A. Derivation of the estimating equations for the CBS-estimator
Using
∂ ∂θ
j
log |Σ| = tr
Σ
−1 ∂Σ ∂θ
j
and
∂ ∂θ
j
Σ
−1
= −Σ
−1 ∂Σ ∂θ
j
Σ
−1
with θ
j
any element of θ, the vector of the FA parameters, as well as
∂ ∂γ
j
Σ =
∂Γ ∂γ
j
Γ
T
+Γ
∂Γ
T
∂γ
j
the partial derivatives of the Lagrangian 7 are then
∂ ∂µ
L = −λ
1 n
P
n i=1
u d
i
; cΣ
−1
x
i
− µ = 0, 18
∂ ∂ψ
2 j
L = tr[Σ
−1
Z
j
] −
λ 2n
P
n i=1
u d
i
; cx
i
− µ
T
Σ
−1
Z
j
Σ
−1
x
i
− µ = 0, 19
with Z
j
=
∂ ∂ψ
2 j
Σ =
∂ ∂ψ
2 j
ΓΓ
T
+ Ψ, and ∂
∂γ
j
L =tr Σ
−1
∂ ∂γ
j
Γ Γ
T
+ Σ
−1
Γ ∂
∂γ
j
Γ
T
− λ
2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
∂ ∂γ
j
Γ Γ
T
+ Γ ∂
∂γ
j
Γ
T
Σ
−1
x
i
− µ = 0. 20
¿From 18 we get the estimating equation for µ given in 6. Then, multiplying 19 by ψ
2 j
and using the properties of the trace we get
tr[Σ
−1
Z
j
ψ
2 j
] −
λ 2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
Z
j
ψ
2 j
Σ
−1
x
i
− µ = 0,
r
X
j=1
tr[Σ
−1
Z
j
ψ
2 j
] −
λ 2n
r
X
j=1 n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
Z
j
ψ
2 j
Σ
−1
x
i
− µ = 0, tr[Σ
−1 r
X
j=1
Z
j
ψ
2 j
] −
λ 2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1 r
X
j=1
Z
j
ψ
2 j
Σ
−1
x
i
− µ = 0, tr[Σ
−1
Ψ] −
λ 2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
ΨΣ
−1
x
i
− µ = 0. 21
13
Similarly for 20 we get tr
Σ
−1
∂Γ ∂γ
j
γ
j
Γ
T
+ Σ
−1
Γ ∂Γ
T
∂γ
j
γ
j
− λ
2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
∂Γ ∂γ
j
γ
j
Γ
T
+ Γ ∂Γ
T
∂γ
j
γ
j
Σ
−1
x
i
− µ = 0,
q
X
j=1
tr Σ
−1
∂Γ ∂γ
j
γ
j
Γ
T
+ Σ
−1
Γ ∂Γ
T
∂γ
j
γ
j
− λ
2n
q
X
j=1 n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
∂Γ ∂γ
j
γ
j
Γ
T
+ Γ ∂Γ
T
∂γ
j
γ
j
Σ
−1
x
i
− µ = 0,
tr
Σ
−1
q
X
j=1
∂Γ ∂γ
j
γ
j
Γ
T
+ Σ
−1
Γ
q
X
j=1
∂Γ
T
∂γ
j
γ
j
− λ
2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
q
X
j=1
∂Γ ∂γ
j
γ
j
Γ
T
+ Γ
q
X
j=1
∂Γ
T
∂γ
j
γ
j
Σ
−1
x
i
− µ = 0,
2tr h
Σ
−1
ΓΓ
T
i −
λ 2n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
2ΓΓ
T
Σ
−1
x
i
− µ = 0.
22 Multiplying 21 by 2 and adding the result to 22 we obtain
2tr[Σ
−1
Ψ] + 2tr[Σ
−1
ΓΓ
T
] −
λ n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
ΨΣ
−1
x
i
− µ− λ
n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
ΓΓ
T
Σ
−1
x
i
− µ = 0, 2tr[Σ
−1
Ψ + Σ
−1
ΓΓ
T
] −
λ n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
Ψ + ΓΓ
T
Σ
−1
x
i
− µ = 0, 2tr
h Σ
−1
Ψ + ΓΓ
T
i −
λ n
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
ΣΣ
−1
x
i
− µ = 0, 2p
− λ
n
n
X
i=1
u d
i
; cd
2 i
= 0, so that we finally get λ = 2p
h
1 n
P
n i=1
u d
i
; cd
2 i
i
−1
. Using this λ in 19 and 20 respectively yields
tr[Σ
−1
Z
j
] = p
n
1 n
n
X
i=1
u d
i
; cd
2 i
−1
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
Z
j
Σ
−1
x
i
− µ
, 23
14
and tr
Σ
−1
∂Γ ∂γ
j
Γ
T
+ Σ
−1
Γ ∂Γ
T
∂γ
j
= p
n
1 n
n
X
i=1
u d
i
; cd
2 i
−1
,
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
∂Γ ∂γ
j
Γ
T
+ Γ ∂Γ
T
∂γ
j
Σ
−1
x
i
− µ
. 24
23 and 24 are the estimating equations for the parameters γ
j
and ψ
j
. To define an iterative system, we need now to extract ψ
j
and γ
j
from 23 and 24. First, we use Ψ =
P
r j=1
Z
j
ψ
2 j
to reformulate the left hand side of 23 as tr[Σ
−1
Z
j
] = tr[Σ
−1
Z
j
Ψ
−1
Ψ] = tr[Σ
−1
Z
j
Ψ
−1 r
X
k=1
Z
k
ψ
2 k
], =
r
X
k=1
tr[Σ
−1
Z
j
Ψ
−1
Z
k
]ψ
2 k
, 25
which defines an iterative system for each ψ
2 k
, k = 1, . . . , r. Let
C =
h tr[Σ
−1
Z
j
Ψ
−1
Z
k
] i
j,k=1,...,r
, 26
and
D =
n
X
i=1
u d
i
; cx
i
− µ
T
Σ
−1
Z
j
Σ
−1
x
i
− µ
j=1,...,r
, 27
an expression for the ψ
2 j
is given by
P =
p n
h 1
n
n
X
i=1
u d
i
; cd
2 i
i
−1
C
−1
D. 28