An Introduction to Stochastic Partial Di erential Equations
❆♥ ■♥tr♦❞✉❝t✐♦♥ t♦
❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s
❍❡rr② Pr✐❜❛✇❛♥t♦ ❙✉r②❛✇❛♥ ❉❡♣t✳ ♦❢ ▼❛t❤❡♠❛t✐❝s✱ ❙❛♥❛t❛ ❉❤❛r♠❛ ❯♥✐✈❡rs✐t②✱ ❨♦❣②❛❦❛rt❛
✷✾✳ ❆✉❣✉st ✷✵✶✹
❖✉t❧✐♥❡
❙P❉❊ ❊①✐st❡♥❝❡ ❛♥❞ ❯♥✐q✉❡♥❡ss ♦❢ ❙♦❧✉t✐♦♥ ❆ ❙t♦❝❤❛st✐❝ ❍❡❛t ❊q✉❛t✐♦♥
❙P❉❊
❙P❉❊ ✐s ❛♥ ✐♥t❡r❞✐s❝✐♣❧✐♥❛r② ❛r❡❛ ❛t t❤❡ ❝r♦ssr♦❛❞s ♦❢ st♦❝❤❛st✐❝ ♣r♦❝❡ss❡s ❛♥❞ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✳ ❲❛✈❡ ❡q✉❛t✐♦♥
✷ ✷
∂ u ∂ u (t, x) (t, x)
= κ + F (t, x), t ≥ ✵, ✵ ≤ x ≤ L ✭✶✮
✷ ✷
∂t ∂x ■❢ F ✐s ❛ r❛♥❞♦♠ ♥♦✐s❡✱ ❝❛♥ ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s ❛ ❣✉✐t❛r ✐♥ t❤❡ ❞❡s❡rt✳ ❋♦r ❡①❛♠♣❧❡✱ F (t, x) = W (t, x) ✐s t❤❡ s♣❛❝❡✲t✐♠❡ ✇❤✐t❡ ♥♦✐s❡✳ ❍❡✉r✐st✐❝❛❧❧②✱ W
(t, x) ✐s ❛ ✭●❛✉ss✐❛♥✮ r❛♥❞♦♠ ✜❡❧❞ s✉❝❤ t❤❛t E (W (t, x)W (s, y )) = δ(t − s)δ(x − y ).
■♥ t❤✐s ❝❛s❡✱ ❞♦❡s ♥♦t ❤❛✈❡ ❝❧❛ss✐❝❛❧ ♠❡❛♥✐♥❣ ❛♥❞ ♠✉st ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s ❛♥ ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✐♥t❡❣r❛❧ ❡q✉❛t✐♦♥✳
❖✉r t♦♣✐❝✿ ❙❡♠✐❧✐♥❡❛r ♣❛r❛❜♦❧✐❝ ♣r♦❜❧❡♠s ❞r✐✈❡♥ ❜② ❛❞❞✐t✐✈❡ ❇r♦✇♥✐❛♥ ♥♦✐s❡✳ ❖✉r ❛♣♣r♦❛❝❤✿ ❍✐❧❜❡rt s♣❛❝❡ ❛♣♣r♦❛❝❤ ❜❛s❡❞ ♦♥ t❤❡ t❤❡♦r② ♦❢ ♦♣❡r❛t♦r s❡♠✐❣r♦✉♣✳ ❙❡❡ ❬❉❛Pr❛t♦✲❩❛❜❝③②❦❪ ❛♥❞ ❬Pr❡✈♦t✲❘ö❝❦♥❡r❪✳ ❚❤✐s ✐s ❛♥ ✭❡❧❡♠❡♥t❛r②✮ ✐♥tr♦❞✉❝t✐♦♥ s✐♥❝❡ ✇❡ ❞♦ ♥♦t ❝♦♥s✐❞❡r ✶ ✷ ❊q✉❛t✐♦♥s ✇✐t❤ ♠✉❧t✐♣❧✐❝❛t✐✈❡ ♥♦✐s❡
❊q✉❛t✐♦♥s ❞r✐✈❡♥ ❜② ❢r❛❝t✐♦♥❛❧ ❇r♦✇♥✐❛♥ ♥♦✐s❡ ✭●❛✉ss✐❛♥✱ ♥♦♥✲▼❛r❦♦✈✱ ✸ ♥♦♥✲s❡♠✐♠❛rt✐♥❣❛❧❡✮ ✹ ❊q✉❛t✐♦♥s ❞r✐✈❡♥ ❜② ♥♦♥✲●❛✉ss✐❛♥ ♥♦✐s❡ ✭❡✳❣✳ ▲❡✈② ♥♦✐s❡✱ ❛❧♣❤❛✲st❛❜❧❡ ♥♦✐s❡✮ ✺ ❊q✉❛t✐♦♥s ✇✐t❤ r♦✉❣❤ ✭♥♦♥✲▲✐♣s❝❤✐t③✮ ♥♦♥❧✐♥❡❛r✐t✐❡s ✻ ❱❛r✐❛t✐♦♥❛❧ s♦❧✉t✐♦♥ ✐♥ ●❡❧❢❛♥❞ tr✐♣❧❡ts ✼ ❍②♣❡r❜♦❧✐❝ ❛♥❞ ❊❧❧✐♣t✐❝ ♣r♦❜❧❡♠s ✽ ▼❛❧❧✐❛✈✐❛♥ ❝❛❧❝✉❧✉s ❛♣♣r♦❛❝❤ ❛♥❞ ❞❡♥s✐t✐❡s ♦❢ s♦❧✉t✐♦♥ ✾ ❍✐❞❛ ❝❛❧❝✉❧✉s ❛♣♣r♦❛❝❤ ✭❲✐❝❦ t②♣❡ ❡q✉❛t✐♦♥s✮ ✶✵ ❙♦❧✉t✐♦♥s ✈✐❛ ❉✐r✐❝❤❧❡t ❋♦r♠s ✶✶ ◆✉♠❡r✐❝❛❧ ♠❡t❤♦❞s ❡t❝
❖✉r ❛♣♣r♦❛❝❤✿ ❆♥ ❙P❉❊ ✐s tr❛♥s❧❛t❡❞ ✐♥t♦ ❛ st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ✭❈❛✉❝❤② ♣r♦❜❧❡♠✮ ✐♥ s♦♠❡ ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❇❛♥❛❝❤ s♣❛❝❡✳
❚❤❡r❡ ❛r❡ s♦♠❡ ❝r✉❝✐❛❧ ♣r♦❜❧❡♠s ❞✉❡ t♦ ∞✲❞✐♠❡♥s✐♦♥✦ ■♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ❞♦❡s ♥♦t ❡①✐st✦
❊s❝❛♣❡ ❢r♦♠ ♣r♦❜❧❡♠✿ ●❛✉ss✐❛♥ ♠❡❛s✉r❡✦
❚❤❡♦r❡♠ ✭▼✐♥❧♦s✲❙❛③❛♥♦✈✮
▲❡t H ❜❡ ❛ s❡♣❛r❛❜❧❡ ❍✐❧❜❡rt s♣❛❝❡✳ ▲❡t Q ❜❡ ❛ ♣♦s✐t✐✈❡ ❞❡✜♥✐t❡✱ s②♠♠❡tr✐❝✱ tr❛❝❡✲❝❧❛ss ♦♣❡r❛t♦r ✐♥ H ❛♥❞ ❧❡t m ∈ H✳ ❚❤❡♥ t❤❡r❡ ❡①✐sts ❛ ●❛✉ss✐❛♥ ♠❡❛s✉r❡ µ = N (m, Q)
♦♥ (H, B(H)) ❣✐✈❡♥ ✈✐❛ Z i hh,ui i hm,hi− hQh,hi ✷ ✶ µ ˆ (h) := e µ (du) = e , h ∈ H. H ■♠♣♦rt❛♥❝❡✿ t♦ ❞❡✜♥❡ ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ B ❛♥❞✱ ❤❡♥❝❡✱ t♦ ❝♦♥str✉❝t ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ■tô ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦ B
❊①✐st❡♥❝❡ r❡s✉❧t ✐s ❛ ♣r✐♦r✐ ♥♦t ❝❧❡❛r✦ ❚❤❡♦r❡♠ ✭P❡❛♥♦✮
❋♦r ❡❛❝❤ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ f : R × B → B ❞❡✜♥❡❞ ♦♥ s♦♠❡ ♦♣❡♥ s❡t V , x
⊂ R × B ❛♥❞ ❢♦r ❡❛❝❤ ♣♦✐♥t (t ) ∈ V ′ ✵ ✵ t❤❡ ❈❛✉❝❤② ♣r♦❜❧❡♠ x x
(t) = f (t, x(t)), (t ) = x
✵ ✵
❤❛s ❛ s♦❧✉t✐♦♥ ✇❤✐❝❤ ✐s ❞❡✜♥❡❞ ♦♥ s♦♠❡ ♥❡✐❣❤❜♦r❤♦♦❞ ♦❢ t ✳
✵ ❚❤❡♦r❡♠ ✭●♦❞✉♥♦✈✮
❊❛❝❤ ❇❛♥❛❝❤ s♣❛❝❡ ✐♥ ✇❤✐❝❤ P❡❛♥♦✬s t❤❡♦r❡♠ ✐s tr✉❡ ✐s ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✳
❚❤❡ ❙t♦❝❤❛st✐❝ ❊✈♦❧✉t✐♦♥ ❊q✉❛t✐♦♥
❙❡tt✐♥❣✿ H
❛♥❞ U ❛r❡ t✇♦ s❡♣❛r❛❜❧❡ ❍✐❧❜❡rt s♣❛❝❡s (Ω, F, P) ✐s ❛ ❝♦♠♣❧❡t❡ ♣r♦❜❛❜✐❧✐t② s♣❛❝❡ B : [
✵, T ] × Ω → U ✐s ❛ tr❛❝❡✲❝❧❛ss ❲✐❡♥❡r ♣r♦❝❡ss ♦♥ U ❛❞❛♣t❡❞ t♦ ❛ ♥♦r♠❛❧ ✜❧tr❛t✐♦♥ (F t ) t ∈[
✵,T ]
A : ❞♦♠(A) ⊂ H → H ✐s ❛ ❞❡♥s❡❧② ❞❡✜♥❡❞✱ s❡❧❢✲❛❞❥♦✐♥t ❛♥❞ ♣♦s✐t✐✈❡ ❞❡✜♥✐t❡
❧✐♥❡❛r ♦♣❡r❛t♦r ✇✐t❤ ❝♦♠♣❛❝t ✐♥✈❡rs❡✳ ❆✐♠✿ ❡①✐st❡♥❝❡ ❛♥❞ ✉♥✐q✉❡♥❡ss ♦❢ ❛ ♣r❡❞✐❝t❛❜❧❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✇❤✐❝❤ s♦❧✈❡s t❤❡ s❡♠✐❧✐♥❡❛r st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ❞r✐✈❡♥ ❜② t❤❡ ❲✐❡♥❡r ♣r♦❝❡ss B dX
(t) + (AX (t) + f (t, X (t))) dt = g (t, X (t)) dB(t), ✵ ≤ t ≤ T
X (
✵) = X ✵ ,
❢♦r s♦♠❡ ♥✐❝❡ ❢✉♥❝t✐♦♥s f ❛♥❞ g✳
❊①✐st❡♥❝❡ ❛♥❞ ❯♥✐q✉❡♥❡ss ♦❢ ❙♦❧✉t✐♦♥
❙t♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ✭❙❊❊✮✿ dX
(t) + (AX (t) + f (t, X (t))) dt = g (t, X (t)) dB(t), ✵ ≤ t ≤ T
X , (
✵) = X ✵
❉❡✜♥✐t✐♦♥ ✭♦❢ ♠✐❧❞ s♦❧✉t✐♦♥ ♦❢ ❙❊❊✮
▲❡t p ≥ ✷✳ ❆ ♣r❡❞✐❝t❛❜❧❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✐s ❝❛❧❧❡❞ ❛ p✲❢♦❧❞ ✐♥t❡❣r❛❜❧❡ ♠✐❧❞ s♦❧✉t✐♦♥ ♦❢ ❙❊❊ ✐❢
< kX (t)k p ∞ t ∈[ s✉♣ L (Ω;H)
✵,T ]
❛♥❞✱ ❢♦r ❛❧❧ t ∈ [✵, T ]✱ ✐t ❤♦❧❞s P✲❛✳s✳ Z t Z t X − E E
(t) = E (t)X (t − s)f (s, X (s)) ds + (t − s)g (s, X (s)) dB(s),
✵ ✵ ✵
✇❤❡r❡ (E(t)) ✐s t❤❡ ❛♥❛❧②t✐❝ s❡♠✐❣r♦✉♣ ♦♥ H ❣❡♥❡r❛t❡❞ ❜② −A✱ t❤❡ ✜rst t ∈[
✵,∞)
✐♥t❡❣r❛❧ ✐s ❛ ❇♦❝❤♥❡r ✐♥t❡❣r❛❧ ❛♥❞ t❤❡ s❡❝♦♥❞ ✐♥t❡❣r❛❧ ✐s t❤❡ ❍✐❧❜❡rt✲s♣❛❝❡ ✈❛❧✉❡❞ ■tô ✐♥t❡❣r❛❧✳
❊①✐st❡♥❝❡✲❯♥✐q✉❡♥❡ss ♦❢ ▼✐❧❞ ❙♦❧✉t✐♦♥ ❚❤❡♦r❡♠ ✭❉❛Pr❛t♦✲❩❛❜❝③②❦✮ p
❯♥❞❡r s♦♠❡ ♠❡❛s✉r❛❜✐❧✐t②✱ L ✲r❡❣✉❧❛r✐t② ❛♥❞ ❧✐♥❡❛r ❣r♦✇t❤ ❝♦♥❞✐t✐♦♥s ♦♥ X ✵ ✱ f ❛♥❞ g ✱ t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ p✲❢♦❧❞ ✐♥t❡❣r❛❜❧❡ ♠✐❧❞ s♦❧✉t✐♦♥ X : [✵, T ] × Ω → H t♦ ❙❊❊ s✉❝❤ t❤❛t ❢♦r ❡✈❡r② t ∈ [✵, T ] ❛♥❞ ❡✈❡r② s ∈ [✵, ✶) ✐t ❤♦❧❞s t❤❛t s
X (t) ∈ ˙ H = P ✶ ✇✐t❤ kX (t)k p s < ∞, t ∈[ s✉♣ L H (Ω; ˙ ) s s ✵,T ] / ✷
) ✇❤❡r❡ ˙H ✐s t❤❡ ❍✐❧❜❡rt s♣❛❝❡ ❣✐✈❡♥ ❜② ❞♦♠(A ✳ ❋✉rt❤❡r♠♦r❡✱ ❢♦r ❡✈❡r②
✶
δ ∈ ( )
✵, t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t CY > ✵ ✇✐t❤
✷ δ
kX (t ) − X (t )k p ≤ C |t − t |
✶ ✷ L ✶ ✷ (Ω;H)
, t ∈ [ ❢♦r ❛❧❧ t ✵, T ]✳
✶ ✷
❯♥✐q✉❡♥❡ss ❤❡r❡ ✐s ✐♥ t❤❡ s❡♥s❡ ♦❢ ♠♦❞✐✜❝❛t✐♦♥ ♦❢ st♦❝❤❛st✐❝ ♣r♦❝❡ss❡s✳
❆ ❙t♦❝❤❛st✐❝ ❍❡❛t ❊q✉❛t✐♦♥
❙t♦❝❤❛st✐❝ ❤❡❛t ❡q✉❛t✐♦♥ ✇✐t❤ ❛❞❞✐t✐✈❡ ♥♦✐s❡ ♦♥ t❤❡ ✉♥✐t ✐♥t❡r✈❛❧
❙❡tt✐♥❣✿
✷
H = L ([
✵, ✶], B([✵, ✶]), dx; R) B
✐s ❛ tr❛❝❡✲❝❧❛ss ❲✐❡♥❡r ♣r♦❝❡ss ♦♥ H✳ Pr♦❜❧❡♠✿ ❋✐♥❞ ❛ ♠❡❛s✉r❛❜❧❡ ♠❛♣♣✐♥❣ X : [✵, T ] × Ω → R s✉❝❤ t❤❛t
✷
∂ dX (t, x) = X (t, x) dt + dB(t, x)
❢♦r ❛❧❧ t ∈ (✵, T ], x ∈ [✵, ✶]
✷
∂x X (t,
✵) = X (t, ✶) = ✵ ❢♦r ❛❧❧ t ∈ (✵, T ] X ( (x)
✵, x) = X ❢♦r ❛❧❧ x ∈ [✵, ✶],
✵
: Ω × [ (ω, ·) ✇❤❡r❡ X ✵, ✶] → R ✐s s✉❝❤ t❤❛t ❢♦r ❛❧♠♦st ❛❧❧ ω ∈ Ω✱ X ✐s ❛
✵ ✵
s✉✣❝✐❡♥t❧② s♠♦♦t❤ ❢✉♥❝t✐♦♥ ✇❤✐❝❤ ❛❧s♦ s❛t✐s✜❡s t❤❡ ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s✳
❲❡ tr❛♥s❧❛t❡ ✐♥t♦ ❛♥ ❛❜str❛❝t st♦❝❤❛st✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥ ♦♥ t❤❡ ❍✐❧❜❡rt s♣❛❝❡ H
✿ dX (t) + AX (t) dt = dB(t), ❢♦r ❛❧❧ t ∈ [✵, T ],
X ( , ✵) = X
✵
✇❤❡r❡
✷
∂ A
:= −
✷
∂x
✶ ✷
( ( ✇✐t❤ ❞♦♠(A) = H ✵, ✶) T H ✵, ✶)✳
✵
❚❤❡ ♠✐❧❞ s♦❧✉t✐♦♥ ✐s t❤❡♥ ❣✐✈❡♥ ❜② t❤❡ st♦❝❤❛st✐❝ ♣r♦❝❡ss X : [✵, T ] × Ω → H ✇✐t❤ Z t
E (t) = E (t)X (t − s) dB(s)
- X
✵ ✵
❘❡❢❡r❡♥❝❡s
❘✳ ❉❛❧❛♥❣ ❡t ❛❧✳ ❆ ▼✐♥✐❝♦✉rs❡ ♦♥ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱
❙♣r✐♥❣❡r✱ ✷✵✵✽✳ ▲✳ ●❛✇❛r❡❝❦✐ ❛♥❞ ❱✳ ▼❛♥❞r❡❦❛r✳ ❙t♦❝❤❛st✐❝ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s ✐♥ ■♥✜♥✐t❡❉✐♠❡♥s✐♦♥s ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s t♦ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱
❙♣r✐♥❣❡r✱ ✷✵✶✶✳●✳ ❞❛ Pr❛t♦ ❛♥❞ ❏✳ ❩❛❜❝③②❦✳ ❙t♦❝❤❛st✐❝ ❊q✉❛t✐♦♥s ✐♥ ■♥✜♥✐t❡ ❉✐♠❡♥s✐♦♥s✱
❈❛♠❜r✐❞❣❡ ❯♥✐✈❡rs✐t② Pr❡ss✱ ✷✵✵✶✳ ❈✳ Pr❡✈♦t ❛♥❞ ▼✳ ❘ö❝❦♥❡r✳ ❆ ❈♦♥❝✐s❡ ❈♦✉rs❡ ♦♥ ❙t♦❝❤❛st✐❝ P❛rt✐❛❧ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❙♣r✐♥❣❡r✱ ✷✵✵✼✳ ❙✳ ❚❛♣♣❡✳ ✑❋♦✉♥❞❛t✐♦♥ ♦❢ t❤❡ t❤❡♦r② ♦❢ s❡♠✐❧✐♥❡❛r st♦❝❤❛st✐❝ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧❡q✉❛t✐♦♥s✑✱ ■♥t✳ ❏✳ ❙t♦❝❤✳ ❆♥❛❧✳ ❱♦❧✉♠❡ ✷✵✶✸✳ ❆rt✐❝❧❡ ■❉ ✼✽✾✺✹✾✱ ✷✵✶✸✳
❚❤❛♥❦ ❨♦✉✦✦