FUNDAMENTAL INTEGRATION FORMULAS INTEGRATION BY PARTS

This instruction material adopted of Calculus by Frank Ayres Jr 18 It should be noted that the first set of parametric equations represents only a portion of the parabola, whereas the second represents the entire curve. THE FIRST DERIVATIVE dx dy is given by du dx du dy dx dy The second derivative 2 2 dx y d is given by dx du dx dy du d dx y d 2 2 SOLVED PROBLEMS 1. Find dx dy and 2 2 dx y d , given x = - sin , y = 1- cos sin , cos 1 d dy d dx , and cos 1 sin d dx d dy dx dy 2 2 2 2 cos 1 1 cos 1 1 cos 1 1 cos cos 1 sin dx d d d dx y d

12. FUNDAMENTAL INTEGRATION FORMULAS

IF Fx IS A FUNCTION Whose derivative F`x=fx on a certain interval of the x- axis, then Fx is called an anti-derivative or indefinite integral of fx. The indefinite integral of a given function is not unique; for example, x 2 , x 2 + 5, x 2 – 4 are indefinite integral of fx = 2x since x x dx d x dx d x dx d 2 4 5 2 2 2 . All indefinite integrals of fx = 2x are then included in x 2 + C where C, called the constant of integration, is an arbitrary constant. The symbol dx x f is used to indicate that the indefinite integral of fx is to be found. Thus we write C x dx x 2 2 FUNDAMENTAL INTEGRATION FORMULAS. A number of the formulas below follow immediately from the standard differentiation formulas of earlier chapters while Formula 25, for example, may be checked by showing that 2 2 2 2 1 2 2 2 1 arcsin u a C a u a u a u du d Absolute value signs appear in certain of the formulas. For example, we write 5. C u du d ln This instruction material adopted of Calculus by Frank Ayres Jr 19 instead of 5a , ln u C u u du 5b. , ln u C u u du and 10. C u du u sec ln tan instead of 10a C u du u sec ln tan , all u such that sec u 1 10b C u du u sec ln tan , all u such that sec u -1 Fundamental Integration Formulas 1. C x f dx x f dx d 18. C u csc du u cot u csc 2. dx v dx u dx v u 19. C a u tan arc a 1 u a du 2 2 3. dx u a dx au , a any constant 20. C a u sin arc u a du 2 2 4. 1 m , C 1 m u du u 1 m m 5. C u ln u du 6. 1 a , a , C a ln a du a u u 7. , C e du e u u 8. C u cos du u sin 9. C u sin du u cos 10. C u sec ln du u tan 11. C u sin ln du u cot 12. C u tan u sec ln du u sec 13. C u cot u csc ln du u csc 14. C u tan du u sec 2 15. C u cot du u csc 2 16. C u sec du u tan u sec This instruction material adopted of Calculus by Frank Ayres Jr 20 21. C a u sec arc a 1 a u u du 2 2 22. C a u a u ln a 2 1 a u du 2 2 23. C u a u a ln a 2 1 u a du 2 2 24. C a u u ln a u du 2 2 2 2 25. C a u u ln a u du 2 2 2 2 26. C a u arcsin a u a u du u a 2 2 1 2 2 2 1 2 2 27. C a u u ln a a u u du a u 2 2 2 2 1 2 2 2 1 2 2 28. C a u u ln a a u u du a u 2 2 2 2 1 2 2 2 1 2 2

13. INTEGRATION BY PARTS

INTEGRATION BY PARTS. When u and v are differentiable function of d uv = u dv + v du u dv = duv – vdu i du v uv dv u To use i in effecting a required integration, the given integral must be separated into two parts, one part being u and the other part, together with dx, being dv. For this reason, integration by the use of i is called integration by parts. Two general rules can be stated: a the part selected as dv must be readily integrable b du v must not be more complex than dv u Example 1: Find dx e x 2 x 3 Take u = x 2 and dx x e dv x 2 ; then du = 2x dx and 2 2 1 x e v . Now by the rule C e e x dx e x e x dx e x x x x x x 2 2 2 2 2 2 1 2 2 1 2 2 1 2 This instruction material adopted of Calculus by Frank Ayres Jr 21 Example 2: Find dx x 2 ln 2 Take u = ln x 2 + 2 and dv = dx; then 2 2 2 x dx x du and v = x. By the rule. dx x x x x dx x x x dx x 2 4 2 2 ln 2 2 2 ln 2 ln 2 2 2 2 2 2 C x arc x x x 2 tan 2 2 2 2 ln 2 REDUCTION FORMULAS. The labour involved in successive applications of integration by parts to evaluate an integral may be materially reduced by the use of reduction formulas. In general, a reduction formula yields a new integral of the same form as the original but with an exponent increased or reduced. A reduction formula succeeds if ultimately it produces an integral which can be evaluated. Among the reduction formulas are: A. 1 , 2 2 3 2 2 2 1 1 2 2 1 2 2 2 2 2 m u a du m m u a m u a u a du m m m B. 2 1 , 1 2 2 1 2 1 2 2 2 2 2 2 2 m du u a m ma m u a u u d u a m m m C. 1 , 2 2 3 2 2 2 1 1 2 2 1 2 2 2 2 2 m a u du m m a u m u a a u du m m m D. 2 1 , 1 2 2 1 2 1 2 2 2 2 2 2 2 m du a u m ma m a u u u d a u m m m E. du e u a m e u u d e u au m au m au m 1 2 1 F. du u m m m u u u d u m m m 2 1 sin 1 cos sin sin G. du u m m m u u u d u m m m 2 1 cos 1 sin cos cos H. du u u n m n n m u u u d u u n m n m m m 2 1 1 cos sin 1 cos sin cos sin n m du u u n m m n m u u n m n m , cos sin 1 cos sin 2 1 1 I. du bu u b m bu b u u d bu n m m m cos cos sin 1 J. du bu u b m bu b u u d bu n m m m sin sin cos 1 This instruction material adopted of Calculus by Frank Ayres Jr 22

14. TRIGONOMETRIC INTEGRALS