Heat load 7. PROCESS EQUIPMENT DESIGN

2. SHELL AND TUBE HEAT EXCHANGER 20 C 1 Temperature detail: water in Cold fluid Hot fluid 15 c In let 15 c 97 c Waterout Outlet 35 c 20 97 O C

2. Heat load

Hot fluid: Aq. Ammonia Q 4 = m x Cp x ûW Where m = 1453 kgnr = 3.98 kgsec. Cp = 2.57 KJ kg ∴ Q H = 3.98 x 2.57 [97- 20} Q H = 799.99 k.j B a + Q H = Q c = Q = 799KJ Where Q H = heat load of hot fluid Q c = heat load of cold fluid. Cold fluid : Water Q c = M C x C p x. ût Where M C = to be determined. C p = Sp heat of water. ∴ 799 = M C x 4.184 35.15 M C = 9.548 kg sec. Mass of cold water required to remove the heat associated } = 9.548 kgsec. 2 LMTD Calculation , ût T 1 = 97°c t 2 = 35°c T 2 = 20°c t 1 = 15°c ûT lmtd = 97°-35 – 20- 18 ln 97°-35 20- 15 Correction factor Fr R = T 1 – T 2 S = t 2 - t 1 t 2 - t 1 T 1 – t 1 R = 97 – 20 S = 35 – 15 35 – 15 97 – 15 R = 3.85 S = 0.2439 From perry 6 th. cd. page 10.27 Considering 2-shell pass, 4 table pass i.e., 2.4 exchanger. Corrected LMTD = 22.63 x 0.8 = 18.10° ûW lmtd = 18.10 3 Rounting of fluid: Cleaner fluid is water -------- Shell side. Unclean fluid is Aq.Ammonia .---Tube side 4 Heat Transfer Area: Reference perry, page 10-44U d for water in shell side, inorganic solvent in tube side is ranging between100-250 BTU F.Ft 2 .hr Range is = 567.83 – 1419.57 J °C m 2 .s Total Heat Transfer Area HTA = 799 x 10 3 = 73.57 m 2 600 x 18.10 Choose l6 BWG tubes. OD = 58 Ž = 0.01587 m ID = 0.495 Ž P Length of tube = 16ft = 4.8768 Heat transfer area = 0.1636 ft 2 ft 2 length = 0.04986 m 2 m.length. F T = 0.8 Heat transfer area of over tube = 0.04968 x 4.8768 = 0.2431 m 2 Tube ∴No of tube = 73.57 = 302 0.2431 Nearest tube count from perry, page 11-13 is 274. and corresponding shell diameter inner = 438 mm. ∴Shell ID = 438mm. Corrected heat transfer area = 274 x 0.243 = 66.60m 2 corrected U d = 799 x 10 3 66.60 x 18.1 = 662.0 Wm 2. °k 5 Fluid velocity check a Tube side: aq ammonia Number of passes = 4 Available flow area = π x d i 2 x N T 4 N P = π x 0.01257 2 x 274 4 4 a t = 0.0085m 2 ∴ Velocity of fluid in the tube V t = M t f x d t V t = 3.98 x 1 x 1 832 0.0085 V t = 0.563 ms b Shell side: water shell I D , D s = 438mm L c baffle cut = 0.25 x Ds L s , baffle spacing = 0.5 D s = 0.219m S m = [ p 1 – DoL s ] x D s p 1 S m = Gross sectional area at centre of shell Nb = No of baffles , L = length of tube p 1 = 13 inches square pitch = 0.0206m 16 S m = 0.0206 – 0.0158 x 0.219 x 0.438 0.0206 S m = 0.02235m 2 Shell side velocity, V s = M s S s x S m = 9.548 997.04 x 0.02235 = 0.4284 ms No. of baffles N b + 1 = Total length of tube Baffle spacing = 4.8768 0.2 = 22.26 ∼ 23 ∴ N b = 22 6 Film transfer co-efficient a Tube side Richardson coulson Page no: 270 – 297 A t 55 c S = 832 kg m 3 Cp = 2.57 KJ kg k M = 1.26 mN s m 2 = 1.26 x 10 –3 N S K = 0.219 wm k m 2 N R C = fV t D M = 832 x 0.563 x 0.01257 1.26 x 10 –3 = 4673 N P r = MC p K = 2.57 x 10 –3 x 1.26 x 10 –3 14.78 = 14.78 From perry page 10-29 j H = 0.02 ∴ N N h = j H x N R C x N P r  N N h = 0.02 x 4673 x 14.78  N N h = 229.35 But, h i d i = N N h k ∴h i = 229.35 x 0.219 0.01257 = 3995.83 wm 2 k h i = 3995.83 wm 2 k b Shell side at 25 c C = 995.045 kg m 3 Cp = 4.184 kj kg k M = 0.95 x 10 -3 poise k = 1.42 w m k N R C = f x V s x D D = tube outside dia M = 995.04 x 0.4254 x 0.01587 0.095 x 10 –3 = 7620 N Pr = M x C p K = 0.95 x 10 –3 x 4.18 x 10 3 1.42 = 2.8 From perry, page 10-29 , j H = 1 x 10 –3 ∴ N Nh = 1 x 10 –3 x 7620 x 2.8  = 10.74 but, h o d o = N Nh k ∴ h o = 10.74 x 1.42 = 960 w m 2 k 0.01587 h o = 960 w m 2 k Overall heat transfer coefficient 1 = 1 + D o x 1 + D o ln D o D i + 1 U o ho D i hi 2k w h dirt For stainless steel k w = 45 h dirt = 0.003 1Uo= 1 960 + 0.01587 0.012257 x 1 3995.53 + 0.01587 ln 0.01587 0.01257 2x 45 + 1 0.003 U o = 243.096 w m 2 k 7 Pressure drop calculation : a Tube side û P L = 4fLV 2 x f x g 2 g D i but, f = 0.079 x R c –0.25 = 0.079 x 4673 –0.25 = 0.0095 û P L = 4 x 0.0095 x 4.8768 x 0.563 2 x 832 2 x 0.01257 û P L = 1.943a Kp a ∴ û P t = 2.5 f x Vt 2 2 û P t = 2.5 832 x 0.563 2 = 0.3796 KP a 2 û P total 1S [ û P L + û P t = 4 x [ 1.9439 + 0.3796 ] û P total = 9.294 KPa û P total is less than 70 Kpa hence design is satisfactory. b shell side Shell side pressure drop is calculated using bell ‘s method Perry : page 10-26 to 10-31 N R C = 7620 From figure 10.25 a page 10-31 friction factor f k f k = 0.19 i Pressure drop across cross flow section P c û P c = b x f k x w 2 x N c x Mw Mb 0.4 f . f 2 m b= 2 x 10 -3 w = 9.54 kgs S m = 0.02235m 2 N c = D s x 1 – 2Lc D s P p Where Ds = shell 1D = 0.438m Lc = 0.1095 P p = pitch parallel cross flow = 13 in = 0.0206m 16 N c = 0.438 1 – 2 0.1096 0.438 0.0206 N c = 16 ∴ ûP c = 2 x 10 -3 x 0.19 x 9.54 2 x 16 [1] 0.4 997.04 x 0.02235 = 0.0252 K Pa ii End zone pressure drop û3 c û3 c û P L 1 + N c w N c N c w = 0.8l c P p = 0.8 x 0.1095 0.0206 = 4 ∴ ûP c = 0.0252 x 1+ 4 16 û3 c = 0.0315 K P a iii Pressure drop in window zone, û P w û P w = b x w 2 [2+0.6 kl cw ] fm x S w x f b = 5 x 10 -4 S m = 0.02235 m 2 N c w = 4 w = 9.84 kg s S = 997.045 kg m 2 Area for flow though window Sw = Sw g – Sw t Sw g , from fig 10-18 , page 10-29, perry hand book. Sw g = 0.029 Sw t = N T 1-Fc π D o 8 = 274 x 1 - 0.68 x π 0.0158 2 8 ∴∴∴∴ ∴S w = 0.029 – 0.0029 S w = 0.0205 m 2 Pressure drop at window zone û P w = 5 x 10 -4 x 9.54 2 x 2 + 0.6 x 4 0.02235x0.0205x997.045 û P w = 0.386 Kp a Total pressure drop at shell side, û P T would be given by û P T = 2 x û P c + û N b – 1 x û P c + N b û P w û P T = 2 x 0.0315 + 22 – 1 x 0.0252 + 22 x 0.386 û P T = 9.08 Kp a Total pressure drop at shell side is less than 70 Kp a hence, shell heat exchanger design is satisfactory. Sw t = 0.0085

8. MECHANICAL DESIGN OF PROCESS EQUIPMENTS