Component Costs
Component Costs
The previous discussion has assumed that the component costs of capital are given. This is not the real-life case. We discuss in this section how to calculate the costs of the components, which change from day-to- day.Infact,thecomponentcostschangecontinuouslyastheequitymarketschange.
CostofDebt
The pre-taxcostofdebtistherateofreturnonthebondsissuedtoraisecapital.Itappearsasthevaluek d inthefollowingequationforthevalueofabond:
where V B = thevalueofabondissuedinreturnforborrowing N = thelifeofthebond Pmt = theperiodicbondpayment FV = thefuturevalueofthebond($1,000)
Equation9.2cannotberewrittenasanexplicitfunctionfork d .Itcanonlybesolvedbyaniterative techniquethatusesknownvaluesforV D , Pmt, N, and FV and assumes different values for k d until the cal-
culatedvalueoftherightsideofequation9.2equalstheknownvalueofthebondontheleft.Fortunately, thistaskcanbeeitherperformedbyusingExcel’sSolvertooloravoidedbyusingExcel’sRATEfunction. ThesyntaxforExcel’sRATEfunctionis
RATE(number of periods, periodic payment, present value, future value, type, guess)
Adjustment for Income Tax
Thepaymentstointerestonacorporation’sdebtsaretax-deductibleexpenses.Therefore,theafter-tax interest
304 ❧ Corporate Financial Analysis with Microsoft Excel ®
pre-taxvalueby1minusthetaxrate.Thus,ifthepre-taxcostofdebtis$80ona$1000bondandthetaxrateis 40percent,thedollarafter-taxcostofdebtwouldbeonly$48(computedas$80X(1-0.40))andthepercentage after-taxcostofdebtwouldbe4.8percent(computedas$48/$1000).(Notethatthereisnotaxadjustmentfor preferredorcommonequitybecausedividendsarenottax-deductibleexpensesforthecompany.)
Underpresenttaxlaw,thecostsrelatedtotheissuanceofdebtorequitysecuritiesarenottaxdeduct- ible.Assuch,thebefore-taxandafter-taxcostsofequity(preferredandcommon)securitiesarethesame. Ifsomeoftheflotationcostsweretobecometaxdeductible,thentheafter-taxcostsofequitywouldbe lessthanthebefore-taxcosts.
Example 9.5: The chief financial officer of the Monarch Investment Corporation is interested in buying bondsasaninvestmentofsurpluscash.Somebondsthatareavailableprovidesemiannualpaymentswithan annual coupon rate of 8 percent. Their redemption value is $1000, and they reach maturity in 15 years. The bondsareavailableatapriceof$560.WhatwouldbeMonarch’safter-taxrateofreturnonthebondsifthey werepurchasedatthecurrentofferingprice?YoumayassumethatMonarch’staxrateis40percent.
Solution: Figure 9-11 is a spreadsheet showing two methods for determining the rate. The upper method usestheRATEfunction,andthelowermethodusestheformulagivenbytherightsideofequation9.2and Solver. Solver changes the trial value entered in Cell B16 to the correct value to give the desired after-tax rate ofreturn.Bothmethodsgiveapre-taxrateofreturnof7.86percent,whichisconvertedtoanafter-taxrateof returnof4.71percent.
Figure9-11
Cost of Debt Borrowing
1 Example 9.5: RATE OF RETURN 2 Solution with RATE Function
3 Current Price of Bond
4 Coupon Rate
5 Redemption Value
6 Maturity, years
7 Frequency, payments/year
8 Before-Tax Rate of Return
9 Tax Rate
10 After-Tax Rate of Return
11 Key Cell Entries
12 B8: =RATE(B6*B7,B4*B5/B7,–B3,B5) 13 B10: =B8*(1–B9)
14 Alternate Solution with Formula 8.2 and Solver
15 Value
16 Before-Tax Rate of Return
17 After-Tax Rate of Return
18 Key Cell Entries
19 B15: =(B4*B5/2)*(1–1/((1+B16)^(B6*B7)))/B16 20 +B5/((1+B16)^(B6*B7)) 21 B16: Enter a trial value, which will be changed by Solver. 22 B17: =B16*(1–B9)
23 Solver Settings
24 Target Cell is B15, to be set equal to $560.
Cost of Capital ❧ 305
CostofPreferredEquity The value of a share of preferred stock, V p ,isgivenbytheequation
where D=thedollardividendpershareand and
k P =therateofreturnonthepreferredstock Equation9.3canberearrangedtothefollowingformforcalculatingtherateofreturnfromknown
values for V P and D:
CostofCommonEquity Acompany’scostofcommonequitycanbedeterminedbyeitherthedividenddiscountmodelorthe
CAPM.
The Dividend Discount Model for Common Equity
Thismodelusesthefollowingequationtodiscountastreamofdividends(D) from common stock with a constantrateofgrowth(g)andrateofreturn(k CS )tothestock’spresentvalue(V CS ):
(9.5) Rearrangementofequation9.5givestherateofreturnforshareholdersofcommonstockinterms
V CS =
k CS − g k CS − g
ofcurrentmarketpriceofthestock,itscurrentdividends,anditsrateofgrowth;thus
Inotherwords,therequiredrateofreturnoncommonstockequalsthesumofthedividendyieldplus the rate of growth of the dividends.
Example 9.6: The common stock of the Argus Corporation sells for $50/share and provides quarterly divi- dendsof$1.00.Itisanticipatedthatthestock’sdividendswillincreasebyanaverageof10percentperyearfor thenextfiveyears.Whatisthestock’svalueintermsofarateofreturn?
Solution: Substitutingvaluesintoequation9.6gives
CS =
306 ❧ Corporate Financial Analysis with Microsoft Excel ®
The CAPM Model for Common Equity
TheCAPMmodelusesthefollowingequationtogivetheexpectedrateofreturnforasecurity(E(R i ))in termsoftherisk-freerateofinterest(R f ),themarketriskpremium((R m –R f )),andtheriskofthesecurity
relativetoamarketportfolio( b i ):
ER () i = R f + β i ( R m − R f )
Example 9.7: Use the CAPM model to calculate the expected rate of return for the security described in Example 9.5. You may assume that the risk-free rate of return is 4 percent, the return on a market portfolio is 12.5percent,andthebetavalueofthesecurityis1.10.
Solution: Insertingvaluesintoequation9.7gives
ER () i = . 0 04 1 10 0 125 0 04 + .(. − .) = . 0 04 0 0935 0 13335 13 35 + . = . =.%