Complex Numbers FUTURE REVISIONS OF THIS LICENSE

20 Chapter 2 If x ∈ [2 k , 2 k+1 [ then Tlog 2 x U = k. If a, b are integers, the interval [a; b[ contains b − a integers. Thus Tlog 2 1 U + Tlog 2 2 U + Tlog 2 3 U + ··· + Tlog 2 1000 U = 2 1 − 2 0 + 2 2 − 2 1 1 +2 3 − 2 2 2 + ··· +2 9 − 2 8 8 +1000 − 2 9 9 = 0 + 2 · 1 + 4 · 2 + 8 · 3 +16 · 4 + 32 · 5+ +64 · 6 + 128 · 7 +256 · 8 + 489 · 9 = 7987 the last interval has 1000 − 512 + 1 = 489 integers. Practice 149 Problem Find the exact value of 1 log 2 1996 + 1 log 3 1996 + 1 log 4 1996 + ··· + 1 log 1996 1996 . 150 Problem Shew that log 1 2 x log 1 3 x only when 0 x 1. 151 Problem Prove that log 3 π + log π 3 2. 152 Problem Let a 1. Shew that 1 log a x 1 only when 1 x a. 153 Problem Let A = log 6 16 , B = log 12 27. Find integers a , b, c such that A + aB + b = c. 154 Problem Solve the equation log 1 3 cos x + √ 5 6 + log 1 3 cos x − √ 5 6 = 2 . 155 Problem Solve log 2 x + log 4 y + log 4 z = 2 , log 3 x + log 9 y + log 9 z = 2 , log 4 x + log 16 y + log 16 z = 2 . 156 Problem Solve the equation x .5 log√ x x2 −x = 3 log9 4 . 157 Problem Given that log ab a = 4, find log ab 3 √ a √ b .

2.6 Complex Numbers

We use the symbol i to denote i = √ −1. Then i 2 = −1 . Clearly i = 1 , i 1 = 1 , i 2 = −1 , i 3 = −i , i 4 = 1 , i 5 = i , etc., and so the powers of i repeat themselves cyclically in a cycle of period 4. 158 Example Find i 1934 . Solution: Observe that 1934 = 4483 + 2 and so i 1934 = i 2 = −1. Complex numbers occur naturally in the solution of quadratic equations. 159 Example Solve 2x 2 + 6x + 5 = 0 Complex Numbers 21 Solution: Completing squares, 2x 2 + 6x + 5 = 2x 2 + 6x + 9 2 + 1 2 = √ 2x + 3 √ 2 2 − i 1 √ 2 2 = √ 2x + 3 √ 2 − i 1 √ 2 √ 2x + 3 √ 2 + i 1 √ 2 . Then x = − 3 2 ± i 1 2 . If a , b are real numbers then the object a + bi is called a complex number. If a + bi, c + di are complex numbers, then the sum of them is naturally defined as a + bi + c + di = a + c + b + di 2.29 The product of a + bi and c + di is obtained by multiplying the binomials: a + bic + di = ac + adi + bci + bdi 2 = ac − bd + ad + bci 2.30 160 Definition If a , b are real numbers, then the conjugate a + bi of a + bi is defined by a + bi = a − bi 2.31 The norm |a + bi| of a + bi is defined by |a + bi| = È a + bia + bi = p a 2 + b 2 2.32 161 Example Find |7 + 3i|. Solution: |7 + 3i| = È 7 + 3i7 − 3i = p 7 2 + 3 2 = √ 58. 162 Example Express the quotient 2 + 3i 3 − 5i in the form a + bi. Solution: We have 2 + 3i 3 − 5i = 2 + 3i 3 − 5i · 3 + 5i 3 + 5i == −9 + 19i 34 = −9 34 + 19i 34 If z 1 , z 2 are complex numbers, then their norms are multiplicative. |z 1 z 2 | = |z 1 ||z 2 | 2.33 163 Example Write 2 2 + 3 2 5 2 + 7 2 as the sum of two squares. Solution: The idea is to write 2 2 + 3 2 = |2 + 3i| 2 , 5 2 + 7 2 = |5 + 7i| 2 and use the multiplicativity of the norm. Now 2 2 + 3 2 5 2 + 7 2 = |2 + 3i| 2 |5 + 7i| 2 = |2 + 3i5 + 7i| 2 = | − 11 + 29i| 2 = 11 2 + 29 2 164 Example Find the roots of x 3 − 1 = 0. 22 Chapter 2 Solution: x 3 − 1 = x − 1x 2 + x + 1. If x 6= 1, the two solutions to x 2 + x + 1 = 0 can be obtained using the quadratic formula, getting x = 1 2 ± i √ 3 2. Traditionally one denotes ω = 1 2 + i √ 3 2 and hence ω 2 = 1 2 − i √ 3 2. Clearly ω 3 = 1 and ω 2 + ω + 1 = 0 . 165 Example AHSME 1992 Find the product of the real parts of the roots of z 2 − z = 5 − 5i . Solution: By the quadratic formula, z = 1 2 ± 1 2 √ 21 − 20i = 1 2 ± 1 2 È 21 − 2 √ −100 = 1 2 ± 1 2 q 25 − 2 È 25−4 − 4 = 1 2 ± 1 2 È 5 − 2i 2 = 1 2 ± 5 − 2i 2 The roots are thus 3 − i and −2 + i. The product of their real parts is therefore 3−2 = −6 . ☞ Had we chosen to write 21 − 20i = −5 + 2i 2 , we would have still gotten the same values of z. Practice 23 Practice 166 Problem Simplify 1 + i 2004 1 − i 2000 . 167 Problem Prove that 1 + 2i + 3i 2 + 4i 3 + ··· + 1995i 1994 + 1996i 1995 = −998 − 998i . 168 Problem Let 1 + x + x 2 1000 = a + a 1 x + ··· + a 2000 x 2000 . Find a + a 4 + a 8 + ··· + a 2000 . Chapter 3 Arithmetic

3.1 Division Algorithm