Microeconometrics: Binary Dependent Variable

  Microeconometrics:

  Additional References Dougherty, Introduction to Econometrics, 4

  • th

  Ed, 2011

  

Estimators we (will) know

  •   • Ordinary Least Square (OLS)

  

Why uses binary dependent variable?

  • Observed vs unobserved variables

  

Why uses binary dependent variable?

  • Observed vs unobserved variables

  

Why uses binary dependent variable?

  • Observed vs unobserved variables

  

Why uses binary dependent variable?

  • Observed vs unobserved variables

  

The mechanism

Suppose:

  •  

  

The mechanism

  •  

  So we estimate

  

The Linear Probability Model

Using formula for expected value:

  •  

  

The Linear Probability Model

  •   If we estimate

  

The Linear Probability Model

  •  

  We know from previous lectures about

  

LPM Interpretation

  • •   Suppose we have a more complete set

  

LPM Interpretation

  • •   Suppose we have a more complete set

  

LPM Interpretation

Suppose we have a more complete set of independent variables:

  •  

  LPM Interpretation

  

Limitations of LPM

  • Distribution of the error term is not following
  •  

  

Normal Distribution, so test statistics are not

  

Limitations of LPM

  • Distribution of the error term is not
  •  

  following Normal Distribution, so test

  

Limitations of LPM

  • Heteroskedasiticity
  •  

  

Limitations of LPM

  • Nonfulfllment of : Does it make sense to
  •  

  What is a better model for

estimating E(y )?

  i What is a better model for estimating E(y i

  )?

  

What is a better model for E(y )?

i

  • We denote CDFs using the letter F

  

Solution

  • We need a math function for , or , or , that always results in values between 0 and 1
  •  

  Solution 1: Logit Model

  •  

  

Solution 1: Logit Model

  •   Taking the log of both sides

  

Logit Model: Coefcients &

Marginal Efects

  

Logit Model: Coefcients &

Marginal Efects

  •  

  

Solution 2: Probit Model

Suppose we have an equation:

  •  

  

Solution 2: Probit Model

  •   Hence

  

Solution 2: Probit Model

  •   Since the normal distribution is

  

Probit Model: Coefcients &

Marginal Efects

  •  

  

Probit Model: Coefcients &

Marginal Efects

  Gender Inequality and Poverty in Indonesia: Evidence from Household Data Kinanti Z. Patria

  

Estimation of Logit and Probit

Models

  • We do not use OLS, rather we use the Maximum Likelihood Method

  

Maximum Likelihood Estimator

  • Remember that our data is Random •  

  

Maximum Likelihood Estimator

  • Remember that our data is Random •  

  

Maximum Likelihood Estimator

  • “Maximum Likelihood is just a

Copyright Christopher Dougherty 2012. These slideshows may be downloaded by anyone, anywhere for personal use

  

Subject to respect for copyright and, where appropriate, attribution, they may be used as

a resource for teaching an econometrics course. There is no need to refer to the author.

  The content of this slideshow comes from Section R.2 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press.

  

Method of ML

  • • The method of maximum likelihood is

  p

  • This sequence introduces the

  0.4

  principle of maximum likelihood estimation and illustrates it with

  0.3 some simple examples.

  0.2

  Normal Distribution 1 x  

  2

  p p p(4) p(6) m

  0.4

  0.3521 3.5 0.3521 0.0175

  0.3

  p p p(4) p(6) L m

  0.4

  0.3521 3.5 0.3521 0.0175 0.0062

  0.3

  p 0.3989 p(4) p(6) L m

  0.4

  3.5 0.3521 0.0175 0.0062

  0.3

  4.0 0.3989 0.0540 0.0215

  p 0.3521 m p(4) p(6) L

  3.5 0.3521 0.0175 0.0062 4.0 0.3989 0.0540 0.0215

  0.3

  0.4

  m p(4) p(6) L

  3.5 0.3521 0.0175 0.0062 4.0 0.3989 0.0540 0.0215 p

  0.2420 0.2420

  0.3

  0.4

  m p(4) p(6) L

  3.5 0.3521 0.0175 0.0062 4.0 0.3989 0.0540 0.0215 p

  0.3521

  0.3

  0.4

  m p(4) p(6) L

  3.5 0.3521 0.0175 0.0062 4.0 0.3989 0.0540 0.0215 p

  0.3521

  0.3

  0.4

  2

  2

  1

  2

  1 ) (    

     

  

   

   

  X X f

e

  2

  2

  1

  2

  1 ) (    

     

  

   

   

  X X f

e

   

  2

  2

  1

  1   

  X

  2

  2

  1

  2

  1 ) (    

     

  

   

   

  X X f

e

   

  2

  2

  1

  1   

  X

  2

  1 X

        

  1

  2

     f ( X ) e

  

  2

   

  2

  1 X

      

  1

  2

  2

  1 X

        

  1

  2

     f ( X ) e

  

  2

   

  2

  1 X

      

  1

  2

  2 X

  Y

  • + b

  2 X

  Y

  • + b

  2 X

  Y

  • + b

  Y

  X b

  • + 2

  2 X

  Y

  • + b

  Y

  • + b

  2 X

  2

  2

  1

  2

  1

  2

  1 ) (    

      

  

    

   

  i i

  X Y i Y e f

  2

  i i

  1

  2

  1

  2

  1 ) (    

      

  X Y i

    

Y e f

   

  

1

  

X Y

n Y e e f Y f

  X Y

    

 

n n

      

      

     

      

  1 ) ( ... ) (    

  1 ...

  1

  2

  

  1

  1

  2

  1

  2

  2

  2

  1

  2

  2

  1

  2

  i i

  1

  2

  1

  2

  1 ) (    

      

  X Y i

    

Y e f

   

  

1

  

X Y

n Y e e f Y f

  X Y

    

  n n

      

   

 

     

      

  1 ) ( ... ) (    

  1 ...

  1

  2

  

  1

  1

  2

  1

  2

  2

  2

  1

  2

  2

  1

  2

  i i

  1

  2

  1

  2

  1 ) (    

      

  X Y i

    

Y e f

   

  

1

  

X Y

n Y e e f Y f

  X Y

    

  n n

      

   

 

     

      

  1 ) ( ... ) (    

  1 ...

  1

  2

  

  1

  1

  2

  1

  2

  2

  2

  1

  2

  2

  1

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1   n

  1 2 n

   

       

  1

  1

  2

  2

       

   

  log L log e ... e

    

   

  2

  2

      

  

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1

   n

  1 2 n

     

     

   

  1

  1

  2

  2

     

   

     

  log e ... log e

    

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1   n

  1 2 n

   

       

  1

  1

  2

  2

       

   

  log L log e ... e

    

   

  2

  2

      

  

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1

   n

  1 2 n

     

     

   

  1

  1

  2

  2

     

   

     

  log e ... log e

    

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1   n

  1 2 n

   

       

  1

  1

  2

  2

       

   

  log L log e ... e

    

   

  2

  2

      

  

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1

   n

  1 2 n

     

     

   

  1

  1

  2

  2

     

   

     

  log e ... log e

    

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1   n

  1 2 n

   

       

  1

  1

  2

  2

       

   

  log L log e ... e

    

   

  2

  2

      

  

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1

   n

  1 2 n

     

     

   

  1

  1

  2

  2

     

   

     

  log e ... log e

    

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1   n

  1 2 n

   

       

  1

  1

  2

  2

       

   

  log L log e ... e

    

   

  2

  2

      

  

  2

  2

  1 Y

  X

  1 Y

  X    

      

  1

  1

  2 1

   n

  1 2 n

     

     

   

  1

  1

  2

  2

     

   

     

  log e ... log e

    

X Y Z

     

   

   

    

     

  

  2

  1 log log

  2

  2

  Z n L

    n n

  

X b b Y e e

  where ) ( ... ) ( where

  1

  1

  2

  1

  2

  1

  2

  2

  2

  X Y

            

  2

  

  1

    

  log L n log Z

     

  2

  2

     

  2

  

  1

  1

      

  n log n log Z

        

  2

  

2

       

  2

  

  1

    

  log L n log Z

     

  2

  2

     

  2

  

  1

  1

      

  n log n log Z

        

  2

  

2

       

  2

  

  1

    

  log L n log Z

     

  2

  2

     

  2

  

  1

  1

      

  n log n log Z

        

  2

  

2

       

  2

  

  1

    

  log L n log Z

     

  2

  2

     

  2

  

  1

  1

      

  n log n log Z

        

  2

  

2

       

Dokumen yang terkait

Pengaruh Return On Asset terhadap Nilai Perusahaan dengan Good Coorporate Governance sebagai Variable Permoderasi pada Perusahaan Manufaktur yang tercatat di Bursa Efek Indonesia

0 62 81

Pengaruh Kinerja Keuangan terhadap Nilai Perusahaan dengan Good Corporate Governance sebagai Variable Permoderasi pada Perusahaan Property dan Real Estate yang terdaftar di Bursa Efek Indonesia periode 2010-2013

1 69 88

Pengaruh Pengungkapan Corporate Social Responsibility (CSR) terhadap Kinerja Keuangan Perusahaan dengan Struktur Kepemilikan Sebagai Variable Moderating: Studi Empiris pada Perusahaan yang Terdaftar di Bursa Efek Indonesia

0 56 121

Analisis Disiplin Dan Kepuasan Kerja Terhadap Kinerja Dengan Motivasi Karyawan Sebagai Variabel Moderating Pada BMT MADANI Sidoarjo (Analysis Of Discipline And Work Satisfaction To Employees's Performance With Employees's Motivation As Moderating Variable

0 16 5

A Binary opposition in the film music within

0 16 50

Analisis Self Modifying Code Menggunakan Dynamic Binary Instrumentation

0 27 88

Implementasi Metode Klasifikasi Naive Bayes Untuk Identifikasi Kelainan Kuku Berdasarkan Metode Ekstraksi Local Binary Pattern

0 6 1

Membangun Subnetting untuk Penghematan Host dengan Metode Variable Length Subnet Mask (VLSM) di PT. Pindad

0 2 1

Cost Accounting Materi-6 Variable Costing

0 0 45

The Role of Self-Regulated Learning Strategies: Mediator Variable for Parents Expectation and Intrinsic Motivation towards Academic Achievement Abstract - STRATEGI PENGATURAN DIRI DALAM BELAJAR SEBAGAI MEDIATOR HARAPAN ORANG TUA DAN MOTIVASI INTRINSIK TER

0 0 11