An Introduction to Stochastic Partial Di erential Equations

  

❆♥ ■♥tr♦❞✉❝t✐♦♥ t♦

❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s

  ❍❡rr② Pr✐❜❛✇❛♥t♦ ❙✉r②❛✇❛♥ ❉❡♣t✳ ♦❢ ▼❛t❤❡♠❛t✐❝s✱ ❙❛♥❛t❛ ❉❤❛r♠❛ ❯♥✐✈❡rs✐t②✱ ❨♦❣②❛❦❛rt❛

  ✷✾✳ ❆✉❣✉st ✷✵✶✹

  ❖✉t❧✐♥❡

  ❙P❉❊ ❊①✐st❡♥❝❡ ❛♥❞ ❯♥✐q✉❡♥❡ss ♦❢ ❙♦❧✉t✐♦♥ ❆ ❙t♦❝❤❛st✐❝ ❍❡❛t ❊q✉❛t✐♦♥

  

❙P❉❊

  ❙P❉❊ ✐s ❛♥ ✐♥t❡r❞✐s❝✐♣❧✐♥❛r② ❛r❡❛ ❛t t❤❡ ❝r♦ssr♦❛❞s ♦❢ st♦❝❤❛st✐❝ ♣r♦❝❡ss❡s ❛♥❞ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✳ ❲❛✈❡ ❡q✉❛t✐♦♥

  ✷ ✷

  ∂ u ∂ u (t, x) (t, x)

  = κ + F (t, x), t ≥ ✵, ✵ ≤ x ≤ L ✭✶✮

  ✷ ✷

  ∂t ∂x ■❢ F ✐s ❛ r❛♥❞♦♠ ♥♦✐s❡✱ ❝❛♥ ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s ❛ ❣✉✐t❛r ✐♥ t❤❡ ❞❡s❡rt✳ ❋♦r ❡①❛♠♣❧❡✱ F (t, x) = W (t, x) ✐s t❤❡ s♣❛❝❡✲t✐♠❡ ✇❤✐t❡ ♥♦✐s❡✳ ❍❡✉r✐st✐❝❛❧❧②✱ W

  (t, x) ✐s ❛ ✭●❛✉ss✐❛♥✮ r❛♥❞♦♠ ✜❡❧❞ s✉❝❤ t❤❛t E (W (t, x)W (s, y )) = δ(t − s)δ(x − y ).

  ■♥ t❤✐s ❝❛s❡✱ ❞♦❡s ♥♦t ❤❛✈❡ ❝❧❛ss✐❝❛❧ ♠❡❛♥✐♥❣ ❛♥❞ ♠✉st ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s ❛♥ ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✐♥t❡❣r❛❧ ❡q✉❛t✐♦♥✳

  ❖✉r t♦♣✐❝✿ ❙❡♠✐❧✐♥❡❛r ♣❛r❛❜♦❧✐❝ ♣r♦❜❧❡♠s ❞r✐✈❡♥ ❜② ❛❞❞✐t✐✈❡ ❇r♦✇♥✐❛♥ ♥♦✐s❡✳ ❖✉r ❛♣♣r♦❛❝❤✿ ❍✐❧❜❡rt s♣❛❝❡ ❛♣♣r♦❛❝❤ ❜❛s❡❞ ♦♥ t❤❡ t❤❡♦r② ♦❢ ♦♣❡r❛t♦r s❡♠✐❣r♦✉♣✳ ❙❡❡ ❬❉❛Pr❛t♦✲❩❛❜❝③②❦❪ ❛♥❞ ❬Pr❡✈♦t✲❘ö❝❦♥❡r❪✳ ❚❤✐s ✐s ❛♥ ✭❡❧❡♠❡♥t❛r②✮ ✐♥tr♦❞✉❝t✐♦♥ s✐♥❝❡ ✇❡ ❞♦ ♥♦t ❝♦♥s✐❞❡r ❊q✉❛t✐♦♥s ✇✐t❤ ♠✉❧t✐♣❧✐❝❛t✐✈❡ ♥♦✐s❡

  ❊q✉❛t✐♦♥s ❞r✐✈❡♥ ❜② ❢r❛❝t✐♦♥❛❧ ❇r♦✇♥✐❛♥ ♥♦✐s❡ ✭●❛✉ss✐❛♥✱ ♥♦♥✲▼❛r❦♦✈✱ ♥♦♥✲s❡♠✐♠❛rt✐♥❣❛❧❡✮ ❊q✉❛t✐♦♥s ❞r✐✈❡♥ ❜② ♥♦♥✲●❛✉ss✐❛♥ ♥♦✐s❡ ✭❡✳❣✳ ▲❡✈② ♥♦✐s❡✱ ❛❧♣❤❛✲st❛❜❧❡ ♥♦✐s❡✮ ❊q✉❛t✐♦♥s ✇✐t❤ r♦✉❣❤ ✭♥♦♥✲▲✐♣s❝❤✐t③✮ ♥♦♥❧✐♥❡❛r✐t✐❡s ❱❛r✐❛t✐♦♥❛❧ s♦❧✉t✐♦♥ ✐♥ ●❡❧❢❛♥❞ tr✐♣❧❡ts ❍②♣❡r❜♦❧✐❝ ❛♥❞ ❊❧❧✐♣t✐❝ ♣r♦❜❧❡♠s ▼❛❧❧✐❛✈✐❛♥ ❝❛❧❝✉❧✉s ❛♣♣r♦❛❝❤ ❛♥❞ ❞❡♥s✐t✐❡s ♦❢ s♦❧✉t✐♦♥ ❍✐❞❛ ❝❛❧❝✉❧✉s ❛♣♣r♦❛❝❤ ✭❲✐❝❦ t②♣❡ ❡q✉❛t✐♦♥s✮ ✶✵ ❙♦❧✉t✐♦♥s ✈✐❛ ❉✐r✐❝❤❧❡t ❋♦r♠s ✶✶ ◆✉♠❡r✐❝❛❧ ♠❡t❤♦❞s ❡t❝

  ❖✉r ❛♣♣r♦❛❝❤✿ ❆♥ ❙P❉❊ ✐s tr❛♥s❧❛t❡❞ ✐♥t♦ ❛ st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ✭❈❛✉❝❤② ♣r♦❜❧❡♠✮ ✐♥ s♦♠❡ ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❇❛♥❛❝❤ s♣❛❝❡✳

  ❚❤❡r❡ ❛r❡ s♦♠❡ ❝r✉❝✐❛❧ ♣r♦❜❧❡♠s ❞✉❡ t♦ ∞✲❞✐♠❡♥s✐♦♥✦ ■♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ❞♦❡s ♥♦t ❡①✐st✦

  ❊s❝❛♣❡ ❢r♦♠ ♣r♦❜❧❡♠✿ ●❛✉ss✐❛♥ ♠❡❛s✉r❡✦

  ❚❤❡♦r❡♠ ✭▼✐♥❧♦s✲❙❛③❛♥♦✈✮

  ▲❡t H ❜❡ ❛ s❡♣❛r❛❜❧❡ ❍✐❧❜❡rt s♣❛❝❡✳ ▲❡t Q ❜❡ ❛ ♣♦s✐t✐✈❡ ❞❡✜♥✐t❡✱ s②♠♠❡tr✐❝✱ tr❛❝❡✲❝❧❛ss ♦♣❡r❛t♦r ✐♥ H ❛♥❞ ❧❡t m ∈ H✳ ❚❤❡♥ t❤❡r❡ ❡①✐sts ❛ ●❛✉ss✐❛♥ ♠❡❛s✉r❡ µ = N (m, Q)

  ♦♥ (H, B(H)) ❣✐✈❡♥ ✈✐❛ Z i hh,ui i hm,hi− hQh,hi µ ˆ (h) := e µ (du) = e , h ∈ H. H ■♠♣♦rt❛♥❝❡✿ t♦ ❞❡✜♥❡ ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ B ❛♥❞✱ ❤❡♥❝❡✱ t♦ ❝♦♥str✉❝t ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ■tô ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦ B

  ❊①✐st❡♥❝❡ r❡s✉❧t ✐s ❛ ♣r✐♦r✐ ♥♦t ❝❧❡❛r✦ ❚❤❡♦r❡♠ ✭P❡❛♥♦✮

  ❋♦r ❡❛❝❤ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ f : R × B → B ❞❡✜♥❡❞ ♦♥ s♦♠❡ ♦♣❡♥ s❡t V , x

  ⊂ R × B ❛♥❞ ❢♦r ❡❛❝❤ ♣♦✐♥t (t ) ∈ V ✵ ✵ t❤❡ ❈❛✉❝❤② ♣r♦❜❧❡♠ x x

  (t) = f (t, x(t)), (t ) = x

  ✵ ✵

  ❤❛s ❛ s♦❧✉t✐♦♥ ✇❤✐❝❤ ✐s ❞❡✜♥❡❞ ♦♥ s♦♠❡ ♥❡✐❣❤❜♦r❤♦♦❞ ♦❢ t ✳

  ✵ ❚❤❡♦r❡♠ ✭●♦❞✉♥♦✈✮

  ❊❛❝❤ ❇❛♥❛❝❤ s♣❛❝❡ ✐♥ ✇❤✐❝❤ P❡❛♥♦✬s t❤❡♦r❡♠ ✐s tr✉❡ ✐s ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✳

  ❚❤❡ ❙t♦❝❤❛st✐❝ ❊✈♦❧✉t✐♦♥ ❊q✉❛t✐♦♥

  ❙❡tt✐♥❣✿ H

  ❛♥❞ U ❛r❡ t✇♦ s❡♣❛r❛❜❧❡ ❍✐❧❜❡rt s♣❛❝❡s (Ω, F, P) ✐s ❛ ❝♦♠♣❧❡t❡ ♣r♦❜❛❜✐❧✐t② s♣❛❝❡ B : [

  ✵, T ] × Ω → U ✐s ❛ tr❛❝❡✲❝❧❛ss ❲✐❡♥❡r ♣r♦❝❡ss ♦♥ U ❛❞❛♣t❡❞ t♦ ❛ ♥♦r♠❛❧ ✜❧tr❛t✐♦♥ (F t ) t ∈[

  ✵,T ]

  A : ❞♦♠(A) ⊂ H → H ✐s ❛ ❞❡♥s❡❧② ❞❡✜♥❡❞✱ s❡❧❢✲❛❞❥♦✐♥t ❛♥❞ ♣♦s✐t✐✈❡ ❞❡✜♥✐t❡

  ❧✐♥❡❛r ♦♣❡r❛t♦r ✇✐t❤ ❝♦♠♣❛❝t ✐♥✈❡rs❡✳ ❆✐♠✿ ❡①✐st❡♥❝❡ ❛♥❞ ✉♥✐q✉❡♥❡ss ♦❢ ❛ ♣r❡❞✐❝t❛❜❧❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✇❤✐❝❤ s♦❧✈❡s t❤❡ s❡♠✐❧✐♥❡❛r st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ❞r✐✈❡♥ ❜② t❤❡ ❲✐❡♥❡r ♣r♦❝❡ss B dX

  (t) + (AX (t) + f (t, X (t))) dt = g (t, X (t)) dB(t), ✵ ≤ t ≤ T

  X (

  ✵) = X ✵ ,

  ❢♦r s♦♠❡ ♥✐❝❡ ❢✉♥❝t✐♦♥s f ❛♥❞ g✳

  

❊①✐st❡♥❝❡ ❛♥❞ ❯♥✐q✉❡♥❡ss ♦❢ ❙♦❧✉t✐♦♥

  ❙t♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ✭❙❊❊✮✿ dX

  (t) + (AX (t) + f (t, X (t))) dt = g (t, X (t)) dB(t), ✵ ≤ t ≤ T

  X , (

  ✵) = X ✵

  ❉❡✜♥✐t✐♦♥ ✭♦❢ ♠✐❧❞ s♦❧✉t✐♦♥ ♦❢ ❙❊❊✮

  ▲❡t p ≥ ✷✳ ❆ ♣r❡❞✐❝t❛❜❧❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✐s ❝❛❧❧❡❞ ❛ p✲❢♦❧❞ ✐♥t❡❣r❛❜❧❡ ♠✐❧❞ s♦❧✉t✐♦♥ ♦❢ ❙❊❊ ✐❢

  < kX (t)k p ∞ t ∈[ s✉♣ L (Ω;H)

  ✵,T ]

  ❛♥❞✱ ❢♦r ❛❧❧ t ∈ [✵, T ]✱ ✐t ❤♦❧❞s P✲❛✳s✳ Z t Z t X − E E

  (t) = E (t)X (t − s)f (s, X (s)) ds + (t − s)g (s, X (s)) dB(s),

  ✵ ✵ ✵

  ✇❤❡r❡ (E(t)) ✐s t❤❡ ❛♥❛❧②t✐❝ s❡♠✐❣r♦✉♣ ♦♥ H ❣❡♥❡r❛t❡❞ ❜② −A✱ t❤❡ ✜rst t ∈[

  ✵,∞)

  ✐♥t❡❣r❛❧ ✐s ❛ ❇♦❝❤♥❡r ✐♥t❡❣r❛❧ ❛♥❞ t❤❡ s❡❝♦♥❞ ✐♥t❡❣r❛❧ ✐s t❤❡ ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ■tô ✐♥t❡❣r❛❧✳

  ❊①✐st❡♥❝❡✲❯♥✐q✉❡♥❡ss ♦❢ ▼✐❧❞ ❙♦❧✉t✐♦♥ ❚❤❡♦r❡♠ ✭❉❛Pr❛t♦✲❩❛❜❝③②❦✮ p

  ❯♥❞❡r s♦♠❡ ♠❡❛s✉r❛❜✐❧✐t②✱ L ✲r❡❣✉❧❛r✐t② ❛♥❞ ❧✐♥❡❛r ❣r♦✇t❤ ❝♦♥❞✐t✐♦♥s ♦♥ X ✵ ✱ f ❛♥❞ g ✱ t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ p✲❢♦❧❞ ✐♥t❡❣r❛❜❧❡ ♠✐❧❞ s♦❧✉t✐♦♥ X : [✵, T ] × Ω → H t♦ ❙❊❊ s✉❝❤ t❤❛t ❢♦r ❡✈❡r② t ∈ [✵, T ] ❛♥❞ ❡✈❡r② s ∈ [✵, ✶) ✐t ❤♦❧❞s t❤❛t s

  X (t) ∈ ˙ H = P ✶ ✇✐t❤ kX (t)k p s < ∞, t ∈[ s✉♣ L H (Ω; ˙ ) s s ✵,T ] / ✷

  ) ✇❤❡r❡ ˙H ✐s t❤❡ ❍✐❧❜❡rt s♣❛❝❡ ❣✐✈❡♥ ❜② ❞♦♠(A ✳ ❋✉rt❤❡r♠♦r❡✱ ❢♦r ❡✈❡r②

  ✶

  δ ∈ ( )

  ✵, t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t CY > ✵ ✇✐t❤

  ✷ δ

  kX (t ) − X (t )k p ≤ C |t − t |

  ✶ ✷ L ✶ ✷ (Ω;H)

  , t ∈ [ ❢♦r ❛❧❧ t ✵, T ]✳

  ✶ ✷

  ❯♥✐q✉❡♥❡ss ❤❡r❡ ✐s ✐♥ t❤❡ s❡♥s❡ ♦❢ ♠♦❞✐✜❝❛t✐♦♥ ♦❢ st♦❝❤❛st✐❝ ♣r♦❝❡ss❡s✳

  

❆ ❙t♦❝❤❛st✐❝ ❍❡❛t ❊q✉❛t✐♦♥

  ❙t♦❝❤❛st✐❝ ❤❡❛t ❡q✉❛t✐♦♥ ✇✐t❤ ❛❞❞✐t✐✈❡ ♥♦✐s❡ ♦♥ t❤❡ ✉♥✐t ✐♥t❡r✈❛❧

  ❙❡tt✐♥❣✿

  ✷

  H = L ([

  ✵, ✶], B([✵, ✶]), dx; R) B

  ✐s ❛ tr❛❝❡✲❝❧❛ss ❲✐❡♥❡r ♣r♦❝❡ss ♦♥ H✳ Pr♦❜❧❡♠✿ ❋✐♥❞ ❛ ♠❡❛s✉r❛❜❧❡ ♠❛♣♣✐♥❣ X : [✵, T ] × Ω → R s✉❝❤ t❤❛t

  ✷

  ∂ dX (t, x) = X (t, x) dt + dB(t, x)

  ❢♦r ❛❧❧ t ∈ (✵, T ], x ∈ [✵, ✶]

  ✷

  ∂x X (t,

  ✵) = X (t, ✶) = ✵ ❢♦r ❛❧❧ t ∈ (✵, T ] X ( (x)

  ✵, x) = X ❢♦r ❛❧❧ x ∈ [✵, ✶],

  ✵

  : Ω × [ (ω, ·) ✇❤❡r❡ X ✵, ✶] → R ✐s s✉❝❤ t❤❛t ❢♦r ❛❧♠♦st ❛❧❧ ω ∈ Ω✱ X ✐s ❛

  ✵ ✵

  s✉✣❝✐❡♥t❧② s♠♦♦t❤ ❢✉♥❝t✐♦♥ ✇❤✐❝❤ ❛❧s♦ s❛t✐s✜❡s t❤❡ ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s✳

  ❲❡ tr❛♥s❧❛t❡ ✐♥t♦ ❛♥ ❛❜str❛❝t st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ♦♥ t❤❡ ❍✐❧❜❡rt s♣❛❝❡ H

  ✿ dX (t) + AX (t) dt = dB(t), ❢♦r ❛❧❧ t ∈ [✵, T ],

  X ( , ✵) = X

  

  ✇❤❡r❡

  ✷

  ∂ A

  := −

  ✷

  ∂x

  ✶ ✷

  ( ( ✇✐t❤ ❞♦♠(A) = H ✵, ✶) T H ✵, ✶)✳

  ✵

  ❚❤❡ ♠✐❧❞ s♦❧✉t✐♦♥ ✐s t❤❡♥ ❣✐✈❡♥ ❜② t❤❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✇✐t❤ Z t

  E (t) = E (t)X (t − s) dB(s)

  • X

  ✵ ✵

  ❘❡❢❡r❡♥❝❡s

❘✳ ❉❛❧❛♥❣ ❡t ❛❧✳ ❆ ▼✐♥✐❝♦✉rs❡ ♦♥ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱

❙♣r✐♥❣❡r✱ ✷✵✵✽✳ ▲✳ ●❛✇❛r❡❝❦✐ ❛♥❞ ❱✳ ▼❛♥❞r❡❦❛r✳ ❙t♦❝❤❛st✐❝ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s ✐♥ ■♥✜♥✐t❡

❉✐♠❡♥s✐♦♥s ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s t♦ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱

❙♣r✐♥❣❡r✱ ✷✵✶✶✳

●✳ ❞❛ Pr❛t♦ ❛♥❞ ❏✳ ❩❛❜❝③②❦✳ ❙t♦❝❤❛st✐❝ ❊q✉❛t✐♦♥s ✐♥ ■♥✜♥✐t❡ ❉✐♠❡♥s✐♦♥s✱

❈❛♠❜r✐❞❣❡ ❯♥✐✈❡rs✐t② Pr❡ss✱ ✷✵✵✶✳ ❈✳ Pr❡✈♦t ❛♥❞ ▼✳ ❘ö❝❦♥❡r✳ ❆ ❈♦♥❝✐s❡ ❈♦✉rs❡ ♦♥ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❙♣r✐♥❣❡r✱ ✷✵✵✼✳ ❙✳ ❚❛♣♣❡✳ ✑❋♦✉♥❞❛t✐♦♥ ♦❢ t❤❡ t❤❡♦r② ♦❢ s❡♠✐❧✐♥❡❛r st♦❝❤❛st✐❝ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧

❡q✉❛t✐♦♥s✑✱ ■♥t✳ ❏✳ ❙t♦❝❤✳ ❆♥❛❧✳ ❱♦❧✉♠❡ ✷✵✶✸✳ ❆rt✐❝❧❡ ■❉ ✼✽✾✺✹✾✱ ✷✵✶✸✳

  ❚❤❛♥❦ ❨♦✉✦✦


Dokumen baru

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

64 1359 16

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

23 368 43

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

24 324 23

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

6 210 24

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

18 304 23

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

27 405 14

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

21 370 50

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

8 223 17

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

13 377 30

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

21 428 23