TUGAS kIMIA GOL 4A
1 PENDAHULUAN
Unsur golongan IVA merupakan unsur yang sangat penting, seperti karbon yang merupakan basis dari kehidupan di bumi dan silikon yang sangat vital bagi struktur fisik bagi lingkungan dalam bentuk kerak bumi.Golongan IVA pada tabel sistem periodik disebut pula golongan karbon karena unsur pertama dan umum ditemukan.Diantara unsur-unsur Golongan IVA adalah karbon (C), silikon (Si), germanium (Ge), timah (Sn), dan timbal (Pb) yang menunjukkan keanekaragaman yang patut dipertimbangkan dalam hal sifat kimia dan fisiknya.
II PEMBAHASAN GOLONGAN IVA KARBON
A. KARBON ( C )
1. Sifat-Sifat Karbon Unsur karbon terdapat dalam tiga bentuk yaitu bentuk amorf,grafit,dan intan. Amorf
Unsur karbon dalam bentuk amorf,selain terdapat dialam,juga dihasilkan dari pembakaran terbatas minyak bumi (jumlah oksigen terbatas, sekitar 50 % dari jumlah oksigen yang diperlukan untuk pembakaran sempurna). Secara alami,karbon amorf dihasilkan dari perubahan serbuk gergaji,lignit batu bara,gambut,kayu,batok kelapa,dan biji-bijian.
Grafit
Grafit adalah zat bukan logam yang mampu mengantarkan panas dengan baik. Bentuk kristal mikro grafit banyak kita kenal sebagai arang,jelaga,atau jelaga minyak. Sifat fiska grafit ditentukan oleh sifat dan luasnya permukaan. Bentuk grafit yang halus akan mempunyai permukaan yang relatif lebih luas,sehingga dengan sedikit gaya tarik akan mudah menyerap gas dan zat terlarut. Grafit, terdapat dalam bentuk padatan yang memiliki ukuran kristal dan tingkat kemurnian yang berbeda-beda. Grafit dpat dibuat dar kokas (bentuk karbon amorf) menurut reaksi berikut :
C (amorf) C (grafit)
Intan
Bentuk unsur karbon yang ketiga adalah intan. Intan secara alami diperoleh dari karbon yang dikenal tekanan dan suhu tinggi dalam perut bumi. Intan juga dapat dibuat dari grafit yang diolah pada suhu 3.000 K dan tekanan lebih 7 dari 1,25 x 10 Pa. Proses ini menggunakan katalis logam transisi,seperti kromium (Cr), besi (Fe), dan platina. 12 13 Karbon memiliki dua isotop yang stabil yaitu C dengan kelimpahan 98,93% dan C dengan kelimpahan 12 1,07%. IUPAC telah menggunakan isotop C untuk menentukan berat atom unsur dalam sistem periodic. 14 Isotop C terdapat dialam dan bersifat sebagai radioaktif dengan kelimpahan hanya sampai 0.0000000001%, terdapat sekitar 15 isotop karbon.
2. Senyawa Karbon
Karbon dioksida ditemuka di atmosfir bumi dan terlarut dalam air. Karbon juga merupakan bahan batu besar dalam bentuk karbonat unsur-unsur berikut: kalsium, magnesium, dan besi. Batubara, minyak dan gas bumi adalah hidrokarbon. Karbon sangat unik karena dapat membentuk banyak senyawa dengan hidrogen, oksigen, nitrogen dan unsur-unsur lainnya. Dalam banyak senyawa ini atom karbon sering terikat dengan atom karbon lainnya. Ada sekitar sepuluh juta senyawa karbon, ribuan di antaranya sangat vital bagi kehidupan. Tanpa karbon, basis kehidupan menjadi mustahil. Walau silikon pernah diperkirakan dapat menggantikan karbon dalam membentuk beberapa senyawa, sekarang ini diketahui sangat sukar membentuk senyawa yang stabil dengan 2 untaian atom-atom silikon. Atmosfir planet Mars mengandung 96,2% CO . Beberapa senyawa-senyawa penting karbon adalah karbon dioksida (CO 2 ), karbon monoksida (CO), karbon disulfida (CS 2 ), kloroform (CHCl 3 ), karbon tetraklorida (CCl 4 ), metana (CH 4 ), etilen (C 2 H 4 ), asetilen (C 2 H 2 ), benzena (C 6 H 6 ), asam cuka(CH 3 COOH) dan turunan-turunan mereka.
3. Cara Pemerolehan Karbon
Karbon terdapat dialam sebagai grafit. Grafit buatan dengan mereaksikan coke dengan silica (SiO2) dengan reaksi sebagai berikut: SiO2 + 3C (2500°C) ? “SiC” ? Si (g) + C(graphite) Karbon juga dapat diperoleh dari pembakaran hidrokarbon atau coal, atau yang lainnya dengan kondisi udara yang terbatas sehigga terjadi pembakaran yang tidak sempurna.
4. Kegunaan Karbon
Karbon menjadi unsur yang memiliki banyak manfaat didunia ini. Berbagai macam aplikasinya baik dalam bentuk senyawaan maupun dalam bentuk unsur memiliki banyak manfaat. Untuk karbon dalam bentuk senyawaan adalah sebagai sumber makanan untuk kelangsungan makhluk hidup di bumi, kita tahu bahwa berbagai mcam makanan yang kita konsumsi adalah tersusun atas karbon.
Hidrokarbon yang merupakan senyawaan karbon dan hydrogen dipakai untuk bahan bakar, petroleum dipakai untuk produksi gasoline dan kerosin. Celulosa merupakan polimer yang mengandung karbon dalam bentuk katun, wool, linen, dan sutra dipakai sebagai bahan pakaian. Plastik merupakan sintetik polimer karbon dengan banyak manfaat penggunaan.Karbon dapat membentuk alloy atau paduan logam dengan besi yang membentuk baja.Karbon hitam dipakai sebagai pigmen dalam tinta, cat, dan dipakai juga sebagai pengisis dalam industri ban dan plastic.Karbon dipakai sebagai agen pereduksi dalam berbagai reaksi kimia pada suhu yang sangat tiggi.
B. SILIKON ( Si )
Silikon (Latin: silicium) merupakan unsur kimia yang mempunyai simbol Si dan nomor atom 14. Ia merupakan unsur kedua paling berlimpah setelah oksigen di dalam kerak Bumi, mencapai hampir 25.7% . Unsur kimia ini ditemukan oleh Jons Jakob Berzelius. Terdapat dialam dalam bentuk tanah liat, granit, kuartza dan pasir,kebanyakan dalam bentuk silikon dioksida (dikenal sebagai silika) dan dalam bentuk silikat.
1. Karakteristik Silikon Atom silikon seperti halnya atom karbon, dapat membentuk empat ikatan secara serentak silikon dalam susunan petrahedral, unsur Si mengkristal dengan struktur kubus pusat muka (fcc) seperti intan, silikon bersifat semi konduktor. Dalam SiO 2 , setiap atom Si terikat pada empat atom O dan tiap atom O terikat pada dua atom Si. Susunan struktur tersebut membentuk jaringan yang sangat besar, yaitu struktur kristal kovalen raksasa (seperti intan). Kuarsa mempunyai titik leleh tinggi dan bersifat insulator. Kuarsa merupakan bentuk umum untuk silika namun, sesungguhnya bentuk-bentuk silika lain banyak, sehingga umumnya disebut mineral silika. Sebagian besar silika tidak larut dalam air. Hanya silikat dari logam alkali yang dapat diperoleh sebagai senyawa yang larut dalam air. Sifat umum dari mineral silikat adalah kekomplekan anion silikatnya, namun struktur dasarnya merupakan tetrahedral sederhana dari empat atom O disekitar atom pusat Si, tetrahedral ini dapat berupa: Unit terpisah, Bergabung menjadi rantai atau cincin dari 2,3,4 atau 6 gugus, Bergabung membentuk rantai tunggal yang panjang atau rantai ganda, Tersusun dalam lembaran, Terikat menjadi kerangka tiga dimensi 4 (aq) (aq) 4(aq) 4- +
SiO + 4H → Si(OH)
2. Sifat-Sifat Silikon
Silikon kristalin memiliki tampak kelogaman dan bewarna abu-abu. Silikon merupakan unsur yang tidak reaktif secara kimia (inert), tetapi dapat terserang oleh halogen dan alkali. Kebanyakan asam, kecuali hidrofluorik tidak memiliki pengaruh pada silikon.Unsur silikon mentransmisi lebih dari 95% gelombang cahaya infra merah, dari 1,3 sampai 6 mikrometer.
3. Senyawa Silikon
Senyawa silikat dan silikon adalah; silikat, silana (SiH4), asam salisik (H4.SiO4), silikon karbida (SiC), silikon dioksida (SiO2), silikon tetraklorida(SiCl4), silikon tetrafluorida (SiF4), & tetraklora silana(HSiCl3).
4. Cara Pemerolehan
Silikon (Si) dipeeoleh dlm pembentukan komersial biasa dg reduksi SiO2 dg karbon atau CaC2 dlm tungku pemanas listrik utuk memperolh kemurnian yg sgt tinggi (utk digunakan sbg semikonduktor) unsurnya pertama-tama diubah menjadi klorida, yg direduksi kembali menjadi logam oleh hidrogen suhu tinggi. Setelah pengecoran menjadi batangan kemudian dihaluskan (zone refined).
Batangn logam dipanaskan dekat ujungnya sehingga dihasilkan lempeg bersilang dari lelehan silikon
(Si). Karena pengotor lebih larut dlm lelehan tersebut drpd dlm padatannya yg terkonsentrasi dlm lelehan, &
daerah yg meleleh, kemudian bergerak lambat sepanjang batangan dgn pemindahan sumber panas. Hal ini membawa pengotor sampai ke ujung. Proses ini perli di ulang. Ujung yg tidak murni kemudian dipotong.
5. Kegunaan Silikon
Silikon adalah salah satu unsur yang berguna bagi manusia. Dalam bentuknya sebagai pasir dan tanah liat, dapat digunakan untuk membuat bahan bangunana seperti batu bata. Ia juga berguna sebagai bahan tungku pemanas dan dalam bentuk silikat ia digunakan untuk membuat enamels (tambalan gigi), pot-pot tanah liat, dsb. Silika sebagai pasir merupakan bahan utama gelas Gelas dapat dibuat dalam berbagai macam bentuk dan digunakan sebagai wadah, jendela, insulator,dan aplikasi-aplikasi lainnya. Silikon tetraklorida dapat digunakan sebagai gelas iridize.
Silikon super murni dapat didoping dengan boron, gallium, fosfor dan arsenik untuk memproduksi silikon secara ekstensif dalam barang-barang elektronik dan industri antariksa. Hydrogenated amorphous silicone memiliki potensial untuk memproduksi sel-sel murah untuk mengkonversi energi solar ke energi listrik.
C. GERMANIUM ( GE )
Logam ini ditemukan di : argyrodite, sulfida germanium dan perak, germanite, yang mengandung 8% unsur ini, bijih seng, batubara
DAN
mineral-mineral lainnya Unsur ini diambil secara komersil dari debu-debu pabrik pengolahan bijih-bijih seng, dan sebagai produk sampingan beberapa pembakaran batubara. Germanium dapat dipisahkan dari logam-logam lainnya dengan cara distilasi fraksi tetrakloridanya yang sangat reaktif. Tehnik ini dapat memproduksi germanium dengan kemurnian yang tinggi.
1. Sifat-Sifat Germanium
Unsur ini logam yang putih keabu-abuan. Dalam bentuknya yang murni, germanium berbentuk kristal dan rapuh. Germanium merupakan bahan semikonduktor yang penting. Tehnik pengilangan-zona (zone-refining techniques) memproduksi germanium kristal untuk semikonduktor dengan kemurnian yang sangat tinggi.
Germanium (Ge) stabil di udara & air pd keadaan yg normal, & sukar bereaksi dgn alkali & asam, kecuali d engan
asam nitrat.2. Senyawa Germanium Senyawa germanium adalah GeO2, GeCl4,GeS2, SiGe.
3. Cara Pemerolehan
Keberadaan germanium dialam sangat sedikit, yang diperoleh dari batu bara dan batuan seng pekat.nsur ini lebih reaktif daripada silikon, dan dapat larut dalam HNO 3 dan H 2 SO 4 pekatSEperti silikon, germanium juga merupakan bahan semikonduktor.
4. Kegunaan Germanium
Kegunaan umum germanium adalah sebagai bahan semikonduktor. Kegunaan lain unsur ini adalah sebagai bahan pencampur logam, sebagai fosfor di bola lampu pijar dan sebagai katalis. Germanium dan germanium oksida tembus cahaya sinar infra merah dan digunakan dalam spekstroskopi infra mera dan barang- baran optik lainnya, termasuk pendeteksi infra merah yang sensitif. Index refraksi yang tinggi dan sifat dispersi oksidanya telah membuat germanium sangat berguna sebagai lensa kamera wide-angle danmicroscope objectives.
Bidang studi kimia organogermanium berkembang menjadi bidang yang penting. Beberapa senyawa germanium memiliki tingkat keracunan yang rendah untuk mamalia, tetapi memiliki keaktifan terhadap beberap jenis bakteria, sehingga membuat unsur ini sangat berguna sebagai agen kemoterapi.
D. TIMAH ( Sn )
Timah dalam bahasa Inggris disebut sebagai Tin dengan symbol kimia Sn. Nama latin dari timah adalah “Stannum” dimana kata ini berhubungan dengan kata “stagnum” yang dalam bahasa inggris bersinonim dengan kata “dripping” yang artinya menjadi cair / basah, penggunaan kata ini dihubungkan dengan logam timah yang mudah mencair.
1. Sifat-Sifat Timah Timah biasa terbentuk oleh 9 isotop yang stabil. Ada 18 isotop lainnya yang diketahui. Timah merupakan logam perak keputih-putihan, mudah dibentuk, ductile dan memilki struktur kristal yang tinggi. Jika struktur ini dipatahkan, terdengar suara yang sering disebut tangisan timah ketika sebatang unsur ini dibengkokkan.
2. Senyawa Timah
Senyawaan timah yang penting adalah organotin, SnO2, Stanat, timah klorida, timah hidrida, dan timah sulfide.
3. Cara Pemerolehan
Berbagai macam metode dipakai untuk membuat timah dari biji timah tergantung dari jenis
- biji dan kandungan impuritas dari biji timah. Bijih timah yang biasa digunakan untuk produksi adalah dengan kandungan 0,8-1% (persen berat) timah atau sedikitnya 0,015% untuk biji timah berupa bongkahan-bongkahan kecil. Biji timah dihancurkan dan kemudian dipisahkan dari material-material yang tidak diperlukan, adakalanya biji yang telah dihancurkan dilewatkan dalam “floating tank” dan titambahkan zat kimia tertentu sehingga biji timahnya bisa terapung sehingga bisa dipisahkan dengan mudah.
Biji timah kemudian dikeringkan dan dilewatkan dalam alat pemisah magnetik sehingga kita dapat memisahkan
- biji timah dari impuritas yang berupa logam besi. Biji timah yang keluar dari proses ini memiliki konsentrasi timah antara 70-77% dan hampir semuanya berupa mineral Cassiterite.
Cassiterite selanjutnya diletakkan dalam furnace bersama dengan karbon dalam bentuk coal atau minyak bumi.
- dipanaskan pada suhu 1400 C. Karbon bereaksi dengan CO2 yang ada didalam furnace membentuk CO, CO ini kemudian bereaksi dengan cassiterite membentuk timah dan karbondioksida. Logam timah yang dihasilkan dipisahkan melalui bagian bawah furnace untuk diproses lebih lanjut. Untuk memperoleh timah dengan kemurnian yang tinggi maka dapat dilakukan dengan menggunakan proses elektrolisis. Dengan cara ini kemurnian timah yang diperoleh bisa mencapai 99,8%.
Berbagai macam metode dipakai untuk membuat timah dari biji timah tergantung dari jenis biji dan kandungan
- impuritas dari biji timah. Bijih timah yang biasa digunakan untuk produksi adalah dengan kandungan 0,8-1% (persen berat) timah atau sedikitnya 0,015% untuk biji timah berupa bongkahan-bongkahan kecil. Biji timah dihancurkan dan kemudian dipisahkan dari material-material yang tidak diperlukan, adakalanya biji yang telah
Biji timah kemudian dikeringkan dan dilewatkan dalam alat pemisah magnetik sehingga kita dapat memisahkan
- biji timah dari impuritas yang berupa logam besi. Biji timah yang keluar dari proses ini memiliki konsentrasi timah antara 70-77% dan hampir semuanya berupa mineral Cassiterite.
Cassiterite selanjutnya diletakkan dalam furnace bersama dengan karbon dalam bentuk coal atau minyak bumi.
- Adakalanya juga ditambahkan limestone dan pasir untuk menghilangkan impuritasnya kemudian material dipanaskan pada suhu 1400 C. Karbon bereaksi dengan CO2 yang ada didalam furnace membentuk CO, CO ini kemudian bereaksi dengan cassiterite membentuk timah dan karbondioksida. Logam timah yang dihasilkan dipisahkan melalui bagian bawah furnace untuk diproses lebih lanjut. Untuk memperoleh timah dengan kemurnian yang tinggi maka dapat dilakukan dengan menggunakan proses elektrolisis. Dengan cara ini kemurnian timah yang diperoleh bisa mencapai 99,8%.
4. Kegunaan Timah
Logam timah banyak dipergunakan untuk solder(52%), industri plating (16%), untuk bahan dasar kimia (13%), kuningan & perunggu (5,5%), industri gelas (2%), dan berbagai macam aplikasi lain (11%).
E. TIMBAL ( Pb )
Logam timbal telah dipergunakan oleh manusia sejak ribuan tahun yang lalu (sekitar 6400 SM) hal ini disebabkan logam timbal terdapat diberbagai belahan bumi, selain itu timbal mudah di ekstraksi dan mudah dikelola. Unsur ini telah lama diketahui dan disebutkan di kitab Exodus. Para alkemi mempercayai bahwa timbal merupakan unsur tertua dan diasosiasikan dengan planet Saturnus. Timbal alami, walau ada jarang ditemukan di bumi.
Timah dalam bahasa Inggris disebut sebagai “Lead” dengan simbol kimia “Pb”. Simbol ini berasal dari nama latin timbal yaitu “Plumbum” yang artinya logam lunak. Timbal memiliki warna putih kebiruan yang terlihat ketika logam Pb dipotong akan tetapi warna ini akan segera berubah menjadi putih kotor atau abu-abu gelap ketika logam Pb yang baru dipotong tersebut terekspos oleh udara.
Timbal memiliki empat isotop yang stabil yaitu 204Pb, 206Pb, 207Pb, dan 208Pb. Standar massa atom Pb rata-rata adalah 207,2. Sekitar 38 isotop Pb telah ditemukan termasuk isotop sintesis yang bersifat tidak stabil. Isotop timbal dengan waktu paruh yang terpanjang dimiliki oleh 205Pb yang waktu paruhnya adalah 15,3 juta tahun dan 202Pb yang memiliki waktu paruh 53.000 tahun.
Timbal memiliki nomor atom 82 dan nomor massa 207,2. Dengan nomor atom 82 maka timbal memiliki konfigurasi elektron [Xe] 4f14 5d10 6s2 6p2 dengan jumlah elektron tiap selnya adalah 2, 8, 18, 32, 18, 4. Timbal berada pada golongan IVA (14) bersama dengan C, Si, Ge, dan Sn, periode 6 dan berada pada blok s.
1. Sifat-Sifat Timbal
Timbal atau Timah Hitam (Pb) adalah unsur yang bersifat logam, hal ini merupakan anomali karena unsur-unsur diatasnya (Gol IV) yakni Karbon dan Silikon bersifat non-logam. Di alam, timbal ditemukan dalam mineral Galena (PbS), Anglesit (PbSO4 ) dan Kerusit (PbCO3,), juga dalam keadaan bebas. Memiliki sifat khusus seperti dibawah ini, yakni:
1. Berwarna putih kebiru-biruan dan mengkilap., 2. Lunak sehingga sangat mudah ditempa., 3. Tahan asam, karat dan bereaksi dengan basa kuat. 4. Daya hantar listrik kurang baik. (Konduktor yang buruk) 5. Massa atom relative 207,2, 6. Memiliki Valensi 2 dan 4. 7. Tahan Radiasi, 8. Timbal larut dalam beberapa asam, 9. Bereaksi secara cepat dengan halogen
Timbal sering kali memiliki sifat tampak seperti gas mulia yaitu tidak reaktif, ditunjukkan oleh harga potensial standarnya sebesar – 0,13 V. kereaktifan yang rendah ini dikaitkan dengan overvoltage yang tinggi terhadap hidrogen, dan juga dalam beberapa hal tidak terlarutkan oleh H2SO4 pekat dan HCl pekat. Sifat Timbal yang lain
Berbagai macam timbal oksida mudah direduksi menjadi logamnya. Hal ini bisa dilakukan dengan menggunakan reduktor glukosa, atau mencampur antara PbO dengan PbS kemudian dipanaskan. Bila dipanaskan dengan nitrat dari logam alkali maka logam timbal akan membentuk PbO yang umumnya disebut sebagai litharge. PbO adalah contoh dari timbal dengan biloks 2. PbO larut dalam asam nitrat dan asam asetat. PbO juga larut dalam larutan basa membentuk garam plumbit.
PbO2 adalah contoh dari timbal dengan biloks 4 dan merupakan agen pengoksidasi yang kuat. Karena PbO larut dalam asam dan basa maka PbO bersifat amfoter. Senyawa timbal dengan dua macam biloks juga ada yaitu Pb3O4 yang dikenal dengan nama minium.
2. Senyawa Timbal
Senyawa timbal yang umum adalah Tetra Etil Lead (TEL), PbO2, Timbal(II) Klorida (PbCl2), Timbal tetroksida (Pb3O4), dan Timbal(II) Nitrat.
3. Cara Pemerolehan
Pada umumnya biji timbal mengandung 10% Pb dan biji yang memiliki kandungan timbal minimum 3% bisa dipakai sebagai bahan baku untuk memproduksi timbal. Biji timbal pertama kali dihancurkan dan kemudian dipekatkan hingga konsentrasinya mencapai 70% dengan menggunakan proses “froth flotation” yaitu proses pemisahan dalam industri untuk memisahkan material yang bersifat hidrofobik dengan hidrofilik.
Kandungan sulfida dalam biji timbal dihilangkan dengan cara memanggang biji timbal sehingga akan terbentuk timbal oksida (hasil utama) dan campuran antara sulfat dan silikat timbal dan logam-logam lain yang ada dalam biji timbal. Pemanggangan ini dilakukan dengan menggunakan aliran udara panas. Reaksi yang terjadi adalah:
MSn + 1.5nO2 → MOn + nSO2. Timbal oksida yang terbentuk direduksi dengan menggunakan alat yang dinamakan “blast furnace” dimana pada proses ini hampir semua timbal oksida akan direduksi menjadi logam timbal. Hasil timbal dari proses ini belum murni dan masih mengandung kontaminan seperti Zn, Cd, Ag, Cu, dan Bi. Timbal oksida yang tidak murni ini kemudian dicairkan dalam “furnace reverberatory” dan ditreatment menggunakan udara, uap, dan belerang dimana kontaminan akan teroksidasi kecuali perak, emas, dan bismuth. Kontaminan ini akan terapung pada bagian atas sehingga dapat dipisahkan. Logam perak dan emas dipisahkan, dan bismuthnya dihilangkan dengan menggunakan logam kalsium dan magnesium. Hasil logam yang dihasilkan dari keseluruhan proses ini adalah logam timbal. Logam timbal yang sangat murni diperoleh dengan cara elektrolisis meggunakan elektrolit silica flourida.
4. Kegunaan Timbal
Timbal memiliki kegunaan yang sangat besar bagi kesejahteraan hidup manusia apabila dikelola secara bijaksana, adapun berbagai kegunaan dari timbal antara lain: a. Timbal digunakan dalam accu dimana accu ini banyak dipakai dalam bidang automotif.
b. Timbal dipakai sebagai agen pewarna dalam bidang pembuatan keramik terutama untuk warna kuning dan merah.
c. Timbal dipakai dalam industri plastic PVC untuk menutup kawat listrik.
d. Timbal dipakai sebagai proyektil untuk alat tembak dan dipakai pada peralatan pancing untuk pemberat disebakan timbale memiliki densitas yang tinggi, harganya murah dan mudah untuk digunakan.
e. Lembaran timbal dipakai sebagai bahan pelapis dinding dalam studio musik.
f. Timbal dipakai untuk pelindung alat-alat kedokteran, laboratorium yang menggunakan radiasi misalnya sinar X.
g. Timbal cair dipergunakan sebagai agen pendingin dalam peralatan reactor yang menggunakan timbale sebagai pendingan.
h. Kaca timbal mengandung 12-28% Pb dimana dengan adanya Pb ini akan mengubah karakteristik optis dari kaca dan mereduksi transmisi radiasi. i. Timbal banyak dipakai untuk elektroda pada peralatan elektrolisis. j. Timbal digunakan untuk solder untuk industri elektronik. k. Timbal dipakai dalam berbagai kabel listrik bertegangan tinggi untuk mencegah difusi air dalam kabel. l. Timbal ditambahkan dalam peralatan yang terbuat dari kuningan agar tidak licin dan biasanya digunakan dalam peralatan permesinan. m. Timbal dipakai dalam raket untuk memperberat massa raket. n. Timbal karena sifatnya tahan korosi maka dipakai dalam bidang kontruks. o. Dalam bentuk senyawaan maka tetra-etil-lead dipakai sebagai anti-knock pada bahan bakar. p. Semikonduktor berbahan dasar timbal banyak seperti Timbal telurida, timbale selenida, dan timbale antimonida dipakai dalam peralatan sel surya dan dipakai dalam peralatan detektor inframerah. q. Timbal biasanya dipakai untuk menyeimbangkan roda mobil tapi sekarang dilarang karena pertimbangan lingkungan. r. Digunakan sebagai aditif bahan bakar (TEL), berfungsi untuk mengurangi knock pada mesin.
III PENUTUP
A. Kesimpulan Golongan IVA pada tabel sistem periodik disebut pula golongan karbon.
Dinamakan golongan karbon karena unsur pertama dan umum ditemukan. Unsur-unsur Golongan IVA adalah karbon (C), silikon (Si), germanium (Ge), timah (Sn), dan timbal (Pb). Setiap Unsur memiliki sifat,kesenyawaan,cara pemerolehan,dan kegunaan yang berbeda-beda. Adapun faktor yang dapat meningkatkan kemungkinan terbentuknya ion positif pada golongan 4 dari atas ke bawah adalah Elektronegativitas dan energi ionisasi.
B. Daftar Pustaka
Anonim, E. 2012. Golongan IVA Kimia. http://chemistry-science29.blogspot.com