Spektrometri ultra violet Spektrofotometri infra merah FT-IR

Kombinasinya dan data yang ada kadang – kadang menentukan struktur yang lengkap dari molekul yang tidak diketahui. Pavia, 1979.

2.4.1 Spektrometri ultra violet

Serapan molekul di dalam derah ultra ungu dan terlihat dari spektrum bergantung pada struktur ultra elektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yang berenergi lebih tinggi di dalam keadaan tereskitasi Silverstein, 1986. Spektrum Flavonoid biasanya ditentukan dalam larutan dengan pelarut Metanol MeOH atau Etanol EtOH. Spektrum khas terdiri atas dua maksimal pada rentang 240-285 nm pita II dan 300-550 nm pita I. Kedudukan yang tepat dan kekuatan nisbi maksima tersebut memberikan informasi yang berharga mengenai sifat flavonoida dan pola oksigenasinya. Ciri khas spektrum tersebut ialah kekuatan nisbi yang rendah pada pita I dalam dihidroflavon, dihidroflavonol, dan isoflavon serta kedudukan pita I pada spektrum khalkon, auron dan antosianin yang terdapat pada panjang gelombang yang tinggi. Ciri spektrum golongan flavonoid utama dapat ditunjukkan sebagai berikut : λmaksimum utama nm λ maksimum tambahan nm dengan intensitas nisbi Jenis flavonoid 475-560 390-430 365-390 350-390 250-270 330-350 300-350 275-295 ± 225 310-330 ± 275 55 240-270 32 240-260 30 ± 300 40 ± 300 40 tidak ada tidak ada 310-330 30 310-330 30 310-330 25 Antosianin Auron Kalkol Flavonol Flavonol Flavon dan biflavonil Flavon dan biflavonil Flavanon dan flavononol Flavonon dan flavononon Isoflavon Markham, 1988, hal: 5-15; 39-42 Universitas Sumatera Utara Tabel pita absorpsi UV dari flavonoid No Jenis flavonoida Struktur umum Pita II Pita I 1 Flavon 240-285 304-350 2 Flavonol 240-285 352-390 3 Flavanon 270-295 300-350 4 Dihidroflavonol 270-295 300-320 5 Kalkon 220-270 340-390 6 Auron 220-270 370-430 7 Antosianidin 270-280 465-550 Sujata, V, 2005

2.4.2 Spektrofotometri infra merah FT-IR

Spektrum inframerah suatu molekul adalah hasil transisi antara tingkat energi getaran yang berlainan. Pancaran inframerah yang kerapatannya kurang dari 100 cm -1 panjang gelombang lebih daripada 100 µm diserap oleh sebuah molekul organik dan diubah menjadi putaran energi molekul. Universitas Sumatera Utara Penyerapan ini tercantum, namun spektrum getaran terlihat bukan sebagai garis – garis melainkan berupa pita – pita. Hal ini disebabkan perubahan energi getaran tunggal selalu disertai sejumlah perubahan energi putaran Silverstein, 1986. Dalam molekul sederhana beratom dua atau beratom tiga tidak sukar untuk menentukan jumlah dan jenis vibrasinya dan menghubungkan vibrasi-vibrasi tersebut dengan energi serapan. Tetapi untuk molekul-molekul beratom banyak, analisis jumlah dan jenis vibrasi itu menjadi sukar sekali atau tidak mungkin sama sekali, karena bukan saja disebabkan besarnya jumlah pusat – pusat vibrasi, melainkan karena juga harus diperhitungkan terjadinya saling mempengaruhi inter-aksi beberapa pusat vibrasi. Vibrasi molekul dapat dibagi dalam dua golongan, yaitu vibrasi regang dan vibrasi lentur. 1. Vibrasi regang Di sini terjadi terus menerus perubahan jarak antara dua atom di didalam suatu molekul. Vibrasi regang ini ada dua macam yaitu vibrasi regang simetris dan tak simetri. 2.Vibrasi lentur Di sini terjadi perubahan sudut antara dua ikatan kimia. Ada empat macam vibrasi lentur yaitu vibrasi lentur dalam bidang yang dapat berupa vibrasi scissoring atau vibrasi rocking dan vibrasi keluar bidang yang dapat berupa waging atau berupa twisting Noerdin, 1985.

2.4.3 Spektrometri resonansi magnetik inti proton