Merekabentuk Pengawal Logik Fuzzy-Pi Bagi Sistem Tangki Berkembar.

(1)

“Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai skop dan kualiti untuk tujuan penganugerahan ijazah Sarjana Muda

Kejuruteraan Elektrik (Kawalan, Instrumentasi dan Automasi).”

Tandatangan :

Nama Penyelia : PN. SAHAZATI BT MD ROZALI Tarikh : APRIL 2008


(2)

REKABENTUK PENGAWAL FUZZY-PI UNTUK SISTEM TANGKI BERKEMBAR

KHAIRUL AMRI SALEH

Laporan projek ini dikemukakan sebagai memenuhi sebahagian daripada syarat Penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kawalan, Instrumentasi dan

Automasi)

Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka


(3)

“Saya akui laporan ini adalah hasil kerja saya sendiri kecuali pada ringkasan, petikan dan lampiran yang tiap-tiap satunya saya nyatakan sumbernya.”

Tandatangan :

Nama : KHAIRUL AMRI SALEH Tarikh : 22 APRIL 2008


(4)

Untuk emak dan ayah khasnya,

Setinggi-tinggi penghargaan di atas kasih sayang,jasa dan pengorbanan yang dicurahkan untuk kejayaan anakmu ini.

Segala pengorbanan akan tetap kukenang Sehingga ke akhir hayatku….

Untuk adik-adik tercinta, Untuk penyelia dan guru-guruku,

Untuk kawan-kawan, Untuk semua umat manusia,


(5)

PENGHARGAAN

Segala puji bagi Allah SWT kerana dengan limpah kurnianya dapatlah saya menyempurnakan Projek Sarjana Muda ini. Selawat dan salam kepada junjungan besar Nabi S.A.W, keluarga baginda dan para sahabat baginda.

Setinggi-tinggi penghargaan dan ucapan terima kasih saya tujukan kepada pensyarah penyelia saya iaitu Pn. Sahazati Bt Md. Rozali yang telah mengembeling tenaga dan banyak membantu saya dalam memperbaiki kesilapan selama penyiapan Projek Sarjana Muda ini. Tanpa beliau tidak mungkin saya dapat menyiapkan kajian ini dalam tempoh yang telah ditetapkan.

Saya merakamkan ucapan terima kasih ini kepada keluarga saya terutamanya ibu bapa yang telah membantu saya dari segi kewangan dalam menyiapkan projek ini. Akhir sekali kepada rakan - rakan seperjuangan yang sentiasa berkongsi idea dan pendapat dari semasa ke semasa.

Semoga usaha murni dan pengorbanan yang telah diberikan oleh anda semua akan mendapat berkat dan dirahmati oleh Allah SWT. Diharap juga Projek Sarjana Muda ini dapat dimanfaatkan oleh semua pihak. Segala yang baik datang dari keizinan Allah manakala yang kurang adalah dari kelemahan diri saya sendiri.


(6)

v

Abstract

This paper presents the ‘Design Fuzzy Logic Controller for Couple Tank System’ to get the proportional and integral controller for the transfer function.The current error and its derivative are used to adapt online the gains of a PI controller according to fuzzy reasoning and fuzzy rules. A Larsen reference engine, center average defuzzification and most natural and unbiased membership functions (MFs) (i.e. symmetrical triangles and trapezoids with equal base and 50% overlap with neighboring membership functions) are used.


(7)

vi Abstrak

Projek ini mempersembahkan tajuk ’Merekabentuk Pengawal Logik Fuzzy bagi Sistem Tangki Berkembar’ bagi mendapat kan jadual berkadar dan pengawal kamiran (PI gain) untuk fungsi berpindahnya(transfer function). Ralat arus dan terbitannya digunakan untuk disesuaikan di dalam talian suatu pengawal PI menurut taakulan Fuzzy dan peraturan-peraturan Fuzzy. Larsen reference engine, iaitu dengan purata pusat defuzzification dan fungsi-fungsi keanggotaan yang paling biasa dan tidak berat sebelah (MFs) seperti segitiga-segitiga simetri dan trapezoids dengan pangkalan sama rata dan 50% bertindih dengan fungsi-fungsi keanggotaan yang bersebelah digunakan


(8)

vii

ISI KANDUNGAN

BAB PERKARA HALAMAN

ABSTRAK I

KANDUNGAN VII

SENARAI RAJAH X

SENARAI JADUAL XIII

SENARAI LAMPIRAN XIV

SENARAI SINGKATAN XV

1 PENDAHULUAN

1.1Pengenalan 1

1.2Objektif 2

1.3Skop projek 3

1.4Penyataan masalah 4

2 KAJIAN ILMIAH

2.1Pengenalan 5

2.2Pengawal Logik Fuzzy 5

2.3Model DAN Sistem Tangki Berkembar 9

2.4Perisian MATLAB 10

2.5Kajian Kes 1 14

2.6Kajian Kes 2 15

3 SISTEM TANGKI BERKEMBAR


(9)

viii

3.2 Pengenalan Alat Kawalan Tangki Berkembar

CTS-001 17

3.3 Prinsip Kawalan Asas Sistem Tangki

Berkembar CTS-001 18

3 METODOLOGI

3.1Pengenalan 21

3.2Metodologi Projek 21

3.3Memahami Sistem Tangki Berkembar 22 3.4Mengenalpasti Dinamik Proses Tidak Linear 23

3.5Merekabentuk Pengawal 23

3.6Simulasi 23

3.7Carta Alir Metodologi 24

5 PEMBANGUNAN PROJEK

5.1 Pendahuluan 25

5.2 Sistem Pengkalan Aturan Fuzzy 26 5.3 Konsep Rekabentuk Sistem Kawalan 28

5.4 Rekabentuk Aturan Asas Fuzzy 29

5.5 Konsep penggabungan Pengawal Fuzzy dan

Pengawal PI 30

5.6 GUI Fuzzy 32

5.7 Blok Diagram Simulink 36

6 PEMODELAN MATEMATIK SISTEM

TANGKI BERKEMBAR

6.1 Pendahuluan 38

6.2 Model Tangki Tunggal 39


(10)

ix

7 HASIL SIMULASI, ANALISIS DAN

PERBINCANGAN

7.1 Pengenalan 43

7.2 Hasil Simulasi 43

7.3 Analisis 47

7.4 Perbincangan 54

8 KESIMPULAN DAN CADANGAN

8.1 Kesimpulan 57

8.2 Cadangan 58

RUJUKAN 59

LAMPIRAN 1 60


(11)

x

SENARAI RAJAH

NO TAJUK HALAMAN

2.1 Graf Fuzzy bagi ketinggian 7 2.2 subunit simulink 12 2.3 subunit Fuzzy Toolbox 13 2.4 metodologi untuk learn FIS 14

4.1 carta alir metodologi projek 24

3.1 tangki berkembar CTS-001 17

3.2 skematik CTS-001 19

5.1 sistem pangkalan aturan Fuzzy 26

5.2 blok diagram konsep pembangunan sistem 28

5.3 blok taakulan Fuzzy-PI kepada sistem 30

5.4 editor FIS bagi Cvp 32

5.5 fungsi keahlian bagi masukan untuk fuzzy


(12)

xi

5.6 fungsi keahlian bagi masukan untuk fuzzy

reasoning Cvp (e(k)) 33

5.7 Fungsi keahlian bagi keluaran Cvp

33

5.8 Editor FIS bagi Cvi 34

5.9 fungsi keahlian bagi masukan untuk fuzzy

reasoning Cvi ( e(k)) 34

5.10 fungsi keahlian bagi masukan untuk fuzzy reasoning Cvi (e(k))

35

5.11 Fungsi keahlian bagi keluaran Cvi 35

5.12 Blok diagram pengawal PI 36

5.13 Blok diagram pengawal Fuzzy-PI 36

6.1 Model sistem tangki tunggal 38

6.2 Model tangki berkembar 39

7.1 Respon dari simulasi pengawal PI 43

7.2 Respon dari simulasi pengawal Fuzzy-PI 43

7.3 Perbandingan respon PI dan Fuzzy-PI 44

7.4 Respon hasil simulasi bagi pengawal PI 45

7.5 Respon hasil simulasi bagi pengawal Fuzzy-PI 45

7.6 Perbandingan respon PI dan Fuzzy-PI 46

7.7 Respon rangkap pindah first-order dengan

pengawal PI dalam blok signal constraint. 48

7.8 Respon rangkap pindah first-order dengan


(13)

xii

7.9 Respon rangkap pindah second-order dengan

pengawal PI dalam blok signal constraint. 51

7.10

Respon rangkap pindah second-order dengan

pengawal Fuzzy-PI dalam blok signal constraint. 52

7.11 Perbandingan respon rangkap pindah first-order dengan pengawal Fuzzy-PI dan PI (kepantasan)

54

7.12 Perbandingan respon rangkap pindah second-order dengan pengawal Fuzzy-PI dan PI (kepantasan)

55

7.13 Perbandingan respon rangkap pindah second-order dengan pengawal Fuzzy-PI dan PI (peratusan


(14)

xiii

SENARAI JADUAL

NO TAJUK HALAMAN

2.1 Kelas ketinggian 8 5.1 Jadual kestabilan langkah respon 29 5.2 Aturan matrik IF-THEN bagi Cvp 31 5.3 Aturan matrik IF-THEN bagi Cvi 31 7.1 Perbandingan nilai Tr, Ts dan OS% antara PI dan

Fuzzy-PI bagi rangkap pindah first-order 50

7.2

Perbandingan nilai Tr, Ts dan OS% antara PI dan


(15)

xiv

SENARAI LAMPIRAN

NO TAJUK HALAMAN

1 Fuzzy Logic Control 60 2 Basic Matlab and Simulink Review 67


(16)

xv

SENARAI SINGKATAN

FLC - Fuzzy Logic Controller

FIS - Fuzzy Inference System

PID - Proportional, Integral and Derivative

PI - Proportional and Integral

CTS - Couple Tank System

GPC - Generalized Predictive Control

ANFIS - Adaptive Neuro-Fuzzy Inference System

PLC - Programmable Logic Controller

GUI - Graphical User Interface

NFCGA - Neuro-fuzzy controller by Genetic Algorithm FKE - Fakulti Kejuruteraan Elektrik

UTeM - Universiti Teknikal Malaysia Melaka

BEKC - Kursus Sarjana Muda Kejuruteraan Elektrik (Kawalan, Instrumentasi, dan Automasi)


(17)

1

BAB 1

PENDAHULUAN

1.1 Pengenalan

Sistem Tangki Berkembar (Couple Tank System) merupakan sistem selanjar (linear) yang kebiasaannya menggunakan pengawal PI untuk menstabilkan sistemnya. Walaupun nilai perolehan berkadar(proportional gain) dan perolehan lengkap(integral gain) bagi pengawal PI adalah tetap dimana ianya lebih mudah dan tegap(robust), namun prestasi pengawal PI hanya boleh dioptimum di satu titik pengendalian dan sukar untuk mengekalkan kestabilan sistem apabila sistem tidak selanjar dan tidak tetap.

Bagaimanapun, kaedah penjadualan nilai-nilai perolehan(gain) bagi pengawal mengikut keadaan sistem itu beroperasi dapat menyelesaikan masalah tersebut. Dengan menggunakan kaedah ini, pertukaran-pertukaran kasar kepada nilai parameter dapat memuaskan atau menstabilkan prestasi kawalan. Oleh itu cadangan bagi menggunakan kaedah penjadualan logik Fuzzy dapat memastikan perubahan parameter pengawal dengan lebih lancar.


(18)

2 Pengalaman pakar(expert’s experience) digunakan untuk menakrifkan suatu set aturan fuzzy yang berkaitan dengan parameter pengawal beroperasi dalam keadaan tertentu dan kesimpulan fuzzy(fuzzy inference) digunakan untuk menghasilkan nilai-nilai parameter yang bersesuaian untuk suatu titik pengendalian.

Cadangan bagi projek ini adalah memperkenalkan suatu pengawal logik Fuzzy bagi plant Sistem Tangki Berkembar dan akan disimulasikan didalam perisian Matlab.

Kata kunci : Pengawal Logik Fuzzy(Fuzzy Logic Controller), Pengawal PI(PI controller), Matlab.

1.2 Objektif

Objektif bagi projek ini adalah :-

i. Untuk mengkaji, mengenalpasti, menganalisa dan mempelajari Pengawal Logik Fuzzy dengan lebih mendalam.

ii. Untuk melihat keberkesanan Pengawal Logik Fuzzy dalam mengawal sesuatu sistem.

iii. Untuk mempelajari dan memahami konsep yang digunakan melalui Perisian MATLAB dalam mengawal sesuatu sistem.

iv. Untuk memahami dan mempelajari konsep sistem kawalan tangki berkembar. v. Untuk membangunkan satu sistem penyesuaian untuk sistem berkembar tangki

menggunakan Pengawal Logik Fuzzy-PI

vi. Merekabentuk pengawal sistem tangki berkembar dengan menggunakan Pengawal Logik Fuzzy-PI


(19)

3 1.3 Skop Projek

Melalui projek ini, Sistem Pengawal direkabentuk dan dihasilkan bagi sistem Tangki Berkembar. Perkara utama bagi projek ini ialah pengetahuan mengenai Pengawal Logik Fuzzy yang amat diperlukan untuk mendapatkan parameter-parameter dan fungsi keahlian (membership function) pembolehubah masukan dan keluaran. Kemudian, fokus diberikan kepada bagaimana menggunakan perisian Matlab dan bagaimana mengaplikasikan parameter dan fungsi keahlian ke dalam perisian Matlab. Perisian Simulink Matlab digunakan bagi menghasilkan simulasi.

Seterusnya, analisis terhadap keseluruhan sistem akan dijalankan dari segi kelancaran, kestabilan dan keberkesanan Pengawal Logik Fuzzy-PI berbanding Pengawal PI beroperasi.


(20)

4 1.4 Penyataan Masalah

Sebagai kawalan masa nyata(real-time control), ia melibatkan algoritma untuk mengawal satu proses-proses yang tertentu. Bagi mengkaji prestasi dari segi pelaksanaan dalam masa nyata dan ciri-ciri kawalan, sistem tangki berkembar telah dipilih bagi projek ini. Aplikasi sistem tangki berkembar banyak digunakan didalam industri terutamanya industri yang banyak melibatkan bahan kimia.

Satu masalah kawalan yang biasa dalam industri-industri pemprosesan adalah kawalan tahap cecair-cecair dalam tangki-tangki simpanan, paduan dan tindak balas kimia.Pengaliran cecair ke dalam dan keluar tangki mestilah dilaraskan untuk mencapai satu aras cecair yang dikehendaki secara berterusan bagi satu kadar malar.Banyak algoritma kawalan telah dilaksanakan dengan menggunakan pelbagai teknik-teknik untuk memenuhi keperluan kawalan sistem. Setiap satunya mempunyai kelebihan dan kekurangan masing-masing. Pelbagai faktor dipertimbangkan di dalam merekabentuk sesuatu sistem kawalan seperti set-point, ganguan beban(load disturbance) dan terma-terma bagi time-response seperti; (kestabilan, meningkat masa, peratusan terlajak dan sebagainya)

Matlamat-matlamat atau objektif kejuruteraan seperti kos dan kebolehpercayaan adalah diambil kira bagi merekabentuk sesuatu kawalan bagi kegunaan industri. Sebelum sistem kawalan diterjemahkan kepada perkakasan(hardware), adalah penting bagi membuktikan keberkesanannya melalui simulasi bagi menambahkan kebolehpercayaan sistem kawalan. Banyak penyelidikan telah dilakukan bagi membandingkan keberkesanan beberapa sistem kawalan bagi sistem tangki berkembar. Bagi projek ini sendiri perbandingan dilakukan antara sistem kawalan gabungan Fuzzy-PI dan Fuzzy-PI.

Sistem kawalan yang biasa digunakan yang konvensional seperti PID dan PI adalah bersifat tidak berdikari (indipendent). Simulasi penting sebelum diaplikasikan ke dalam sistem perkakasan bagi mengelakan pembaziran.


(21)

5

BAB 2

KAJIAN ILMIAH

2.1 Pengenalan

Dalam bab ini, maklumat-maklumat mengenai kajian projek diterangkan serba sedikit. Kajian utama bagi projek ini adalah:

1) Pengawal Logik Fuzzy 2) Sistem Tangki Berkembar 3) Perisian Matlab

4) Kajian kes mengenai projek yang telah dibuat sebelum ini.

2.2 Pengawal Logik Fuzzy

Kendalian pengawal logic fuzzy ialah kendalian moden yang berkendali seperti cara berfikir seorang pakar. Kawalan logic fuzzy dapat menggantikan tugas manusia bagi mengawal sesuatu operasi sistem yang telah ditetapkan.

Konsep set fuzzy telah diperkenalkan oleh Lotfi A.Zadeh iaitu seorang professor matematik dan sains computer di universiti California Berkeley dalam tulisannya “Fuzzy


(22)

6 Set”, pada tahun 1965. konsep ini telah berkembang menjadi suatu teori yang lengkap terutamanya dalam rekabentuk sistem dan pengenalan pola.

Aplikasi system fuzzy semakin diberikan tumpuan terutamanya dalam bidang operasian, perancangan, kawalan dan pengurusan sistem kuasa. Beberapa kajian telah membuktikan kebolehan sistem fuzzy diaplikasikan dalam bidang kawalan.

Umumnya, rekabentuk kawalan untuk membina model sistem dan membentuk peraturan kawalan daripada analisis model tersebut. Pengawal diubahsuai berdasarkan keputusan dan ujian yang dilaksanakan dan kebanyakan pengawal adalah bersifat linear. Tetapi pengawal fuzzy ini berbeza kerana umumnya arahan kawalan fuzzy ditetapkan dahulu barulah analisis dan kajian dilakukan. Contohnya seperti sistem kawalan berikut:

JIKA ralat kecil dan positif

DAN perubahan ralat besar dan negatif

MAKA kawalan keluaran ialah kecil dan negatif

Arahan diatas melaksanakan konsep kawalan jangkaan keputusan dan menetapkan keluaran pada suatu keadaan lain untuk mengelakkan berlakunya anjakan yang besar. Ungkapan “kecil” dan “besar” merupakan kuantiti fuzzy. Rekabentuk keseluruhan bagi pengawal fuzzy memerlukan pembinaan set arahan kawalan. Dengan ini fungsi pembolehubah fuzzy (membership function) bergantung kepada julat yangn sesuai dengan masukan dan cirri-ciri tindakbalas sistem yang dikawal. Selalunya pengawal logic fuzzy yang diaplikasikan kepada sistem kuasa ialah untuk mengawal kestabilan sistem.


(23)

7 2.2.1 Set Fuzzy

Logik Fuzzy tidak sama seperti logic Boolean ataupun logic-logik lain (logic klasik). Set Fuzzy terdiri daripada fungsi ahli yang darjahnya diukur dalam julat 0 hingga 1. berbeza pula dengan logic klasik dimana darjahnya diukur pada nilai 1 (jika ya) dan 0 ( jika tidak) sahaja. Perbezaan logik Fuzzy dan logik Klasik

Contoh :

tall (x) = 0 , JIKA tinggi (x) < 5 kaki

tall (x) = (tinggi (x) – 5 kaki) / 2 , JIKA 5 kaki <= tinggi <= 7 kaki tall (x) = 1, JIKA tinggi (x) > 7 kaki

Graf yang akan didapati adalah:


(24)

8 Berdasarkan graf, dapat dikategorikan kelas ketinggian setiap lelaki seperti dalam Jadual 2.1

Nama Tinggi Kelas ketinggian

Ali 3’2” 0.00

Abu 5’5” 0.21

Ahmad 5’9” 0.38

Kasim 5’10” 0.42

Joe 6’1” 0.54

Ah Chan 7’2” 1.00

Jadual 2.1 kelas ketinggian

2.2.2 Rekabentuk Pengawal Fuzzy

Asasnya, Pengawal Logik Fuzzy mempunyai 3 komponen utama iaitu:

1) Fuzzification section:

Merupakan masukan untuk input yang sebenar (rujuk kepada crisp set)

2) Rule Base:

Feedback biasanya berlaku pada bahagian ini.

3) Defuzzification section:

Data fuzzy ditukar kepada crisp data

2.2.3 Fuzzification:

Fungsi keahlian (Membership function) diperlukan untuk menghasilkan perisian untuk fuzzy. Fungsi keahlian yang digunakan adalah berdasarkan kesesuaian sistem yang


(1)

1.3 Skop Projek

Melalui projek ini, Sistem Pengawal direkabentuk dan dihasilkan bagi sistem Tangki Berkembar. Perkara utama bagi projek ini ialah pengetahuan mengenai Pengawal Logik Fuzzy yang amat diperlukan untuk mendapatkan parameter-parameter dan fungsi keahlian (membership function) pembolehubah masukan dan keluaran. Kemudian, fokus diberikan kepada bagaimana menggunakan perisian Matlab dan bagaimana mengaplikasikan parameter dan fungsi keahlian ke dalam perisian Matlab. Perisian Simulink Matlab digunakan bagi menghasilkan simulasi.

Seterusnya, analisis terhadap keseluruhan sistem akan dijalankan dari segi kelancaran, kestabilan dan keberkesanan Pengawal Logik Fuzzy-PI berbanding Pengawal PI beroperasi.


(2)

Sebagai kawalan masa nyata(real-time control), ia melibatkan algoritma untuk mengawal satu proses-proses yang tertentu. Bagi mengkaji prestasi dari segi pelaksanaan dalam masa nyata dan ciri-ciri kawalan, sistem tangki berkembar telah dipilih bagi projek ini. Aplikasi sistem tangki berkembar banyak digunakan didalam industri terutamanya industri yang banyak melibatkan bahan kimia.

Satu masalah kawalan yang biasa dalam industri-industri pemprosesan adalah kawalan tahap cecair-cecair dalam tangki-tangki simpanan, paduan dan tindak balas kimia.Pengaliran cecair ke dalam dan keluar tangki mestilah dilaraskan untuk mencapai satu aras cecair yang dikehendaki secara berterusan bagi satu kadar malar.Banyak algoritma kawalan telah dilaksanakan dengan menggunakan pelbagai teknik-teknik untuk memenuhi keperluan kawalan sistem. Setiap satunya mempunyai kelebihan dan kekurangan masing-masing. Pelbagai faktor dipertimbangkan di dalam merekabentuk sesuatu sistem kawalan seperti set-point, ganguan beban(load disturbance) dan terma-terma bagi time-response seperti; (kestabilan, meningkat masa, peratusan terlajak dan sebagainya)

Matlamat-matlamat atau objektif kejuruteraan seperti kos dan kebolehpercayaan adalah diambil kira bagi merekabentuk sesuatu kawalan bagi kegunaan industri. Sebelum sistem kawalan diterjemahkan kepada perkakasan(hardware), adalah penting bagi membuktikan keberkesanannya melalui simulasi bagi menambahkan kebolehpercayaan sistem kawalan. Banyak penyelidikan telah dilakukan bagi membandingkan keberkesanan beberapa sistem kawalan bagi sistem tangki berkembar. Bagi projek ini sendiri perbandingan dilakukan antara sistem kawalan gabungan Fuzzy-PI dan Fuzzy-PI.

Sistem kawalan yang biasa digunakan yang konvensional seperti PID dan PI adalah bersifat tidak berdikari (indipendent). Simulasi penting sebelum diaplikasikan ke dalam


(3)

BAB 2

KAJIAN ILMIAH

2.1 Pengenalan

Dalam bab ini, maklumat-maklumat mengenai kajian projek diterangkan serba sedikit. Kajian utama bagi projek ini adalah:

1) Pengawal Logik Fuzzy 2) Sistem Tangki Berkembar 3) Perisian Matlab

4) Kajian kes mengenai projek yang telah dibuat sebelum ini.

2.2 Pengawal Logik Fuzzy

Kendalian pengawal logic fuzzy ialah kendalian moden yang berkendali seperti cara berfikir seorang pakar. Kawalan logic fuzzy dapat menggantikan tugas manusia bagi mengawal sesuatu operasi sistem yang telah ditetapkan.

Konsep set fuzzy telah diperkenalkan oleh Lotfi A.Zadeh iaitu seorang professor matematik dan sains computer di universiti California Berkeley dalam tulisannya “Fuzzy


(4)

terutamanya dalam rekabentuk sistem dan pengenalan pola.

Aplikasi system fuzzy semakin diberikan tumpuan terutamanya dalam bidang operasian, perancangan, kawalan dan pengurusan sistem kuasa. Beberapa kajian telah membuktikan kebolehan sistem fuzzy diaplikasikan dalam bidang kawalan.

Umumnya, rekabentuk kawalan untuk membina model sistem dan membentuk peraturan kawalan daripada analisis model tersebut. Pengawal diubahsuai berdasarkan keputusan dan ujian yang dilaksanakan dan kebanyakan pengawal adalah bersifat linear. Tetapi pengawal fuzzy ini berbeza kerana umumnya arahan kawalan fuzzy ditetapkan dahulu barulah analisis dan kajian dilakukan. Contohnya seperti sistem kawalan berikut:

JIKA ralat kecil dan positif

DAN perubahan ralat besar dan negatif

MAKA kawalan keluaran ialah kecil dan negatif

Arahan diatas melaksanakan konsep kawalan jangkaan keputusan dan menetapkan keluaran pada suatu keadaan lain untuk mengelakkan berlakunya anjakan yang besar. Ungkapan “kecil” dan “besar” merupakan kuantiti fuzzy. Rekabentuk keseluruhan bagi pengawal fuzzy memerlukan pembinaan set arahan kawalan. Dengan ini fungsi pembolehubah fuzzy (membership function) bergantung kepada julat yangn sesuai dengan masukan dan cirri-ciri tindakbalas sistem yang dikawal. Selalunya pengawal logic fuzzy yang diaplikasikan kepada sistem kuasa ialah untuk mengawal kestabilan sistem.


(5)

2.2.1 Set Fuzzy

Logik Fuzzy tidak sama seperti logic Boolean ataupun logic-logik lain (logic klasik). Set Fuzzy terdiri daripada fungsi ahli yang darjahnya diukur dalam julat 0 hingga 1. berbeza pula dengan logic klasik dimana darjahnya diukur pada nilai 1 (jika ya) dan 0 ( jika tidak) sahaja. Perbezaan logik Fuzzy dan logik Klasik

Contoh :

tall (x) = 0 , JIKA tinggi (x) < 5 kaki

tall (x) = (tinggi (x) – 5 kaki) / 2 , JIKA 5 kaki <= tinggi <= 7 kaki tall (x) = 1, JIKA tinggi (x) > 7 kaki

Graf yang akan didapati adalah:


(6)

2.1

Nama Tinggi Kelas ketinggian

Ali 3’2” 0.00

Abu 5’5” 0.21

Ahmad 5’9” 0.38

Kasim 5’10” 0.42

Joe 6’1” 0.54

Ah Chan 7’2” 1.00

Jadual 2.1 kelas ketinggian

2.2.2 Rekabentuk Pengawal Fuzzy

Asasnya, Pengawal Logik Fuzzy mempunyai 3 komponen utama iaitu:

1) Fuzzification section:

Merupakan masukan untuk input yang sebenar (rujuk kepada crisp set)

2) Rule Base:

Feedback biasanya berlaku pada bahagian ini.

3) Defuzzification section:

Data fuzzy ditukar kepada crisp data

2.2.3 Fuzzification:

Fungsi keahlian (Membership function) diperlukan untuk menghasilkan perisian untuk fuzzy. Fungsi keahlian yang digunakan adalah berdasarkan kesesuaian sistem yang