Sejarah Logika Fuzzy Logika Fuzzy

elektronik dan komputer. Sedangkan robot mobil mengarah ke robot yang bergerak, meskipun nantinya robot ini juga memiliki manipulator.

2.2 Logika Fuzzy

2.2.1 Sejarah Logika Fuzzy

Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari teori himpunan fuzzy. Kurangnya pengetahuan yang tepat dan lengkap tentang lingkungan membatasi penerapan desain sistem kontrol konvensional ke domain dari mobile robot otonom. Apa yang dibutuhkan adalah kontrol cerdas dan pengambilan keputusan sistem dengan kemampuan untuk berpikir di bawah ketidakpastian dan belajar dari pengalaman. Misalnya, banyak penelitian telah dilakukan di aplikasi mobile robot dengan masalah pasti seperti, logika fuzzy, jaringan saraf dan algoritma evolusioner. Sistem logika fuzzy FLS memiliki kemampuan menangani tak terduga dan ketidakpastian masalah. Dalam penelitian robotika, FLS adalah sistem kontrol yang mampu menavigasi mobile robot otonom tanpa campur tangan manusia. Dengan menggunakan aturan FLS, mobile robot tergantung pada perilaku sistem. Pendekatan berbasis perilaku dengan sistem logika fuzzy bertujuan untuk mengembangkan arsitektur agen cerdas, serta struktur kontrol yang efektif untuk mengendalikan agen atau robot fisik. Karena fleksibilitas yang tinggi dan kecepatan reaktif terhadap lingkungan tidak terstruktur, ketahanan dan keandalan sistem, dan kemampuan yang kuat untuk memperluas dan pembelajaran, pendekatan ini telah diterapkan umum dalam penelitian robot. Namun, sebagai sebuah sistem, perilaku mobile robot diperlakukan sebagai sistem keseluruhan dan dimodelkan dalam tingkat agregat. Oleh karena itu algoritma yang efisien yang terpisah dari pemodelan mobile robot diperlukan, karena robot mobile dan perilakunya adalah bagian interaktif dari keseluruhan sistem. Metode pemodelan sistematis sangat mungkin untuk menerapkannya ke bidang penelitian robot Secara luas menggunakan teknik fuzzy logic dengan pendekatan berbasis perilaku dalam aplikasi mobile robot adalah jenis - 1 kabur sistem logika T1FLS. Namun, dalam pelaksanaannya, T1FLS memiliki satu batasan . Pembatasan adalah bahwa himpunan fuzzy adalah tertentu dalam arti bahwa kelas keanggotaan untuk setiap masukan adalah nilai crisp. Ini berarti bahwa itu , dalam tingkat tertentu , hanya memetakan nilai crisp menjadi nilai crisp lain mulai dari 0 ke 1, menghilangkan sifat ketidakpastian yang awalnya menawarkan sebagai manfaat dari logika fuzzy. Hilangnya sifat ketidakpastian menyebabkan kinerja kegagalan ketidakpastian penanganan Siti Nurmaini,2012. Fuzzy secara bahasa diartikan sebagai kabur atau samar-samar. Suatu nilai dapat bernilai besar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotaan yang memiliki rentang nilai 0 nol hingga 1satu. Berbeda dengan himpunan tegas yang memiliki nilai 1 atau 0 ya atau tidak. Logika Fuzzy merupakan seuatu logika yang memiliki nilai kekaburan atau kesamaran fuzzyness antara benar atau salah. Dalam teori logika fuzzy suatu nilai bias bernilai benar atau salah secara bersama. Namun berapa besar keberadaan dan kesalahan suatu tergantung pada bobot keanggotaan yang dimilikinya. Logika fuzzy memiliki derajat keanggotaan dalam rentang 0 hingga 1. Berbeda dengan logika digital yang hanya memiliki dua nilai 1 atau 0. Logika fuzzy digunakan untuk menterjemahkan suatu besaran yang diekspresikan menggunakan bahasa linguistic, misalkan besaran kecepatan laju kendaraan yang diekspresikan dengan pelan, agak cepat, cepat, dan sangat cepat. Dan logika fuzzy menunjukan sejauh mana suatu nilai itu benar dan sejauh mana suatu nilai itu salah. Tidak seperti logika klasik scrisp tegas, suatu nilai hanya mempunyai 2 kemungkinan yaitu merupakan suatu anggota himpunan atau tidak. Derajat keanggotaan 0 nol artinya nilai bukan merupakan anggota himpunan dan 1 satu berarti nilai tersebut adalah anggota himpunan. Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output, mempunyai nilai kontinyu. Fuzzy dinyatakan dalam derajat dari suatu keanggotaan dan derajat dari kebenaran. Oleh sebab itu sesuatu dapat dikatakan sebagian benar dan sebagian salah pada waktu yang sama Kusumadewi. 2004. Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti sedikit, lumayan dan sangat Zadeh 1965. Kelebihan dari teori logika fuzzy adalah kemampuan dalam proses penalaran secara bahasa linguistic reasoning. Sehingga dalam perancangannya tidak memerlukan persamaan matematik dari objek yang akan dikendalikan. Pada kebanyakan sistem rekayasa, ada dua sumber informasi yang penting, yaitu sensor – yang menyediakan pengukuran numerik dari variabel, dan tenaga ahli human expert – yang menyediakan instruksi linguistik dan deskripsi tentang sistem. Informasi dari sensor dapat disebut sebagai informasi numerik, sedangkan informasi dari tenaga ahli disebut informasi linguistik. Informasi numerik dinyatakan dengan angka, seperti 2, 3, 4, sementara informasi linguistik dinyatakan dengan kata-kata seperti besar, kecil, sangat panas, dan sebagainya. Pendekatan rekayasa konvensional banyak memanfaatkan informasi numerik dan sedikit sulit untuk memanfaatkan informasi linguistik. Mengingat begitu banyak pengetahuan manusia yang dinyatakan dengan istilah-istilah linguistik, memadukannya dengan sistem rekayasa secara sistematik dan efisien sangatlah penting. Informasi linguistik biasanya disajikan dengan istilah-istilah yang kabur alias fuzz y. Hal ini paling tidak ada tiga alasan yang dapat dikemukakan. Pertama, kita biasanya akan merasa lebih mudah dan efisien untuk mengkonsumsi pengetahuan kita dalam bentuk fuzzy. Hal ini dapat dimengerti karena kalau kita memaksakan untuk memakai istilah-istilah yang pasti dan kaku crisp terms maka yang pertama harus kita dapatkan adalah definisi yang pasti dari istilah diatas. Ini akan mengakibatkan kita terperangkap dalam prosedur yang sangat tidak efisien dan tidak praktis yang jelas-jelas tidak akan pernah kita hadapi dalam kehidupan sehari-hari. Kedua, pengetahuan kita tentang banyak persoalan pada hakikatnya adalah fuzzy. Sebagai contoh, ketika kita mempelajari teori baru, kita sering mengalami bahwa kita mengerti teori tersebut secara garis besarnya saja. Kita memperkenalkan teori itu kepada orang lain maka orang tersebut hanya akan mendapatkan gambaran yang fuzzy dari teori itu. Hal yang menarik adalah, meskipun gambarannya kurang jelas tetapi seringkali kita dapatkan bahwa perkenalan tersebut memenuhi tujuan dan sasaran yang diharapkan. Sebagai contoh, mengetahui motivasi, ide dasar, keuntungan, dan kerugian mungkin mencukupi untuk manajer tingkat tinggi. Ketiga banyak sistem yang terlalu rumit kalau dinyatakan dalam bentuk yang pasti . sebagai contoh, pengetahuan kita tentang suatu proses kimia mungkin hanya dapat dinyatakan dengan istilah-istilah yang fuzzy, seperti, “Kalau suhunya naik dan alirannya tinggi maka tekanannya akan bertambah tinggi.” Hal menarik yang dapat kita lihat disini adalah meskipun informasi linguistik tidak persis tetap ia dapat memberikan informasi yang penting mengenai sistem dan kadangkala hanya itulah informasi yang tersedia. Karena itu maka akan menarik kalau kita dapat menggunakan informasi fuzzy tersebut secara ilmiah. Berikut ini akan dipaparkan beberapa metode yang secara efektif mampu mengkombinasikan informasi numerik dan linguistik dan memanfaatkannya untuk memecahkan masalah sistem kontrol meskipun pada hakikatnya tidak harus terbatas pada bidang kontrol, tetapi bisa juga yang lain seperti pemrosesan sinyal, komunikasi, ekonomi, atau politik. Untuk keperluan tersebut maka dipakai sistem fuzzy adaptif. Sistem fuzzy adaptif didefinisikan sebagai sistem logika fuzzy yang dilengkapi dengan algoritma pembelajaran. Sistem logika fuzzy tersebut disusun dari suatu kumpulan aturan JIKA-MAKA IF-THEN fuzzy sedangkan algoritma pembelajarannya dapat mengubah parameter dan struktur dari sistem logika fuzzy berdasarkan informasi numerik. Sistem fuzzy adaptif dapat dipandang sebagai sistem logika fuzzy yang memiliki kemampuan untuk membangkitkan aturan-aturan rule secara otomatis melalui proses pembelajaran Kuswandi, 2007.

2.2.2 Fuzzyfikasi