Telescopic cancellation Multiplicative Identity: 1a = a

Chapter 4 Sums, Products, and Recursions

4.1 Telescopic cancellation

We could sum the series a 1 + a 2 + a 3 + ··· + a n if we were able to find {v k } satisfying a k = v k − v k−1 . For a 1 + a 2 + a 3 + ··· + a n = v 1 − v + v 2 − v 1 + ··· + v n−1 − v n−2 + v n − v n−1 = v n − v . If such sequence v n exists, we say that a 1 + a 2 + ··· + a n is a telescopic series. 341 Example Simplify  1 + 1 2 ‹ ·  1 + 1 3 ‹ ·  1 + 1 4 ‹ ···  1 + 1 99 ‹ . Solution: Adding each fraction: 3 2 · 4 3 · 5 4 ··· 100 99 , which simplifies to 100 2 = 50. 342 Example Find integers a , b so that 2 + 1 · € 2 2 + 1 Š · € 2 2 2 + 1 Š · € 2 2 3 + 1 Š ··· € 2 2 99 + 1 Š = 2 a + b . 47 48 Chapter 4 Solution: Using the identity x 2 − y 2 = x − yx + y and letting P be the sought product: 2 − 1P = 2 − 1 2 + 1 · € 2 2 + 1 Š · € 2 2 2 + 1 Š · € 2 2 3 + 1 Š ··· € 2 2 99 + 1 Š = € 2 2 − 1 Š · € 2 2 + 1 Š · € 2 2 2 + 1 Š · € 2 2 3 + 1 Š ··· € 2 2 99 + 1 Š = € 2 2 2 − 1 Š · € 2 2 2 + 1 Š · € 2 2 3 + 1 Š ··· € 2 2 99 + 1 Š = € 2 2 3 − 1 Š · € 2 2 3 + 1 Š · € 2 2 4 + 1 Š ··· € 2 2 99 + 1 Š .. . .. . = 2 2 99 − 12 2 99 + 1 = 2 2 100 − 1 , whence P = 2 2 100 − 1 . 343 Example Find the exact value of the product P = cos π 7 · cos 2 π 7 · cos 4 π 7 . Solution: Multiplying both sides by sin π 7 and using sin 2x = 2 sin x cos x we obtain sin π 7 P = sin π 7 cos π 7 · cos 2 π 7 · cos 4 π 7 = 1 2 sin 2 π 7 cos 2 π 7 · cos 4 π 7 = 1 4 sin 4 π 7 cos 4 π 7 = 1 8 sin 8 π 7 . As sin π 7 = − sin 8 π 7 , we deduce that P = − 1 8 . 344 Example Shew that 1 2 · 3 4 · 5 6 ··· 9999 10000 1 100 . Solution: Let A = 1 2 · 3 4 · 5 6 ··· 9999 10000 and B = 2 3 · 4 5 · 6 7 ··· 10000 10001 . Clearly, x 2 − 1 x 2 for all real numbers x. This implies that x − 1 x x x + 1 Practice 49 whenever these four quantities are positive. Hence 1 2 2 3 3 4 4 5 5 6 6 7 .. . .. . .. . 9999 10000 10000 10001 As all the numbers involved are positive, we multiply both columns to obtain 1 2 · 3 4 · 5 6 ··· 9999 10000 2 3 · 4 5 · 6 7 ··· 10000 10001 , or A B. This yields A 2 = A · A A · B. Now A · B = 1 2 · 2 3 · 3 4 · 4 5 · 5 6 · 6 7 · 7 8 ··· 9999 10000 · 10000 10001 = 1 10001 , and consequently, A 2 A · B = 110001. We deduce that A 1 √ 10001 1100. For the next example we recall that n n factorial means n = 1 · 2 · 3···n. For example, 1 = 1 , 2 = 1 · 2 = 2, 3 = 1 · 2 · 3 = 6,4 = 1 · 2 · 3 · 4 = 24. Observe that k + 1 = k + 1k. We make the convention 0 = 1 . 345 Example Sum 1 · 1 + 2 · 2 + 3 · 3 + ···+ 99 · 99. Solution: From k + 1 = k + 1k = k · k + k we deduce k + 1 − k = k · k. Thus 1 · 1 = 2 − 1 2 · 2 = 3 − 2 3 · 3 = 4 − 3 .. . .. . .. . 98 · 98 = 99 − 98 99 · 99 = 100 − 99 Adding both columns, 1 · 1 + 2 · 2 + 3 · 3 + ···+ 99 · 99 = 100 − 1 = 100 − 1. Practice 50 Chapter 4 346 Problem Find a closed formula for D n = 1 − 2 + 3 − 4 + ··· + −1 n−1 n . 347 Problem Simplify € 1 − 1 2 2 Š · € 1 − 1 3 2 Š · € 1 − 1 4 2 Š ··· € 1 − 1 99 2 Š . 348 Problem Simplify log 2 € 1 + 1 2 Š + log 2 € 1 + 1 3 Š + log 2 € 1 + 1 4 Š + ··· + log 2 € 1 + 1 1023 Š . 349 Problem Prove that for all positive integers n, 2 2n + 1 divides 2 22 n +1 − 2 .

4.2 Arithmetic Sums