9al equivalency” of the 
accredi9ng systems 
©

©

Interna8onal Accords and Engineering Accredita8on 

•  The Dublin Accord focuses on 2 or 3‐year engineering 
technician programs. 
•  The Sydney Accord Global focuses on accredita9on of 
4‐year (B.S.) engineering technology programs. 
•  The Washington Accord focuses on accredita9on of 4 
year engineering programs 
•  The program characteris9cs related to these accords 
are described in more detail in the Interna8onal 
Engineering Alliance (IEA) documents.   
©

Continuous
Quality
Improvement
Copyright © 2014 by ABET

©

Con9nuous Quality Improvement 
(CQI Process) 
•  CQI process includes a clear understanding of: 
 
 
 
 
 
 
 
 

Mission (your purpose) 
Cons9tuents (your customers) 
Objec9ves (what one is trying to achieve) 
Outcomes (learning that takes place to meet objec9ves)  
Processes (internal prac9ces to achieve the outcome) 
Facts (data collec9on) 
Evalua9on (interpreta9on of facts) 
Ac9on (change, improvement) 
©
Copyright © 2014 by ABET

•  Assessment: How Well Are We Doing? 
Use Results
for Decision
Making

Establish
Purpose and
Set Goals

Define/Refine
Objectives
and
Outcomes

Evaluate
Assessment
Findings
Design and
Conduct
Assessment
s

Copyright © 2014 by ABET

©

Assessment 
Common Issues (slide 1) 

•  Faculty and/or staff fail to put adequate 
aien9on to what data need to be 
gathered to assess and evaluate, especially 
for student outcomes. 
  Common mistake: gathering much more data 
than needed 
  Failure to logically evaluate data prevents 
reasonable conclusion that an objec9ve or 
outcome is being aiained 

Copyright © 2014 by ABET

©

Assessment 
Common Issues (slide 2) 

•  Many large programs hand off all 
assessment ac9vi9es to a staff person 
(some qualified, some not). 
  Program evaluators look for faculty knowledge 
of processes and results. 
  Experience shows that most (preferably all) 
faculty members must be involved for the 
requirements of Criterion 4 (Con9nuous 
Improvement) to be fully met. 
©
Copyright © 2014 by ABET

The Path to ABET Accredita8on Requires: 
A Quality Assurance System that involves: 
  Program Educa9onal Objec9ves (Criterion 2) 
  Program Student Learning Outcomes (Criterion 3)  
  An Assessment System to Gather Data (Criterion 4)  
  An Evalua9on System to Determine the Meaning of the 
Assessment Data (Criterion 4) 
  Ac9ons to improve program taken based on evalua9on 
(Criterion 4) 

©

Heart of the ABET Criteria 
The Con9nuous Improvement Process (CIP) 
•   Embedded in Criteria 2, 3, and 4 
•  Criteria 2 is about Program Objec9ves 
•  Criteria 3 is about Student Outcomes for the 
Program 
•  Criteria 4 is about the Assessment and Evalua9on 
process 

©

The goal of assessment is datadriven decision making.

Are faculty asking the right question?
What do we have to do for accreditation?

How do we improve student learning?

©

Toward Continuous Improvement

• 

Outcomes assessment is becoming an
international standard of quality

• 

We need to provide evidence of students’
attainment of program outcomes

• 

We need assessment processes consistent with
institutional values and faculty priorities

©

ABET Criterion 2 
The program must have published program 
educa9onal objec9ves that are consistent with the 
mission of the ins9tu9on, the needs of the program’s 
various cons'tuencies, and these criteria. There must 
be a documented, systema8cally u9lized, and 
effec8ve process, involving program cons8tuencies, 
for the periodic review of these program educa9onal 
objec9ves that ensures they remain consistent with 
the ins9tu9onal mission, the program’s cons9tuents’ 
needs, and these criteria.  

©

ABET Criterion 3 
The program must have documented student 
outcomes that prepare graduates to aiain the 
program educa9onal objec9ves.   EAC lists outcomes 
a‐k. 
 

©

Objectives
Outcomes

What is the difference?

©

2‐3 years ager gradua9on 
•  What is your vision for your students? 
•  What type of careers might they have? 
•  What will they be able to do beyond the 
skills they had a gradua9on. 

Program Objectives

©

Program Educa'onal Objec'ves: 
Program Objec3ves are broad statements that 
describe what graduates are prepared to 
aiain or be able to accomplish  within a few 
years of gradua9on.    
Source: ABET

Program Objec3ves reflect the needs of 
those that hire your graduates! 

©

Graduation

Work

School
Outcomes 

Objectives

raise fish

run fish business

play badminton

win tournament

work on teams lead teams
©

At gradua9on 
•  What skills and knowledge do your 
students need to make that possible? 
Program Level Student Outcomes

©

Student outcomes describe what
students are expected to know and be able
to do by the time of graduation. These
relate to the knowledge, skills, and
behaviors that students acquire as they
progress through the program.

©

Program Educa'onal Objec'ves: 
Understanding The Language of Objec3ves 

©

Sample Program Educa'onal Objec'ves 
Graduates will be able to combine skills gained through 
their academic program so they can: 

 

Engage in con3nued learning to improve 
professional skills to improve quality of 
company opera3ons via con3nuous 
improvement  processes and adapt to 
changing social condi3ons and policies.   

©

Sample Program Educa'onal Objec'ves 
Graduates will be able to combine skills gained 
through their academic program so they can: 

 

Incorporate economic, environmental, social 
and sustainability considera3ons into the 
prac3ce of mechanical engineering 
technology to [improve the engineering 
efforts in the region and country] OR [improve 
the economic status of the region or 
businesses]. 
©

Program Objec9ves are usually 3 to 5 in number  
(these are different than course objec9ves!).  

Graduates integrate specific skills 
learned in the program into broader 
skill sets. 
Statistics

Engineering
Design

Failure Analysis

Think of these as 
“marke9ng 
statements” 
about your 
program! 
©

Graduation

Work

School
Outcomes

Objectives

raise fish

manage a fishery

work on teams

lead teams

©

Think about what your graduates will be doing 
if they are successful in two‐three years aQer 
gradua8on! 
apply

lead
optimize

exhibit

Graduates will be able to __________
incorporate
continue
succeed

Ac8on 
Word 

©

Using the format “Two- three years after graduation,
program graduates will be able to combine skills gained
through their academic program to. . .”
write two or three program objectives.
1.  [action word] . . . . .
2.  [action word] . . . . .
3. 

[action word] . . . . .

Brainstorm 
*** 
Cluster Ideas 
*** 
Write Objec'ves 
©

Linking Program Objec'ves to the 
Mission of Your Ins'tu'on 
Your program objec9ves have to support your 
College and University mission! 
This linkage is usually very general in nature! 

University Mission 
Program Educa8onal 
Objec8ves 
©

Ins8tu8onal Mission 
How Many? 

Must
cover
ABET
(a-k or
a-i)

Program Objec8ves  
(2‐3 years ager gradua9on 
from program) 
Program level Student Learning Outcomes  
(at point of gradua9on) 

3‐5 

12‐15 

All the Courses That Make Up the Program 
Course Learning Outcomes (CLOs) for each course 

40–55  
courses   ©

Cons'tuent Review of Program Objec'ves 
Who are your relevant cons9tuencies for 
review and feedback of your academic 
program objec9ves? 
•  The people/groups to whom your program 
is important. 
 
•  Stakeholders 

©

Cons'tuent Review of Program Objec'ves 
What is your plan for conduc9ng 
cons9tuent review, incorpora9ng 
feedback, and conduc9ng periodic review 
of your program objec9ves? 
How will you get feedback from each group?

•  Students 
•  Faculty 
•  Employers / Alumni 
 

 

©

Consider efficiency of face to face
review with immediate feedback.

©

Program Level – Student Learning Outcomes: 
Understanding The Language of Outcomes 

©

ABET Criterion 3 
The program must have documented student 
outcomes that prepare graduates to aiain the 
program educa9onal objec9ves.   EAC lists outcomes 
a‐k. 
 

©

Ins8tu8onal Mission 
How Many? 

Must
cover
ABET
(a-k or
a-i)

Program Objec8ves  
(2‐3 years ager gradua9on 
from program) 
Program level Student Learning Outcomes  
(at point of gradua9on) 

3‐5 

12‐15 

All the Courses That Make Up the Program 
Course Learning Outcomes (CLOs) for each course 

40–55  
courses   ©

At gradua9on 
•  What skills and knowledge do your 
students need to make that possible? 
Program Level Student Outcomes

©

Student outcomes describe what
students are expected to know and be able
to do by the time of graduation. These
relate to the knowledge, skills, and
behaviors that students acquire as they
progress through the program.

©

Graduation

Work

School
Outcomes

Objectives

raise fish

manage a fishery

work on teams

lead teams

©

Student Outcomes
Student outcomes describe what students are expected to know and be able to do
by the time of graduation. These relate to the knowledge, skills, and behaviors that
students acquire as they progress through the program.
Source: ABET

1.  Knowledge and skills you want the student
to have by the time they graduate.

2.  Think about what they will have to do to
show they possess the knowledge and skill.
This is the outcome. 

?
Students will __________

Ac8on 
Word 
©

Electronics
English spoken and written
Critical thinking
Presentation skills
Communication skills
Teamwork skills—multidisciplinary teams
Ability to learn, life-long learning
Math and basic sciences—physics, chemistry
Social science—psychology, economics,
philosophy, industrial management
Engineering fundamentals
Electronics fundamentals—C++, Java,
specialized engineering knowledge, IC Design,
telecommunication, automation, optimizing,
modern equipment and tools
Design and analyze electronic systems

©

Mechanical
Math—geometry, algebra, calculus
Science—physics,
Social science—philosophy,
Engineering—cad/cam, component design,
manufacturing processes, additive manufacturing,
robust design,
Computer skills (office)
Communication skills
Teamwork
Time management
Presentation skills
English language

©

model

identify
define

calculate

DO?
Students will __________
predict
compare
design

Ac8on 
Word 

©

Bloom’s Taxonomy 
Cogni9ve Domain 

Bloom, B.S. (1984). Taxonomy of educa3onal objec3ves. 1. Cogni3ve Domain. New York: Longman, 

95 

©

Blooms Taxonomy (Cogni9ve Domain) 

96 

©

Upon graduation from [program], students will:
1.  [action word] . . . . .
Upon graduation from the industrial engineering
program, students will be able to design, develop,
implement, and improve IE systems of people,
materials, information, capital, and energy so as
to improve competitiveness

©

Using the format “students will . . .” write 3 outcomes for
your program (note – a complete set is 12-15 outcomes).

Upon graduation from [program], students will:
1.  [action word] . . . . .
2.  [action word] . . . . .
3.  [action word] . . . . .
.
.
.

©

Which of these ABET outcomes below does each of your
program outcomes support?
ABET Criterion 3 – Student Outcomes (4 year programs)
The program must have documented student outcomes that prepare graduates to
attain the program educational objectives. Student outcomes are outcomes (a)
through (k) plus any additional outcomes that may be articulated by the program
A. an ability to apply knowledge of mathematics, science, and engineering
B.  an ability to design and conduct experiments, as well as to analyze and interpret
data
C. an ability to design a system, component or process to meet desired needs
within realistic constraints such as economic, environmental, social, political,
ethical, health and safety, manufacturability, and sustainability.
D. an ability to function on multidisciplinary teams
E.  an ability to identify, formulate, and solve engineering problems
F.  an understanding of professional and ethical responsibility
G. an ability to communicate effectively
H. the broad education necessary to understand the impact of engineering solutions
in a global, economic, environmental, and societal context
I.  a recognition of the need for, and an ability to engage in life-long learning
J.  a knowledge of contemporary issues
K. an ability to use the techniques, skills, and modern engineering tools necessary
for engineering practice

©

Homework – we will do a follow‐ 
up with you this spring to see your 
progress and to provide any help 
possible.  July 24, 2015 
 
1.  Program Objec9ves 
2.  Cons9tuency review 
3.  Program Level Student Outcomes 

©