Staff Site Universitas Negeri Yogyakarta

Transition Metals and Coordination
Chemistry

Transition Metals

Similarities within a given period
and within a given group.

Last electrons added are inner electrons (d ’s, f’s).

20_431

Cr Mn Fe Co Ni

Sc

Ti

V

Y


Zr

Nb Mo Tc

La

Hf

Ta

W

Cu Zn

Ru Rh Pd Ag Cd

Re Os

Ir


Pt Au Hg

Ac Unq Unp Unh Uns Uno Une Uun Uuu

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho
Th

Pa

U

Np Pu Am Cm Bk

Cf

Er Tm Yb

Lu


Es Fm Md No

Lr

20_432

d-block transition elements
Sc

Ti

V

Cr

Mn

Fe

Co


Ni

Cu

Zn

Y

Zr

Nb

Mo

Tc

Ru

Rh


Pd

Ag

Cd

La*

Hf

Ta

W

Re

Os

Ir


Pt

Au

Hg

Ac† Unq Unp Unh Uns Uno Une Uun Uuu
f-block transition elemen ts
*Lanthanides

Ce

Pr

Nd

Pm Sm

† Actinides


Th

Pa

U

Np

Eu

Gd

Tb

Dy

Ho

Er


Tm

Yb

Lu

Pu Am Cm Bk

Cf

Es

Fm Md

No

Lr

0.2

La
1st series (3d)

Atomic radii (nm)

Y

2nd series (4d)
Hf
Zr

Sc
0.15

3rd series (5d)
Ta
Nb

Ti


W
Mo

Re
Tc

Os
Ru

V
Cr

Mn

Fe

0.1
Atomic number

Au

Ag
Ir

Pt

Rh

Pd

Co

Ni

Cu

Multiple Oxidation States

Metallic Behavior/Reducing Strength
Lower oxidation state = more metallic

Color and Magnetism

e- in partially filled d sublevel absorbs visible light
moves to slightly higher energy d orbital

Magnetic properties due to unpaired electrons

Electronegativity increases down column

Chromium
Chemical properties reflect oxidation state

Valence-State Electronegativity
Electronegativity, EN:
electron “pulling power”
Valence-state EN:
metal in higher oxidation state
is more positive
has stronger pull on electrons
is more electronegative
“Effective EN”

Manganese

Silver

Weak Reducing Agent, H2Q

Mercury

Coordination Compound
Consist of a complex ion and necessary counter ions
[Co(NH3)5Cl]Cl2
Complex ion:

[Co(NH3)5Cl]2+
Co3+ + 5 NH3 + Cl= 1(3+) + 5 (0) + 1(1-)
= 2+

Counter ions:

2 Cl-

[Co(NH3)6]Cl3

[Pt(NH3)4]Br2

Complex ion remains intact upon dissolution in water

Complex Ion
Species where transition metal ion is surrounded
by a certain number of ligands.
Transition metal ion:
Ligands:

Lewis acid
Lewis bases

Co(NH3)63+
Pt(NH3)3Br+

Ligands
Molecule or ion having a lone electron pair that
can be used to form a bond to a metal ion
(Lewis base).
coordinate covalent bond: metal-ligand bond
monodentate: one bond to metal ion
bidentate:
two bond to metal ion
polydentate: more than two bonds to a metal
ion possible

Formulas of Coordination Compounds
1. Cation then anion
2. Total charges must balance to zero
3. Complex ion in brackets
K2[Co(NH3)2Cl4]
[Co(NH3)4Cl2]Cl

Names of Coordination Compounds
1. Cation then anion
2. Ligands
in alphabetical order before metal ion
neutral:
molecule name*
anionic:
-ide  -o
prefix indicates number of each

3. Oxidation state of metal ion in () only if more
than one possible
4. If complex ion = anion, metal ending  -ate

Examples
K2[Co(NH3)2Cl4]
potassium diamminetetrachlorocobaltate(II)
[Co(NH3)4Cl2]Cl
tetraamminedichlorocobalt(III) chloride

20_441

Isomers
(same formula but different properties)

Structural
isomers
(different bonds)

Coordination
isomerism

Linkage
isomerism

Stereoisomers
(same bonds, different
spatial arrangements)

Geometric
(cis-trans)
isomerism

Optical
isomerism

Structural Isomerism 1
Coordination isomerism:
Composition of the complex ion varies.

[Cr(NH3)5SO4]Br
and [Cr(NH3)5Br]SO4

Structural Isomerism 2
Ligand isomerism:
Same complex ion structure but point of
attachment of at least one of the ligands differs.
[Co(NH3)4(NO2)Cl]Cl
and [Co(NH3)4(ONO)Cl]Cl

Linkage Isomers

[Co(NH3)5(NO2)]Cl2

[Co(NH3)5(ONO)]Cl2

Pentaamminenitrocobalt(III)
chloride

Pentaamminenitritocobalt(III)
chloride

Stereoisomerism 1
Geometric isomerism (cis-trans):
Atoms or groups arranged differently spatially
relative to metal ion
Pt(NH3)2Cl2

20_444

Cl

Cl

Co

Co
NH 3

H3N

NH 3

H3N

NH3

H3N

H3N

Cl
NH 3

Cl

Cl

Cl

Co

Co
Cl

Cl
(a)

(b)

Stereoisomerism 2
Optical isomerism:
Have opposite effects on plane-polarized light
(no superimposable mirror images)
Polarizing
filter

Tube
containing
sample

Unpolarized
light



Polarized
light
Rotated
polarized light

20_448

Mirror image
of right hand
Left hand

Right hand

20_449

N
N

N
Co

N

N

N
N

Mirror image
of Isomer I

N

N
N

N

Co
N

Co
N

N
Isomer I

N

N
N

Isomer II
N

Cl
N

N

Co

N

N
N

N

Co

N

Co

N

cis

N
N

N

Isomer II cannot be
superimposed exactly
on isomer I. They are
not identical structures.

Cl
Cl

Cl
N

Cl

(a)

Cl

N
Cl

trans

The trans isomer and
its mirror image are
identical. They are not
isomers of each other.

Co

Cl

N
Cl
N

N
N

N
Co
Cl

Isomer I N

Isomer II N

(b)

Isomer II has the same
structure as the mirror
image of isomer I.

Crystal Field Theory
Focus:

energies of the d orbitals

Assumptions
1. Ligands:
2. Metal-ligand bonding:

negative point charges
entirely ionic

strong-field (low-spin): large splitting of d orbitals
weak-field (high-spin): small splitting of d orbitals

20_454

eg(d z2, d x 2 – y2)


t2g (d xz, d yz, d xy)

E

 = crystal field splitting

Free metal ion
3d orbital
energies

High spin

Low spin

[V(H2O)6]2+

[V(H2O)6]3+

[Cr(NH3)6]3+

[Cr(NH3)5Cl]2+s

Tetrahedral Complexes






(a)



dx2 – y2

dz 2


– –– –


dxy
(b)

dxz

dyz

Square Planar & Linear Complexes
dx2 - y2

dz2
E

E

dxy
dz2
dxz
Free metal ion

dyz

Free metal ion

Complex

dxz

dyz

dxy

dx2 - y2

Complex

x
M
M

z

y
(a)

Approach along x-and y-axes

(b)

Approach along z-axis

Hemoglobin & Oxyhemoglobin