Identities with Cubes FUTURE REVISIONS OF THIS LICENSE

14 Chapter 2 Practice 98 Problem If 0 a ≤ b, shew that 1 8 · b − a 2 b ≤ a + b 2 − √ ab ≤ 1 8 · b − a 2 a 99 Problem Prove that if a , b, c are non-negative real numbers then a 2 + 1b 2 + 1c 2 + 1 ≥ 8abc 100 Problem The sum of two positive numbers is 100. Find their maximum possible product. 101 Problem Prove that if a , b, c are positive numbers then a b + b c + c a ≥ 3. 102 Problem Prove that of all rectangles with a given perimeter, the square has the largest area. 103 Problem Prove that if 0 ≤ x ≤ 1 then x − x 2 ≤ 1 4 . 104 Problem Let 0 ≤ a,b,c,d ≤ 1. Prove that at least one of the products a1 − b , b1 − c, c1 − d , d1 − a is ≤ 1 4 . 105 Problem Use the AM-GM Inequality for four non-negative real numbers to prove a version of the AM-GM for eight non-negative real numbers.

2.3 Identities with Cubes

By direct computation we find that x + y 3 = x + yx 2 + y 2 + 2xy = x 3 + y 3 + 3xyx + y 2.14 106 Example The sum of two numbers is 2 and their product 5. Find the sum of their cubes. Solution: If the numbers are x , y then x 3 + y 3 = x + y 3 − 3xyx + y = 2 3 − 352 = −22 . Two other useful identities are the sum and difference of cubes, x 3 ± y 3 = x ± yx 2 ∓ xy + y 2 2.15 107 Example Find all the prime numbers of the form n 3 − 1, n a positive integer. Solution: As n 3 − 1 = n − 1n 2 + n + 1 and as n 2 + n + 1 1, it must be the case that n − 1 = 1, i.e., n = 2. Therefore, the only prime of this form is 2 3 − 1 = 7 . 108 Example Prove that 1 + x + x 2 + ··· + x 80 = x 54 + x 27 + 1x 18 + x 9 + 1x 6 + x 3 + 1x 2 + x + 1 . Solution: Put S = 1 + x + x 2 + ··· + x 80 . Then S − xS = 1 + x + x 2 + ··· + x 80 − x + x 2 + x 3 + ··· + x 80 + x 81 = 1 − x 81 , or S1 − x = 1 − x 81 . Hence 1 + x + x 2 + ··· + x 80 = x 81 − 1 x − 1 . Therefore x 81 − 1 x − 1 = x 81 − 1 x 27 − 1 · x 27 − 1 x 9 − 1 · x 9 − 1 x 3 − 1 · x 3 − 1 x − 1 . Thus 1 + x + x 2 + ··· + x 80 = x 54 + x 27 + 1x 18 + x 9 + 1x 6 + x 3 + 1x 2 + x + 1 . 109 Example Shew that a 3 + b 3 + c 3 − 3abc = a + b + ca 2 + b 2 + c 2 − ab − bc − ca 2.16 Practice 15 Solution: We use the identity x 3 + y 3 = x + y 3 − 3xyx + y twice. Then a 3 + b 3 + c 3 − 3abc = a + b 3 + c 3 − 3aba + b − 3abc = a + b + c 3 − 3a + bca + b + c − 3aba + b + c = a + b + ca + b + c 2 − 3ac − 3bc − 3ab = a + b + ca 2 + b 2 + c 2 − ab − bc − ca If a , b, c are non-negative then a + b + c ≥ 0 and also a 2 + b 2 + c 2 − ab − bc − ca ≥ 0 by 2.13. This gives a 3 + b 3 + c 3 3 ≥ abc. Letting a 3 = x , b 3 = y , c 3 = z, for non-negative real numbers x , y, z, we obtain the AM-GM Inequality for three quantities. Practice 110 Problem If a 3 − b 3 = 24 , a − b = 2, find a + b 2 . 111 Problem Shew that for integer n ≥ 2, the expression n 3 + n + 2 3 4 is a composite integer. 112 Problem If tan x + cot x = a , prove that tan 3 x + cot 3 x = a 3 − 3a. 113 Problem AIME 1986 What is the largest positive integer n for which n + 10 |n 3 + 100? 114 Problem Find all the primes of the form n 3 + 1. 115 Problem Solve the system x 3 + y 3 = 126 , x 2 − xy + y 2 = 21 . 116 Problem Evaluate the sum 1 3 √ 1 + 3 √ 2 + 3 √ 4 + 1 3 √ 4 + 3 √ 6 + 3 √ 9 + 1 3 √ 9 + 3 √ 12 + 3 √ 16 . 117 Problem Find a 6 + a −6 given that a 2 + a −2 = 4 . 118 Problem Prove that a + b + c 3 − a 3 − b 3 − c 3 = 3a + bb + cc + a 2.17 119 Problem ITT 1994 Let a , b, c, d be complex numbers satisfying a + b + c + d = a 3 + b 3 + c 3 + d 3 = 0 . Prove that a pair of the a , b, c, d must add up to 0.

2.4 Miscellaneous Algebraic Identities