Pelabelan super edge magic pada graf cycle (P_2n(+)N_m), graf planar ((P_2 U k K_1)+N_m), graf jalinan, dan graf ubur-ubur

PELABELAN SUPER EDGE MAGIC PADA GRAF CYCLE
, GRAF
, GRAF PLANAR
JALINAN, DAN GRAF UBUR-UBUR

ANISA TRIAGRINA

DEPARTEMEN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2014

PERNYATAAN MENGENAI SKRIPSI DAN
SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA
Dengan ini saya menyatakan bahwa skripsi berjudul Pelabelan Super Edge
, Graf
, Graf Planar
Magic Pada Graf Cycle
Jalinan, dan Graf Ubur-ubur adalah benar karya saya dengan arahan dari komisi
pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi

mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan
maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan
dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.
Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada
Institut Pertanian Bogor.
Bogor, Oktober 2014
Anisa Triagrina
NIM G54100010

ABSTRAK
ANISA TRIAGRINA. Pelabelan Super Edge Magic pada Graf Cycle
, Graf Jalinan, dan Graf Ubur-ubur.
, Graf Planar
Dibimbing oleh TEDUH WULANDARI MAS’OED dan MUHAMMAD ILYAS.
Pelabelan pada graf adalah pemetaan bijektif yang memetakan unsur himpunan
simpul atau himpunan sisi ke himpunan bilangan asli. Suatu graf
dengan banyaknya simpul dan banyaknya sisi dapat dikatakan
memiliki pelabelan super edge magic jika dan hanya jika terdapat fungsi bijektif
yang memetakan label setiap simpul pada bilangan asli 1 sampai , dan setiap sisi
pada bilangan asli

sampai
. Selain itu, terdapat konstanta sehingga
jumlah label dua simpul yang adjacent dan satu sisi di antaranya adalah konstanta
. Dalam karya ilmiah ini terdapat satu lema dan empat teorema yang akan
dibahas. Lema membuktikan bahwa graf dengan pelabelan super edge magic
memiliki himpunan sisi yang terdiri dari bilangan asli yang berurutan. Masingmasing dari keempat teorema tersebut membuktikan bahwa graf cycle
, graf jalinan, dan graf ubur-ubur
, graf planar
memiliki pelabelan super edge magic. Hal ini diketahui berdasarkan pada lema
sebelumnya.
Kata kunci: Himpunan Sisi yang Berurutan, Pelabelan Graf, Super Edge Magic

ABSTRACT
ANISA TRIAGRINA. Super Edge Magic Labeling of Cycle Graph
,
, Braid Graph and Jellyfish Graph. Supervised by
Planar Graph
TEDUH WULANDARI MAS’OED and MUHAMMAD ILYAS.
Labeling in graph theory is a bijection mapping that maps each elements of a set
of vertices and a set of edges to the set of natural number. A graph denoted by

with p vertices and q edges is called a super edge magic if and
only if there is a bijective function that maps each of vertices labels to the natural
numbers range 1 to and each of edges labels to the natural numbers range
to
. Also, there is a constant so that the number of two adjacent vertices
and one of edges is equal to . In this paper, there are one lemma and four
theorems were discussed. The lemma proves that graph with super edge magic
labeling has a set of edges that consists of consecutive integers. Each of the four
,
, planar graph
theorems proves that cycle graph
braid graph and jellyfish graph has super edge magic labeling. This was proved
using the fact indicated in the lemma previously mentioned.
Keywords: Consecutive Set of Edges, Graph Labeling, Super Edge Magic

PELABELAN SUPER EDGE MAGIC PADA GRAF CYCLE
, GRAF JALINAN,
, GRAF PLANAR
DAN GRAF UBUR-UBUR


ANISA TRIAGRINA

Skripsi
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Sains
pada
Departemen Matematika

DEPARTEMEN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2014

, Graf
Judul Skripsi : Pelabelan Super Edge Magic Pada Graf Cycle
, Graf Jalinan, dan Graf Ubur-ubur
Planar
Nama
: Anisa Triagrina

NIM
: G54100010

Disetujui oleh

Teduh Wulandari Mas’oed, MSi
Pembimbing I

Muhammad Ilyas, MSi, MSc
Pembimbing II

Diketahui oleh

Dr Toni Bakhtiar, MSc
Ketua Departemen

Tanggal Lulus:

PRAKATA
Segala puji serta syukur bagi Alloh AWT yang telah memberikan nikmat

dan karunia-Nya kepada kita semua. Shalawat serta salam semoga senantiasa
tercurahkan kepada Nabi Muhammad SAW, beserta keluarga, sahabat serta para
pengikutnya yang setia sampai akhir zaman. Alhamdulillah penulis bersyukur
karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan skripsi
, Graf
dengan judul “Pelabelan Super Edge Magic Pada Graf Cycle
, Graf Jalinan, dan Graf Ubur-ubur”.
Planar
Terima kasih penulis ucapkan kepada Ibu Teduh Wulandari Mas’oed, M.Si
selaku dosen pembimbing I, Bapak Muhammad Ilyas M.Si, M.Sc selaku dosen
pembimbing II, dan Bapak Drs Siswandi, M.Si selaku dosen penguji yang telah
memberikan bimbingan yang sangat berharga juga untuk semua waktu, nasehat,
dukungan dan ilmu yang telah diberikan kepada penulis. Ungkapan terima kasih
juga disampaikan kepada ayah, ibu, mba, mas, adik serta Bagus, atas segala doa
dan saran kepada penulis dalam penyusunan skripsi ini. Terima kasih juga
disampaikan untuk teman satu kontrakan, yaitu Vina, Tari, Susi, Amal dan Ai atas
segala saran dan masukan kepada penulis. Tidak lupa juga terima kasih sebesarbesarnya kepada teman-teman di Departemen Matematika IPB angkatan 47,
keluarga besar GUMATIKA IPB dan IKAHIMATIKA Indonesia Wilayah III
yang selalu memberikan semangat dan dukungan dalam menulis skripsi.
Akhirnya dengan segala kerendahan hati, penulis menyadari bahwa dalam

skripsi ini masih terdapat banyak kekurangan untuk menuju kesempurnaan.
Penulis mencoba berusaha semaksimal mungkin dengan harapan skripsi dapat
memperoleh hasil yang baik dan dapat bermanfaat bagi penelitian-penelitian
selanjutnya.

Bogor, Oktober 2014

Anisa Triagrina

DAFTAR ISI

DAFTAR GAMBAR

vi

PENDAHULUAN

1

Latar Belakang


1

Tujuan

1

LANDASAN TEORI

1

Teori Graf

2

Jenis-jenis Graf

Pelabelan Graf
PEMBAHASAN
SIMPULAN DAN SARAN


3

5
8
28

Simpulan

28

Saran

28

DAFTAR PUSTAKA

28

RIWAYAT HIDUP


29

DAFTAR GAMBAR
1 Graf G

2

2 Walk

3
4

, (c)

, (b)

3 (a)

4


4
5 (a)

, (b)

6 (a)

, (c)

, (b)

5

, (c)

5

7 Pelabelan edge magic pada graf
8 Pelabelan edge magic pada graf

6
dengan (a)

9 Pelabelan super edge magic pada graf
10 Graf

dan (b)

dengan

7
8

dan memiliki himpunan yang terdiri dari 5 bilangan asli yang

berurutan

10

11 Graf cycle ber-order 3

11

12 Graf cycle dan memiliki himpunan yang terdiri dari 3 bilangan asli yang
berurutan

12

13 Graf

14 Graf cycle

13
dan memiliki himpunan yang terdiri dari 5 bilangan

asli yang beurutan

14

15 Graf
16 Graf cycle

14
dan memiliki himpunan yang terdiri dari 5 bilangan

asli yang berurutan

15

17 Graf planar ber-order 5

15

18 Graf planar ber-order 5 dan memiliki himpunan yang terdiri dari 7 bilangan

asli yang beurutan

16
17

19 Graf

20 Graf

dan memiliki himpunan yang terdiri dari 9 bilangan

asli yang berurutan

18
18

21 Graf

22 Graf
asli yang berurutan
23 Graf jalinan ber-order 6

dan memiliki himpunan yang terdiri dari 11 bilangan
19
19

24 Graf jalinan ber-order 6 dan memiliki himpunan yang terdiri dari 7 bilangan
asli yang berurutan

20

25 Graf

26 Graf

21
dan memiliki himpunan yang terdiri dari 11 bilangan asli yang

berurutan

22

27 Graf
28 Graf

22
dan memiliki himpunan yang terdiri dari 15 bilangan asli yang

berurutan

23

29 Graf ubur-ubur ber-order 6

24

30 Graf ubur-ubur ber-order 6 dan memiliki himpunan yang terdiri dari 7
bilangan asli yang beurutan
31 Graf ubur-ubur

32 Graf ubur-ubur

26
dan memiliki himpunan yang terdiri

dari 9 bilangan asli yang berurutan
33 Graf ubur-ubur

34 Graf ubur-ubur

24

26
27

dan memiliki himpunan yang terdiri

dari 10 bilangan asli yang berurutan

27

PENDAHULUAN
Latar Belakang
Teori graf adalah salah satu cabang ilmu matematika yang mempelajari
sifat-sifat graf. Teori ini ditemukan pertama kali oleh ahli matematika asal Swiss,
Leonhard Euler pada tahun 1736 saat menyelesaikan masalah jembatan
Konigsberg.
Graf merupakan pasangan himpunan simpul dan himpunan sisi sehingga
membentuk pola graf tertentu. Pola-pola yang terbentuk didefinisikan dan
dikategorikan dalam kelas-kelas graf. Salah satu bahasan dalam graf adalah
pelabelan graf.
Pelabelan graf adalah pemetaan bijektif yang memetakan unsur himpunan
simpul dan atau himpunan sisi ke himpunan bilangan asli. Pelabelan dapat
dilakukan dengan dua cara, yaitu pelabelan simpul dan atau pelabelan sisi.
Pelabelan simpul adalah pelabelan dengan domain himpunan simpul, sedangkan
pelabelan sisi adalah pelabelan dengan domain himpunan sisi. Pelabelan total
adalah pelabelan dengan domain gabungan himpunan simpul dan himpunan sisi.
Terdapat beberapa jenis pelabelan pada graf, antara lain pelabelan gracefull¸
pelabelan harmoni, pelabelan beraturan, pelabelan tak beraturan, pelabelan ajaib
(magic labeling) dan pelabelan anti ajaib (antimagic labeling). Tulisan ini
merupakan rekonstruksi ulang dari tulisan S. M. Lee dan A. N-T Lee dalam
artikel “On Super Edge-Magic Graphs with Many Odd Cycles”.
Masalah yang akan dibahas pada penelitian ini adalah apakah graf dengan
pelabelan super sisi ajaib (super edge magic) memiliki himpunan sisi yang
,
, graf planar
berurutan dan apakah graf cycle
graf jalinan, dan graf ubur-ubur dengan cycle ganjil memiliki pelabelan super
edge magic.

Tujuan Penelitian

1.
2.

Tujuan dari penulisan karya ilmiah ini adalah untuk:
Membuktikan bahwa graf dengan pelabelan super edge magic memiliki
himpunan sisi yang berurutan.
, graf planar
Membuktikan bahwa graf cycle
, graf jalinan, dan graf ubur-ubur dengan cycle ganjil memiliki pelabelan
super edge magic.

LANDASAN TEORI
Pada bab ini akan diberikan beberapa definisi dan konsep dasar dari teori
graf yang akan digunakan dalam pembahasan pada bab-bab selanjutnya.

2

Teori Graf
Definisi 1 (Graf)
Suatu graf G adalah pasangan terurut (V,E) dengan V adalah himpunan tak
kosong dan berhingga dan E adalah himpunan pasangan tak terurut yang
menghubungkan elemen-elemen V. Graf G dinotasikan G = (V,E). Elemen V
disebut simpul atau vertex sedangkan elemen E disebut sisi atau edge. Himpunan
dari simpul-simpul pada graf G dinotasikan dengan V(G) atau V, sedangkan
himpunan dari sisi-sisi pada graf G dinotasikan dengan E(G) atau E.
(Foulds 1992)
Definisi 2 (Graf Tak Berarah)
Graf G disebut graf tak berarah apabila anggota himpunan sisi dari graf G
bukan merupakan pasangan terurut dari simpul-simpul G.
(Chartrand & Oellermann 1993)
Graf yang akan dibahas dalam karya ilmiah ini adalah graf tak berarah. Contoh
graf tak berarah dapat dilihat pada Gambar 1.
a

b

c

Gambar 1 Graf G = (V,E)
Himpunan simpul pada graf G = (V,E) adalah
{
}.
pada graf G adalah

{

} dan himpunan sisi

Definisi 3 (Order dan Size)
Misalkan diberikan graf G. Banyaknya simpul dari suatu graf G disebut
order dari G, dan banyaknya sisi dari G disebut size dari G. Order dari graf G
| dan size dari graf G dinotasikan dengan |
|.
dinotasikan dengan |
(Chartrand & Oellermann 1993)
Pada Gambar 2.1, banyaknya simpul adalah 3, dituliskan |
| = 3.
banyaknya sisi juga 3, dituliskan |

| = 3, sedangkan

Definisi 4 (Walk)
Suatu walk pada graf G adalah suatu barisan simpul dan sisi dari graf G
}. Suatu walk yang
dengan bentuk {
menghubungkan dengan dikatakan tertutup jika
. Jika
, maka
walk tersebut dikatakan terbuka.
(Chartrand & Oellermann 1993)
Contoh walk dapat dilihat pada Gambar 2.
{

}

3

1

2
4
3

5

Gambar 2 Walk.
Definisi 5 (Cycle)
Cycle pada suatu graf G adalah walk tertutup yang mengandung setidaknya
tiga simpul dan semua simpulnya berbeda.
(Foulds 1992)
Contoh cycle dapat dilihat pada Gambar 1.
Definisi 6 (Graf Cycle)
Suatu graf ber-order dengan
graf cycle dan dinotasikan dengan .

yang membentuk sebuah cycle disebut
(Chartrand & Oellermann 1993)

Gambar 1 dapat dinotasikan dengan

.

Definisi 7 (Cycle Ganjil)
Cycle dikatakan ganjil jika banyaknya sisi atau simpul dari suatu cycle
bernilai ganjil.
(Foulds 1992)

Jenis-jenis Graf
Jenis graf sangat beragam, dan dapat dikelompokkan menjadi beberapa
kategori, bergantung pada pengelompokannya. Jenis graf yang akan dibahas
dalam karya ilmiah ini ada empat sesuai dengan banyaknya teorema yang akan
, graf planar (planar graph)
dibahas, yaitu graf cycle
, graf jalinan (braid graph), dan graf ubur-ubur (jellyfish graph).
)
Definisi 8 (Graf Cycle
adalah graf dengan banyaknya simpul
Graf cycle
dan banyaknya sisi
,
. Dengan himpunan simpulnya
dibagi menjadi dua jenis, yaitu
dan . Himpunan simpul dari
} dengan himpunan simpul dari
adalah {
adalah
}. Dan
} dan himpunan simpul dari
{
adalah {
adalah himpunan sisi dari
, dimana sisi dari
himpunan sisi dari
adalah
sisi
antar
simpul
,
digabung
dengan
}.
{
(Lee dan Lee, 2003)
Beberapa contoh graf

dapat dilihat pada Gambar 3.

4

1

1

2

1

�1

2

�1

�2

2

(a)

4

(b)
Gambar 3 (a)

�1

3

(c)

, (b)

, (c)

Definisi 9 (Graf Planar)
Graf planar (planar graph) adalah graf yang apabila digambar pada sebuah
bidang tidak ada sisi yang saling berpotongan (kecuali berpotongan pada sebuah
simpul).
(Foulds 1992)
Jenis graf planar yang akan dibahas pada tulisan ini adalah graf planar
, sesuai artikel yang ditulis oleh S. M. Lee dan A. N-T Lee.
Pada graf ini simpul dibagi menjadi tiga jenis yaitu ,
dan , sehingga
{
} dimana
adalah
himpunan simpul dari
}, untuk
tersebut adalah {
himpunan simpul dari
}.
{
Sedangkan
setiap konstanta
dan himpunan simpul dari
adalah
)
adalah
himpunan
sisi
dari
(
}
{
digabung
dengan
}. Contoh graf planar
{
dapat dilihat pada Gambar 4.
1

2

1

2

3

2

1

Gambar 4
Definisi 10 (Graf Jalinan)
Graf jalinan (braid graph) dinotasikan
adalah graf dengan himpunan simpul {
} {
himpunan sisi {
} {
{
Contoh graf jalinan

untuk setiap bilangan asli
} dan
}
}.
(Lee dan Lee, 2003)

dapat dilihat pada Gambar 5.

5
1

2

3

1

2

3

(a)

1

2

3

4

1

2

3

4

5

1

2

3

4

1

2

3

4

5

(b)
Gambar 5 (a)

(c)
, (b)

, (c)

Definisi 11 (Graf Ubur-ubur)
Graf ubur-ubur (jellyfish graph) dinotasikan
untuk setiap bilangan
asli
adalah graf dengan himpunan simpul
} dan himpunan sisi
{
}
{
} {
}
{
(Lee dan Lee, 2003)
Contoh graf ubur-ubur

1

1

1

dapat dilihat pada Gambar 6.

2

(a)

1

2

1

(b)
Gambar 6 (a)

2

1

2

3

(c)
, (b)

, (c)

Pelabelan Graf
Karya ilmiah ini akan membahas pelabelan super edge magic pada beberapa
graf yang memiliki cycle ganjil. Berikut ini akan dijelaskan beberapa definisi
tentang pelabelan graf.
Definisi 12 (Pelabelan Edge Magic)
Misalkan graf G dengan banyaknya simpul p dan banyaknya sisi q. Suatu
pemetaan satu-satu dari himpunan simpul digabung himpunan sisi ke himpunan
{
} disebut sebagai pelabelan edge magic pada G jika ada konstanta
(disebut magic number ) sehingga
untuk
setiap
.
(Enomoto, et al. 1998)
Berikut ini akan diberikan contoh pelabelan edge magic. Misalkan diberikan graf
seperti pada Gambar 7. Banyaknya simpul ialah 5 dan banyaknya sisi juga 5,
sehingga masing-masing berlabel 1,2,3,4,5,6,7,8,9,10.

6

Gambar 7 Pelabelan edge magic pada graf
Misal

dan masing-masing edge dipadankan dengan suatu nilai :

maka diperoleh label sisi, sehingga

Maka,
adalah magic number. Dan pelabelan edge magic dapat
digambarkan seperti Gambar 8 (a).
Sedangkan, apabila dipadankan dengan suatu nilai:

maka diperoleh label sisi, sehingga

7
Maka,
adalah magic number. Dan pelabelan edge magic dapat
digambarkan seperti Gambar 8 (b).
6

2

8

6
5

8

9
1

1
10

4

4

5

9

7

3

3
7

10
2

(a)
(b)
Gambar 8 Pelabelan edge magic pada graf
dengan
(a)
dan (b)
Definisi 13 (Pelabelan Super Edge Magic)
Misalkan graf G dengan simpul p dan sisi q, dan G memiliki pelabelan edge
{
} dan
{
}
magic . Jika
maka disebut pelabelan super edge magic.
(Enomoto, et al. 1998)
Berikut ini akan diberikan contoh pelabelan super edge magic. Misalkan diberikan
graf seperti pada Gambar 7. Berdasarkan definisi pelabelan super edge magic,
{
} dan
{
}.
maka
Misal
dan masing-masing edge dipadankan dengan suatu nilai :

maka diperoleh label sisi, sehingga

Maka,
adalah magic number. Dan pelabelan super edge magic dapat
digambarkan seperti Gambar 9.

8
1

10

9

3

4
6

8
2

5
7

Gambar 9 Pelabelan super edge magic pada graf

dengan

Definisi 14 (Graf Edge Magic)
Suatu graf G disebut edge magic jika terdapat sebuah pelabelan edge magic.
(Enomoto, et al. 1998)
Gambar 8 (a) dan (b) merupakan contoh graf edge magic karena memiliki
pelabelan edge magic.
Definisi 15 (Graf Super Edge Magic)
Suatu graf G disebut super edge-magic jika terdapat sebuah pelabelan super
edge magic dari G.
(Enomoto, et al. 1998)
Gambar 9 merupakan contoh graf super edge magic karena memiliki pelabelan
super edge magic.

PEMBAHASAN

Pada bab ini akan dibahas lema dan teorema-teorema yang akan
membuktikan bahwa graf dengan pelabelan super edge magic memiliki himpunan
sisi yang berurutan dan beberapa graf dengan cycle ganjil memiliki pelabelan
super edge magic.
Berikut ini akan diberikan lema yang akan menunjukkan bahwa graf yang
memiliki himpunan beranggotakan hasil penjumlahan label dua simpul adjacent
dan himpunan tersebut terdiri dari bilangan asli yang berurutan merupakan graf
dengan pelabelan super edge magic.
Lema 3.1
Graf G dengan banyaknya simpul dan sisi adalah super edge magic jika dan
{
} sedemikian sehingga
hanya jika terdapat fungsi bijektif
{
} terdiri dari
himpunan
bilangan asli yang
berurutan. Dalam kasus ini, diperluas menjadi pelabelan super edge magic dari
{
G dengan
, dimana
dan
} juga
{
}.
(R. M. Figueroa-Centeno, et al. 2001)

9
Bukti
Misalkan graf G merupakan graf super edge magic. Akan dibuktikan bahwa
{
} sedemikian sehingga
graf G memiliki fungsi bijektif
{
} merupakan himpunan yang terdiri
himpunan
dari bilangan asli yang berurutan.
Misalkan G memiliki simpul dan sisi. Karena G graf super edge magic,
{
},
{
} dan
artinya ada
konstanta sehingga
untuk setiap
.
Karena
maka dapat diperoleh
{
} dan
{
}, maka dapat diperoleh
Karena
{
} yang merupakan himpunan yang
terdiri dari bilangan asli yang berurutan.
{
} sedemikian
Misalkan graf G memiliki fungsi bijektif
{
} merupakan himpunan
sehingga himpunan
yang terdiri dari bilangan asli yang berurutan. Akan dibuktikan bahwa graf G
memiliki pelabelan super edge magic dengan konstanta magic .
Misalkan graf G memiliki simpul dan sisi . Graf G memiliki fungsi
{
} sedemikian sehingga
{
bijektif
} merupakan himpunan yang terdiri dari bilangan asli yang berurutan.
{
}.
Misal
. Diketahui
{
} dan ada
Akan dibuktikan
sedemikian
sehingga
, untuk setiap
.
Pilih
Akibatnya diperoleh fungsi pelabelan
sisi
( )
(
)
Untuk suatu dan dapat diperoleh
( )
dengan
(

)

(
)
Akibatnya diperoleh
{
{
Jadi

( ) , untuk

{

} dan

sehingga

.

( )
}

}

Berikutnya akan ditunjukkan ada sehingga
Pilih
,
akan dibuktikan
untuk setiap
Tanpa mengurangi perumuman, ambil
sebarang,

.

10
misalkan
Akibatnya diperoleh
( )

dengan
(

.

) untuk suatu dan

Berikut ini diberikan dua ilustrasi untuk lebih memahami Lema 3.1. Ilustrasi
pertama akan ditunjukkan graf yang super edge magic dan memiliki himpunan
yang terdiri dari bilangan asli yang berurutan.
Misalkan diberikan graf
seperti Gambar 7, banyaknya simpul dan sisi
ialah 5 (
. Karena graf
super edge magic, maka pilih
{
} dan
{
}. Misalkan simpul-simpul pada graf
dipadankan dengan suatu nilai, yaitu:

Maka, dapat diperoleh
{
}
sehingga,
{
}
{
}
merupakan himpunan yang terdiri dari 5 bilangan asli yang berurutan dan dapat
digambarkan sebagai berikut.
1

4

5

3

4
8

6
2

5
7

Gambar 10 Graf
dan memiliki himpunan yang terdiri dari 5 bilangan asli yang
berurutan
Ilustrasi kedua akan ditunjukkan graf yang memiliki himpunan yang
terdiri dari bilangan asli yang berurutan dan memiliki pelabelan super edge
magic.

11
Misalkan diberikan graf
seperti Gambar 7, banyaknya simpul dan sisi
{
} dan
ialah 5 (
. Misalkan juga graf memiliki
{
}
{
}
{
}
{
}
maka, dipilih
sehingga

Dapat diperoleh

dari

sehingga, graf
merupakan graf super edge magic dan dapat dilihat pada
Gambar 9.
Selanjutnya akan dibahas beberapa teorema yang digunakan untuk
membuktikan bahwa graf dengan cycle ganjil memiliki pelabelan super edge
magic dengan menggunakan Lema 3.1.
Sebelum membuktikan Teorema 3.2, berikut diberikan contoh graf cycle
dengan himpunan sisi terdiri dari bilangan asli yang berurutan.
Misalkan diberikan graf cycle ber-order 3 dengan bentuk seperti pada
Gambar 11.
1

2

�1

Gambar 11 Graf cycle ber-order 3
Misalkan simpul-simpul pada graf

dipadankan dengan suatu nilai, yaitu :



Akibatnya, diperoleh :
S {
{
}
{
}



� }

12
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan dan dapat digambarkan
sebagai berikut.
1
3
4

2
5

3

Gambar 12 Graf cycle dan memiliki himpunan yang terdiri dari 3 bilangan
asli yang berurutan
Cara pelabelan tersebut merupakan salah satu contoh cara memperoleh
himpunan sisi yang terdiri dari bilangan asli yang berurutan pada suatu graf. Cara
ini juga digunakan untuk membuktikan Teorema 3.2.
Berikut akan dibuktikan Teorema 3.2 yang menyatakan bahwa graf
memiliki pelabelan super edge magic.
Teorema 3.2
adalah super-edge magic, untuk setiap

.

(Lee dan Lee, 2003)
Bukti
Diketahui graf

memiliki jumlah simpul sebanyak
.
{
} dengan aturan :

sisi sebanyak
Didefinisikan fungsi


Akan dibuktikan bahwa graf

;
;
;

memiliki fungsi bijektif
{
} sedemikian sehingga himpunan
{
merupakan himpunan yang terdiri dari bilangan asli yang berurutan.
Dari definisi fungsi umum simpul, diperoleh fungsi umum sisi, yaitu:



(


)

dan jumlah

;
;
;
;

}

13
Sehingga, dapat diperoleh :


{

Karena
{

(

� }
dan



)





, maka dapat diperoleh :

}

{
{



}
}

{

}

{

}

merupakan himpunan yang berurutan.
Jadi, sesuai Lema 3.1 graf
merupakan super-edge magic karena
memiliki himpunan yang terdiri dari bilangan asli yang berurutan.

Berikut ini diberikan ilustrasi untuk lebih memahami Teorema 3.2. Ada
beberapa ilustrasi yang akan diberikan. Pada dasarnya proses menunjukkan bahwa
graf memiliki himpunan sisi yang terdiri dari bilangan berurutan dengan mencoba
semua kemungkinan dengan mengikuti aturan yang ada.
Ilustrasi pertama, diberikan graf
ber-order 4 dengan bentuk
seperti pada Gambar 13.
1

�1
2

Gambar 13 Graf

�2

14
Diketahui
dan
, maka simpul-simpul pada graf
dapat
dipadankan dengan suatu nilai menurut aturan yang berlaku sebagai berikut :



Akibatnya, diperoleh



{
� }
{
}
{
}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
terdiri dari bilangan asli yang berurutan. Sehingga, graf
dari graf
tersebut memiliki pelabelan super edge magic dan dapat digambarkan sebagai
berikut.
1
4
3
5

2

3

6
7
4

Gambar 14 Graf cycle
dan memiliki himpunan yang terdiri
dari 5 bilangan asli yang berurutan
Ilustrasi kedua, diberikan graf
pada Gambar 15.

ber-order 5 dengan bentuk seperti
1

2

3

�1

4

Gambar 15 Graf
Diketahui
dan
, maka simpul-simpul pada graf
dapat
dipadankan dengan suatu nilai menurut aturan yang berlaku sebagai berikut :



15
Akibatnya, diperoleh

{
� }
{
}
{
}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
terdiri dari bilangan asli yang berurutan. Sehingga, graf
dari graf
tersebut memiliki pelabelan super edge magic dan dapat digambarkan sebagai
berikut.
1
5

4

4
3

6
2
8

7
5

dan memiliki himpunan yang terdiri
Gambar 16 Graf cycle
dari 5 bilangan asli yang berurutan
Sebelum membuktikan Teorema 3.3, berikut diberikan contoh graf planar
yang memiliki himpunan sisi yang terdiri dari bilangan asli yang berurutan.
Misalkan diberikan graf planar ber-order 5 dengan bentuk seperti pada
Gambar 17.
1

1

2

2

1

Gambar 17 Graf planar ber-order 5
Misalkan simpul-simpul pada graf planar ber-order 5 dipadankan dengan suatu
nilai, yaitu :

16

Akibatnya, diperoleh :
S {
{
{

}

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan dan dapat digambarkan
sebagai berikut.
2
3
1

7
5

6
5
4

4

9
8

3

Gambar 18 Graf planar ber-order 5 dan memiliki himpunan yang terdiri
dari 7 bilangan asli yang berurutan
Contoh ini digunakan untuk membuktikan Teorema 3.3.
Berikut akan dibuktikan Teorema 3.3 yang menyatakan bahwa graf planar
memiliki pelabelan super edge magic.
Teorema 3.3
Untuk

adalah super-edge magic.

, graf planar

(Lee dan Lee, 2003)
Bukti
Diketahui graf (
jumlah sisi sebanyak
Didefinisikan fungsi

;
Akan dibuktikan bahwa graf

memiliki jumlah simpul sebanyak
.
{

} dengan aturan :

memiliki fungsi bijektif
{
} sedemikian sehingga himpunan
{
} merupakan himpunan yang terdiri dari bilangan asli yang berurutan.

dan

17
Dari definisi fungsi umum simpul, diperoleh fungsi umum sisi, yaitu:

;
;
Sehingga, dapat diperoleh :
{
Karena
{

, maka dapat diperoleh :

{

}

{

}

}

}
merupakan himpunan yang berurutan.
Jadi, sesuai Lema 3.1 graf planar
edge magic karena memiliki himpunan yang terdiri dari
berurutan.

merupakan superbilangan asli yang

Berikut ini akan diberikan beberapa ilustrasi untuk lebih memahami
Teorema 3.3.
ber-order 6
Ilustrasi pertama, diberikan graf planar
dengan bentuk seperti pada Gambar 19.
1

1

2

2

2

1

Gambar 19 Graf

)

18
Diketahui

, maka simpul-simpul pada graf

dapat

dipadankan dengan suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh :
S {

}

{
{

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
terdiri dari bilangan asli yang berurutan. Sehingga,
dari graf (
graf tersebut adalah graf super edge magic dan dapat digambarkan sebagai
berikut.

2
3
1

8
6

7
6
5

5

4

11
10
9

4
3
dan memiliki himpunan yang terdiri
Gambar 20 Graf
dari 9 bilangan asli yang berurutan

ber-order 7 dengan

Ilustrasi kedua, diberikan graf
bentuk seperti pada Gambar 21.
1

2

1

2

3

2

1

Gambar 21 Graf

19
Diketahui

, maka simpul-simpul pada graf

dapat

dipadankan dengan suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh
S
{

}

{
{

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
terdiri dari bilangan asli yang berurutan. Sehingga,
dari graf
graf tersebut adalah graf super edge magic dan dapat digambarkan sebagai
berikut.
2
3

9

1

7

8
7
6
5
4

6

13
12

5

11
10

4
3

dan memiliki himpunan yang terdiri
Gambar 22 Graf
dari 11 bilangan asli yang berurutan

Sebelum membuktikan Teorema 3.4, berikut diberikan contoh graf jalinan
yang memiliki himpunan sisi yang terdiri dari bilangan asli yang berurutan.
Misalkan diberikan graf jalinan ber-order 6 dengan bentuk seperti pada
Gambar 23.
1

2

3

1

2

3

Gambar 23 Graf jalinan ber-order 6

20
Misalkan simpul-simpul pada graf jalinan ber-order 6 dipadankan dengan suatu
nilai, yaitu :

Akibatnya, diperoleh
S {
{
{

}

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan dan dapat digambarkan
sebagai berikut.
1

4
5

2

6

3

7

4

8

5

9
10

6

Gambar 24 Graf jalinan ber-order 6 dan memiliki himpunan yang terdiri
dari 7 bilangan asli yang berurutan
Contoh ini digunakan untuk membuktikan Teorema 3.4.
Berikut akan dibuktikan Teorema 3.4 yang menyatakan bahwa graf jalinan
memiliki pelabelan super edge magic.
Teorema 3.4
Graf jalinan

adalah super-edge magic untuk setiap

.

(Lee dan Lee, 2003)
Bukti
Diketahui graf
sebanyak
.
Didefinisikan fungsi

memiliki jumlah simpul sebanyak
{

} dengan aturan :

dan jumlah sisi

21
{
}
} merupakan himpunan

Akan dibuktikan bahwa graf B(n) memiliki fungsi bijektif

{
sedemikian sehingga himpunan
yang terdiri dari bilangan asli yang berurutan.
Dari definisi fungsi umum simpul, diperoleh fungsi umum sisi, yaitu:

Sehingga, dapat diperoleh :
{
Karena
{

,
,
}

, maka dapat diperoleh :
}

{
}
{
}
merupakan himpunan yang berurutan.
Jadi, sesuai Lema 3.1 graf
merupakan super-edge magic karena memiliki
himpunan yang terdiri dari bilangan asli yang berurutan.

Berikut ini akan diberikan beberapa ilustrasi untuk lebih memahami
Teorema 3.4.
Ilustrasi pertama, diberikan graf jalinan
ber-order 8 dengan bentuk
seperti pada Gambar 25.
1

2

3

4

1

2

3

4

Gambar 25 Graf

22
Diketahui

, maka simpul-simpul pada graf

dapat dipadankan dengan

suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh :
S {

}

{
{

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf
terdiri dari bilangan asli yang berurutan. Sehingga, graf tersebut
merupakan graf super edge magic dan dapat digambarkan sebagai berikut.

1

4

7

5

2

3

6

4

5

8

12

7

9 11 13
10

6

14

8

Gambar 26 Graf
dan memiliki himpunan yang terdiri
dari 11 bilangan asli yang berurutan
Ilustrasi kedua, diberikan graf
pada Gambar 27.

ber-order 10 dengan bentuk seperti

1

2

3

4

5

1

2

3

4

5

Gambar 27 Graf

23
Diketahui

, maka simpul-simpul pada graf

dapat dipadankan dengan

suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh :
S {
{

}

}

{

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf
terdiri dari bilangan asli yang berurutan. Sehingga, graf tersebut
merupakan graf super edge magic dan dapat digambarkan sebagai berikut.

1

4
5

2

6

3

7

4

8

5

12

7

16

9

9 11 13 15 17
10

6

14

8

18

10

Gambar 28 Graf
dan memiliki himpunan yang terdiri
dari 15 bilangan asli yang berurutan
Sebelum membuktikan Teorema 3.5, berikut diberikan contoh graf uburubur yang memiliki himpunan sisi yang terdiri dari bilangan asli yang berurutan.
Misalkan diberikan graf ubur-ubur ber-order 6 dengan bentuk seperti pada
Gambar 29.

24

1

1

Gambar 29 Graf ubur-ubur ber-order 6
Misalkan simpul-simpul pada graf ubur-ubur ber-order 6 dipadankan dengan
suatu nilai, yaitu :

Akibatnya, diperoleh :
S {
{
{

}

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan dan dapat digambarkan
sebagai berikut.
2
5
3

6
4

7
8
4

1

9
10

5
6

Gambar 30 Graf ubur-ubur ber-order 6 dan memiliki himpunan yang
terdiri dari 7 bilangan asli yang berurutan
Contoh ini digunakan untuk membuktikan Teorema 3.5.
Berikut akan dibuktikan Teorema 3.5 yang menyatakan bahwa graf uburubur memiliki pelabelan super edge magic.

25
Teorema 3.5
Graf ubur-ubur

adalah super-edge magic untuk setiap

.

(Lee dan Lee, 2003)
Bukti
Diketahui graf
sisi sebanyak
Didefinisikan fungsi

memiliki jumlah simpul sebanyak
.
{
} dengan aturan :

dan jumlah

Akan dibuktikan bahwa graf B(n) memiliki fungsi bijektif
{
} sedemikian sehingga himpunan
{
merupakan himpunan yang terdiri dari bilangan asli yang berurutan.
Dari definisi fungsi umum simpul, diperoleh fungsi umum sisi, yaitu:

Sehingga, dapat diperoleh :
{
Karena
{
{

}

,
}

, maka dapat diperoleh :

}

}

merupakan himpunan yang berurutan.
Jadi, sesuai Lema 3.1 graf
merupakan super-edge magic karena
memiliki himpunan yang terdiri dari bilangan asli yang berurutan
.

26
Berikut ini akan diberikan beberapa ilustrasi untuk lebih memahami
Teorema 3.5.
Ilustrasi pertama, diberikan graf ubur-ubur
ber-order 8 dengan
bentuk seperti pada Gambar 31.

2

1

1

2

Gambar 31 Graf ubur-ubur
Diketahui
dan
, maka simpul-simpul pada graf
dapat
dipadankan dengan suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh :
S {
{
{

}

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan. Sehingga, graf uburubur
merupakan graf yang memiliki pelabelan super edge magic dan dapat
digambarkan sebagai berikut.
3
7

8

4
10
5

1

5

9
6

11
12

6
2

7

13
8

Gambar 32 Graf ubur-ubur
dan memiliki himpunan yang terdiri
dari 9 bilangan asli yang berurutan

27
Ilustrasi kedua, diberikan graf ubur-ubur
seperti pada Gambar 33.

2

1

1

ber-order 9 dengan bentuk

2

3

Gambar 33 Graf ubur-ubur
Diketahui
dan
, maka simpul-simpul pada graf
dengan suatu nilai menurut aturan yang berlaku sebagai berikut :

Akibatnya, diperoleh :
S {
{
{

dipadankan

}

}

}
Dari label-label simpul tersebut, dapat ditunjukkan bahwa himpunan sisi
dari graf tersebut terdiri dari bilangan asli yang berurutan. Sehingga, graf uburubur
merupakan graf super edge magic dan dapat digambarkan sebagai
berikut.
3
7

8

4
10
5

1

5

9
6

11
12

6
2

7

13
8

14
9

Gambar 34 Graf ubur-ubur
dan memiliki himpunan yang terdiri
dari 10 bilangan asli yang berurutan

28

SIMPULAN DAN SARAN

Simpulan
Dalam karya ilmiah ini telah dibuktikan bahwa suatu graf adalah graf super
edge magic jika dan hanya jika graf tersebut memiliki himpunan yang
beranggotakan hasil penjumlahan label dua simpul yang adjacent dan terdiri dari
bilangan asli yang berurutan.
,
Dalam karya ilmiah ini juga ditunjukkan bahwa graf cycle
, graf jalinan, dan graf ubur-ubur dengan cycle
graf planar
ganjil memiliki himpunan beranggotakan hasil penjumlahan label dua simpul
yang adjacent dan terdiri dari bilangan asli yang berurutan. Sehingga, graf
tersebut merupakan graf yang memiliki pelabelan super edge magic.

Saran
Karya ilmiah ini membahas pelabelan super edge magic pada beberapa graf
dengan cycle ganjil. Bagi yang berminat membuat karya ilmiah yang berhubungan
dengan pelabelan super edge magic dapat mencari penyelesaian masalah
pelabelan pada graf lainnya.

DAFTAR PUSTAKA

Chartrand G, Oollermann OR. 1993, Applied and Algorithm Graph Theory.
New York (US) : Mc Graw-Hill.
Enomoto H, Llado AS., Nakamigawa T, Ringel G. 1998. Super edge-magic
graphs. SUT J. Math, 34(2), 105-109.
Figueroa-Centeno RM, Ichishima R, Muntaner-Batle FA. 2001. The place of
super edge-magic labelings among other classes of labelings. Discrete
Mathematics, 231(1), 153-168.
Foulds LR. 1992. Graph Theory Applications. New York (US): SpingerVerlag.
Lee SM, Lee ANT. 2003. On super edge-magic graphs with many odd cycles.
Congressus Numerantium, 65-80.

RIWAYAT HIDUP
Penulis dilahirkan di Jakarta pada tanggal 21 Agustus 1992 dari ayah H.
Ikhwan Darmawan dan ibu Hj. Sumiyati. Penulis adalah putri ketiga dari empat
bersaudara. Tahun 2010 penulis lulus dari SMA Negeri 82 Jakarta dan pada tahun
yang sama penulis lulus seleksi masuk Institut Pertanian Bogor (IPB) melalui
jalur Undangan Seleksi Masuk IPB dan diterima di Departemen Matematika,
Fakultas Matematika dan Ilmu Pengetahuan Alam.
Selama mengikuti perkuliahan, penulis aktif mengajar privat mata kuliah
kalkulus TPB di bimbingan belajar dan privat mahasiswa Smart Quantum dan
mengajar privat untuk tingkat SD, SMP, SMA dan D3 IPB di bimbingan belajar
dan privat. Penulis juga aktif sebagai bendahara Departemen Komunikasi dan
Informasi BEM FMIPA pada tahun 2011/2012 dan staf Departemen
Pengembangan Sumber Daya Mahasiswa Gugus Mahasiswa Matematika pada
tahun 2012/2013. Penulis juga pernah aktif di organisasi luar kampus sebagai staf
Departemen Komunikasi dan Informasi Ikatan Himpunan Mahasiswa Matematika
Wilayah 3, yaitu Jawa Barat, Banten, DKI Jakarta dan Kalimantan Barat. Selain
itu, penulis juga aktif dalam berbagai kepanitiaan di antaranya panitia IPB
Mathematics Challenge (IMC) sebagai bendahara Divisi Humas pada tahun 2012,
panitia Sport Competition and Art Festival on MIPA Faculty (SPIRIT) sebagai
anggota Divisi Humas pada tahun 2012, Community Development (COMDEV)
IKAHIMATIKA INDONESIA Wilayah 3 Regional Jabodetabek dan Banten
sebagai Sekretaris Umum pada tahun 2012, dan aktif membantu di berbagai
kepanitiaan lainnya.
Penulis juga aktif mengikuti kepanitiaan berbagai acara selama menjadi
staf organisasi BEM dan GUMATIKA. Dan pernah mengikuti acara Kongres
Nasional Ikatan Himpunan Mahasiswa Matematika Se-Indonesia di UM Metro,
Lampung.