Site characteristics and experimental design for the ecosystem warming studies

Appendix 1 Site characteristics and experimental design for the ecosystem warming studies

Vegetation Ecosystem type Abisko Nature Reserve,

Site

Abbreviation State, country Latitude Longitude Biome

Open birch heath/ Sheffield study

AB_SHEF

Low tundra Woody

woodland Abisko Nature Reserve,

Dwarf shrub e.s.l. 1150 m,

AB1150HI

High tundra Woody

fellfield high heat study

Abisko Nature Reserve,

Dwarf shrub e.s.l. 1150 m, low heat study

AB1150LO

High tundra Woody

fellfield Abisko Nature Reserve,

Dwarf shrub e.s.l. 450 m, high heat study

AB450HI

Low tundra Woody

heath Abisko Nature Reserve,

Dwarf shrub e.s.l. 450 m, low heat study

AB450LO

Low tundra Woody

heath Abisko Nature Reserve,

Dwarf shrub MBL cable study

Low tundra Woody

heath Abisko Nature Reserve,

Dwarf shrub MBL OTC study

Low tundra Woody

heath Buxton Climate Change

Non-woody Grassland Impacts Laboratory

Climate Change

Birch and Experiment

CLIMEX

Norway

58 23’N 8°19’E

Forest

Woody

pine mixture Flakaliden

FLAK Sweden

64 07’N 19°27’E

Forest

Woody

Planted evergreen forest

Minnesota Peatlands, bog, FRFBOGHH MN, USA 47 10’N 92°43’W Low tundra Non-woody Bog peatland high heat study

Minnesota Peatlands, bog, FRFBOGMH MN, USA 47 10’N 92°43’W Low tundra Non-woody Bog peatland medium heat study

Minnesota Peatlands, fen,

46 59’N 92°34’W Low tundra Non-woody Fen peatland high heat study Minnesota Peatlands, fen,

FRFFENHH MN, USA

46 59’N 92°34’W Low tundra Non-woody Fen peatland medium heat study

FRFFENMH MN, USA

Harvard Forest

HARVARD

MA, USA

42 30’N 72°10’W Forest

Woody

Northern hardwood forest

Howland Forest

Spruce-fir forest Huntington Wildlife Forest, HUNT2.5

HIFS

ME, USA

45 10’N 68°48’W Forest

Woody

Northern hardwood 2.5°C study

NY, USA

43 59’N 74°14’W Forest

Woody

forest Huntington Wildlife Forest, HUNT5.0

Northern hardwood 5.0°C study

NY, USA

43 59’N 74°14’W Forest

Woody

forest Huntington Wildlife Forest, HUNT7.5

Northern hardwood 7.5°C study

NY, USA

43 59’N 74°14’W Forest

Woody

forest Niwot Ridge

NIWOT

CO,USA

40 03’N 105°36’W Low tundra Non-woody Alpine dry tundra

Site

Ecosystem type Ny Alesund

Abbreviation State, country Latitude Longitude Biome

Vegetation

High tundra Non-woody Dryas octopetala community Oak Ridge National

NY_AL

Planted deciduous Laboratory

84 21’W Forest

Woody

trees Rio Mayo

Non-woody Grass, shrub steppe Rocky Mountain Biological RMBL

RIO_MAYO Argentina

45 25’S

70 16’W Grassland

Non-woody Subalpine meadow Laboratory Shortgrass Steppe –

CO, USA

38 53’N 107°02’W Grassland

Non-woody Shortgrass steppe day-time warming

SGS-DW

CO, USA

40 49’N 104°46’W Grassland

Shortgrass Steppe –

Non-woody Shortgrass steppe night-time warming

SGS-NW

CO,USA

40 49’N 104°46’W Grassland

Planted evergreen trees

44 33’N 123°16’W Forest

Woody

Toolik Lake – wet sedge

68 38’N 149°34’W Low tundra Non-woody Wet sedge meadow study

TLKSED

AK, USA

Toolik Lake – tussock study TLKTUS

68 38’N 149°34’W Low tundra Non-woody Tussock tundra Toolik Lake – dry heath

AK, USA

68 38’N 149°35’W Low tundra Non-woody Dry heath study

TOOLIKDH AK, USA

Toolik Lake – moist tussock TOOLIKMT AK, USA 68 38’N 149°35’W Low tundra Non-woody Moist tussock tundra study

Wytham Woods

Non-woody Calcareous grassland

Mean annual Mean annual Mean growing Mean growing Average Warming

Reference temperature precipitation season

Replicate Heating

season

growing technology

plots per duration

(°C) (mm)

temperatur)

precipitation season

92 Field chamber 6 Field season Press et al. (1998) –5

61 Field chamber 6 Field season Jonasson et al. (1993) –5

61 Field chamber 6 Field season ” –1

92 Field chamber 6 Field season ” –1

92 Field chamber 6 Field season ” 0 228

4 Field season Hartley et al. (1999) 0 228

Field season ” 8 1292

Field chamber 12

5 Winter only Grime et al. (2000) 5 1400

Lukewille and Wright (1997) 2 590

1 All year

2 Field season Bergh and Linder (1999) 3 634

Bridgham et al. (1999) 3 634

3 All year

3 All year

3 All year

3 All year

Peterjohn et al. (1994) 6 10

6 All year

2 Field season Rustad and Fernandez (1998a) 4 1010

6 Field season McHale et al. (1998) 4 1010

6 Field season ” 4 1010

6 Field season ” –4

Field chamber 3 Field season Welker et al. (1999) –6

371 4 78 76 Field chamber 6 Field season Robinson et al. (1995) 14 1322

Norby et al. (1997) 8 150

Field chamber 3 All year

Field season Sala et al. (1989) 5 750

Field chamber 10

Harte et al. (1995) 9 322

61 Infrared

5 All year

2 Field season Burke and Lauenroth (1993) 9 322

Night warming 4 Field season Alward et al. (1999) 11 1095

Tingey et al. (1996) –9

Field chamber 3 All year

2 Field season Shaver et al. (1998) –9

4 Field season ” –9

71 Field chamber 3 Field season Jones et al. (1998) –9

71 Field chamber 3 Field season Jones et al. (1998) 10 682

5 Winter only Grime et al. (2000)

References

Crill PM, Bartlett KB, Hariss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988) Methane flux from Minnesota peatlands. Global Biogeochemical Cycl 2:371–384

Aber J, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen Edwards NT (1975) Effects of temperature and moisture on saturation in northern forest ecosystems. Bioscience 39:378–386

carbon dioxide evolution in a mixed deciduous forest floor. Aber J, McDowell W, Nadelhoffer K, McGill A, Berntson G,

Soil Sci Soc Am Proc 39:361–365

Kamaka M, McNulty S, Currie W, Rustad L, Fernandez I Emmer IM, Tietema A (1990) Temperature-dependent nitrogen (1998) Nitrogen saturation in forest ecosystems: hypotheses

transformation in acid oak-beach forest litter in the Netherlands. revisited. BioScience 48:921–934

Plant Soil 122:193–196

Alexander MJ (1977) Introduction to soil microbiology. Wiley, Eno CF (1960) Nitrate production in the field by incubating the New York

soil in polyethylene bags. Soil Sci Soc Am J 24:277–279 Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM changes and global nocturnal warming. Science 283:229–231

(1998) Winter and early spring CO 2 flux from tundra Apple ME, Lucash MS, Olszyk DM, Tingey DT (1998) Morpho-

communities of northern Alaska. J Geophys Res 102(D22): genesis of Douglas-fir buds is altered at elevated temperature

but not at elevated CO 2 . Environ Exp Bot 40:159–172 Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS,

DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH,

Nitrogen excess in North American ecosystems: predisposing Hollister R, Jónsdóttir IS, Laine K, Lévesque E, Marion GM,

factors, ecosystem responses, and management strategies. Ecol Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson

Appl 8:706–733

CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner L, Fernandez IJ, Simmons JA, Briggs RD (2000) Indices of forest Walker L, Webber P, Welker JM, Wookey PA (1999) Response

floor nitrogen status along a regional climatic gradient in patterns of tundra plant species to experimental warming: a

Maine, USA. For Ecol Manage (in press) meta-analysis of the International Tundra Experiment. Ecol Gill RA, Jackson RB (2000) Global patterns of root turnover for Monogr 69:491–511

terrestrial ecosystems. New Phytol 147:13–31 Arnqvist FR, Wooster D (1995) Meta-analysis – synthesizing Goncalves JLM, Caryle JC (1994) Modelling the influence of research findings in ecology and evolution. Trends Ecol Evol

moisture and temperature on net nitrogen mineralization in a 10:236–240

forested sandy soil. Soil Biol Biochem 26:1557–1564 BassiriRad H (2000) Kinetics of nutrient uptake by roots: responses Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, to global change. New Phytol 147:155–169

Clarke IP, Askew AP, Corker D, Kielty JP (2000) The Bergh J, Linder S (1999) Effects of soil warming during spring on

response of two contrasting limestone grasslands to simulated photosynthetic recovery in boreal Norway spruce stands.

climate change. Science 289:762–765 Global Change Biol 5:245–253

Gunderson P, Bashkin VN (1994) Nitrogen cycling. In: Moldan B, Bliss LC, Heal OW, Moore JJ (eds) (1981) Tundra ecosystems: a

Cerny J (eds) Biogeochemistry of small catchments. SCOPE comparative analysis. Cambridge University Press, Cambridge

51. Wiley, Chichester

Bonan GB, Van Cleve K (1991) Soil temperature, nitrogen Gurevitch J, Hedges LV (1999) Statistical issues in conducting mineralization, and carbon source-sink relationships in boreal

ecological meta-analyses. Ecology 80:1142–1149 forests. Can J For Res 22:629–639

Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A Boone RD, Naddelhoffer KJ, Canary JD, Kaye JP (1998) Roots

metaanalysis of field experiments on competition. Am Nat exert a strong influence on the temperature sensitivity of soil

respiration. Nature 396:570–572 Gurevitch J, Morrison JA, Hedges LV (2000) The interaction Bridgham SD, Pastor J, Updegraff K, Malterer TJ, Johnson K,

between competition and predation: a meta-analysis of field Harth C, Chen J (1999) Ecosystem control over temperature

experiments. Am Nat 155:435–453

and energy flux in northern peatlands. Ecol Appl 9:1345–1358 Hantschel RE, Kamp T, Beese F (1995) Increasing soil temperature Burke IC, Laurenroth WK (1993) What do LTER results mean?

to study global warming effects on the soil nitrogen cycle in Extrapolating from site to region and decade to century. Ecol

agroecosystems. J Biogeog 22:375–380 Model 67:19–35

Harte J, Shaw MR (1995) Shifting dominance within a montane Callaghan TV, Press MC, Lee JA, Robinson D, Anderson C (1999)

vegetation community: results from a climate-warming experi- Spatial and temporal variability in the responses of Arctic

ment. Science 267:876–880

terrestrial ecosystems to environmental change. Polar Rec 18:1–7 Harte J, Torn M, Chang F, Feifarek B, Kinzig A, Shaw MR, Shen Chapin FS III (1983) Direct and indirect effects of temperature on

K (1995) Global warming and soil microclimate: results from arctic plants. Polar Biol 2:47–52

a meadow warming experiment. Ecol Appl 5:132–150 Chapin FS III, Shaver GR (1985) Arctic. In: Chabot BF, Mooney Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) HA (eds) Physiological ecology of North American plant

Plant performance and soil nitrogen mineralization in response communities. Chapman and Hall, New York, pp 16–40

to simulated climate change in subarctic dwarf shrub tundra. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre

Oikos 86:331–344

JA (1995) Response of arctic tundra to experimental and Hechtel LJ, Juliano SA (1997) Effects of a predator on prey meta- observed changes in climate. Ecology 76:694–711

morphosis: plastic responses by prey or selective mortality? Cohen J (1969) Statistical power analysis for the behaviorial

Ecology 78:838–851

sciences. Academic Press, New York Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Cooper H, Hedges LV (eds) (1994) The handbook of research

Academic Press, London

synthesis. Russell Sage Foundation, New York Hedges LV, Olkin I (2000) Statistical methods for meta-analysis in Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP,

the medical and social sciences. Academic Press, New York Marzano B, Cabido M, Vendramini F, Cerabolini N (1999)

(in press)

Leaf structure and defense control litter decomposition rate Henry GHR, Molau U (1997) Tundra plants and climate change: across species and life forms in regional floras on two continents.

the International Tundra Experiment (ITEX). Global Change New Phytol 143:191–200

Biol 3:1–9

Crill PM (1991) Seasonal patterns of methane uptake and Hobbie SE (1996) Temperature and plant species control over carbon dioxide release by a temperate woodland soil. Global

litter decomposition in Alaskan tundra. Ecol Monogr 66: Biogeochem Cycles 5:319–334

Hobbie SE, Shevtsova A, Chapin FS III (1999) Plant responses to lating field temperatures in high-latitude ecosystems. Global species removal and experimental warming in Alaskan tundra.

Change Biol 3:20–32

Oikos 84:417–434 McHale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a Ineson P, Benham DG, Poskitt J, Harrison AF, Taylor K, Woods C

northern hardwood forest: trace gas fluxes and leaf litter (1998) Effects of climate change on nitrogen dynamics in

decomposition. Can J For Res 28:1365–1372 upland soils. 2. A soil warming study. Global Change Biol Meentemeyer V (1978) Macroclimate and lignin control of litter 4:153–161

decomposition rates. Ecology 59:465–472 Intergovernmental Panel on Climate Change (IPCC) (1996) Molou U, Molgaard P (eds) (1996) ITEX manual, 2nd edn. Danish Climate change 1995: the science of climate change. Houghton

Polar Center, Copenhagen

JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Musselman RC, Fox DG (1991) A review of the role of temperate Maskell K (eds). Cambridge University Press, Cambridge

forests in the global CO 2 balance. J Air Waste Manage Assoc Jamieson N, Barraclough D, Unkovich M, Monaghan R (1998)

Soil N dynamics in a natural calcareous grassland under a Norby RJ, Edwards NT, Riggs JS, Abner CH, Wullschleger SD, changing climate. Biol Fertil Soils 27:267–273

Gunderson CA (1997) Temperature-controlled open-top Jansson PE, Berg B (1985) Temporal variation of litter decompo-

chambers for global change research. Global Change Biol sition in relation to simulated soil climate. Long-term decom-

position in a Scots pine forest. V. Can J Bot 63:1008–1016 Norby RJ, Long TM, Hartz JS, O’Neill EG (2000) Nitrogen Johnson LC, Shaver GR, Giblin AE, Nadelhoffer KJ, Rastetter

resorption in senescing tree leaves in a warmer, CO 2 -enriched ER, Laundre JA, Murray GL (1996) Effects of drainage and

atmosphere. Plant Soil (in press)

temperature on carbon balance of tussock tundra microcosms. Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Oecologia 108:737–748

Grulke N (1993) Recent change of arctic tundra ecosystems Johnson L, Shaver GR, Cades D, Rastetter E, Nadelhoffer KJ,

from a net carbon dioxide sink to a source. Nature 361: Giblin A, Laundre J, Stanley A (2000) Carbon-nutrient inter-

actions control CO 2 exchange in Alaskan wet sedge ecosystems. Olszyk D, Wise C, VanEss E, Tingey D (1998) Elevated temperature Ecology 81:453–469

but not elevated CO 2 affects long-term patterns of stem Jonasson S, Havstrom M, Jensen M, and Callaghan TV (1993) In

diameter and height of Douglas-fir seedlings. Can J For Res situ mineralization of nitrogen and phosphorus of arctic soils

after perturbations simulating climate change. Oecologia 95: Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, 179–186

Lee JA (1994) Growth responses of four dwarf shrubs to Jonasson S, Lee JA, Callaghan TV, Havstrom M, Parsons AN

simulated climate change. J Ecol 82:307–318 (1996) Direct and indirect effects of increasing temperatures Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO, on subarctic ecosystems. Ecol Bull 45:180–191

SCOPEGRAM group members (1995) Impact of climate Jonasson S, Michelsen A, Schmidt IK (1999) Coupling of nutrient

change on grassland production and soil carbon worldwide. cycling and carbon dynamics in the Arctic, integration of soil

Global Change Biol 1:13–22

mircrobial and plant processes. Appl Soil Ecol 11:135–146 Peterjohn WT, Melillo JM, Bowles ST (1993) Soil warming and Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM

trace gas fluxes: experimental design and preliminary flux (1998) Carbon dioxide fluxes in moist and dry arctic tundra

results. Oecologia 93:18–24

during the snow-free season: responses to increases in summer Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles ST, temperature and winter snow accumulation. Arct Alp Res 30:

Aber JD (1994) Responses of trace gas fluxes and N availability 373–380

to experimentally elevated soil temperatures. Ecol Appl 4: Jones MH, Fahnestock JT, Welker JM (1999) Early and late winter

CO 2 efflux from arctic tundra in the Kuparuk River watershed, Pinol J, Alcaniz JP, Roda F (1995) Carbon dioxide efflux and Alaska. Arct Antarct Alp Res 31:187–190

PCO 2 in soils of three Quercus ilex montane forests. Bio- Joslin JD, Wolfe MH (1993) Temperature increase accelerates

geochemistry 30:191–215

nitrate release from high elevation red spruce soils. Can J For Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of Res 23:756–759

tree fine roots to temperature. New Phytol 147:10–115 Karl TR, Knight RW, Baker B (2000) The record breaking global Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) temperature of 1997 and 1998: evidence for an increase in the

Responses of a sub-arctic dwarf shrub community to simulated rate of global warming? Geophys Res Lett 27:719

environmental change. J Ecol 86:315–327 Kennedy AD (1995) Temperature effects of passive greenhouse Raich JW, Potter CS (1995) Global patterns of carbon dioxide apparatus in high-latitude climate change experiments. Funct

emissions from soils. Global Biogeochem Cycl 9:23–36 Ecol 9:340–350

Raich JW, Schlesinger WH (1992) The global carbon dioxide flux Kirschbaum M (1995) The temperature dependence of soil organic

in soil respiration and its relationship to vegetation and matter decomposition, and the effect of global warming on soil

climate. Tellus 44:81–89

organic C storage. Soil Biol Biochem 27:753–760 Rastetter EB, Ryan M, Shaver GR, Melillo JM, Nadelhoffer KJ, Lal R, Kimble J, Levine E, Stewart BA (1995) Soil management

Hobbie JE, Aber JD (1991) A general biogeochemical model and the greenhouse effect. CRC, London

describing the responses of the C and N cycles in terrestrial Lieth H (1975) Modeling the primary productivity of the world.

ecosystems to changes in CO 2 , climate, and N deposition. Tree In: Lieth H, Whittaker RH (eds) Primary productivity of the

Physiol 9:101–126

biosphere. Springer, Berlin Heidelberg New York Rastetter EB, McKane RB, Shaver GR, Nadelhoffer KJ, Giblin Lukewille A, Wright RF (1997) Experimentally increased soil

AE (1997) Analysis of CO 2 , temperature, and moisture effects temperature causes release of nitrogen at a boreal forest catch-

on carbon storage in Alaskan arctic tundra using a general ment in southern Norway. Global Change Biol 3:13–21

ecosystem model. In: Oechel WC, Callaghan T, Gilmanov T, MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature

Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) effects on kinetics of microbial respiration and net nitrogen

Global change and arctic terrestrial ecosystems. Springer, and sulfur mineralization. Soil Sci Soc Am J 59:233–240

Berlin Heidelberg New York, pp 437–451 Malhi SS, McGrill WB, Nyborg N (1990) Nitrate losses in soils: Reich PB, Grigal DF, Aber JD, Gower (1997) Nitrogen mineral- effects of temperature, moisture, and substrate concentration.

ization and productivity in 50 hardwood and conifer stands on Soil Biol Biochem 22:917–927

diverse soils. Ecology 78:335–347

Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Rind D (1999) Complexity and climate. Science 284:105–107 Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, Robinson CH, Wookey PA, Parsons AN, Potter JA, Callaghan TV, Svoboda J, Virginia RA (1997) Open-top designs for manipu-

Lee JA, Press MC, Welker JM (1995) Responses of plant litter Lee JA, Press MC, Welker JM (1995) Responses of plant litter

Clarke IP, Askew AP, Corker D, Kielty JP (2000) Predicting dwarf shrub heath. Oikos 74:503–512

the response of limestone grassland to climate change. Aspects Rochette P, Gregorich EG, Des Jardins RL (1992) Comparison of

Appl Biol 58:329–336

static and dynamic closed chambers for measurement of soil Tingey DT, McVeety BD, Waschmann R, Johnson MG, Phillips respiration under field conditions. Can J Soil Sci 72:605–609

DL, Rygiewicz PT, Olszyk DM (1996) A versatile sun-lit Rosenberg MS, Adams DC, Gurevitch J (1997) Metawin: statistical

controlled-environment facility for studying plant and soil software for meta-analysis with resampling tests. Sinauer

processes. J Environ Qual 25:615–625 Associates, Sunderland, Mass.

Torn M, Harte J (1995) Methane consumption by montane soils: Rustad LE, Fernandez IJ (1998a) Experimental soil warming

Implications for positive and negative feedback with climate

effects on CO 2 and CH 4 flux from a low elevation spruce fir

change. Biogeochemistry 32:53–67

forest soil in Maine, USA. Global Change Biol 4:597–607 Van Cleve K, Oliver LK, Schlentner P, Viereck LA, Dyrness CT Rustad LE, Fernandez IJ (1998b) Soil warming: consequences for

(1983) Productivity and nutrient cycling in taiga forest eco- litter decay in a spruce-fir forest ecosystem in Maine. Soil Sci

systems. Can J For Res 13:747–766 Am J 62:1072–1081

Van Cleve K, Oechel WC, Hom JL (1990) Response of black Rustad LE, Melillo JM, Mitchell MJ, Fernandez IJ, Steudler PA,

spruce (Picea mariana) ecosystems to soil temperature modi- McHale PJ (2000) Effects of soil warming on C and N cycling

fications in interior Alaska. Can J For Res 20:1530–1535 in northern U.S. forest soils. In: In: Mickler R, Birdsey R, Verburg PSJ, Van Loon WKP, Lukewille A (1999) The CLIMEX Hom J (eds) Responses of northern U.S. forests to environ-

soil-heating experiment: soil response after 2 years of treat- mental change. Springer, Berlin Heidelberg New York, pp

ment. Biol Fertil Soils 28:271–276

357–381 Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Sala O, Golluscio R, Laurenroth W, Soriano A (1989) Resource

Schindler DW, Schlesinger WH, Tilman GD (1997) Human partitioning between shrubs and grasses in the Patagonian

alteration of the global nitrogen cycle: causes and consequences. steppe. Oecologia 81:501–505

Ecol Appl 7:737–750

Saleska S, Harte J, Torn M (1999) The effect of experimental Warren-Wilson J (1957) Arctic plant growth. Adv Sci 13:383–388 ecosystem warming on CO 2 fluxes in a montane meadow. Welker JM, Brown KB, Fahnestock JT (1999) CO 2 flux in arctic Global Change Biol 5:125–141

and alpine dry tundra: comparative field responses under Schlenter RE, Van Cleve K (1985) Relationship between CO 2 ambient and experimentally warmed conditions. Arct Antarct

evolution from soil, substrate temperature, and substrate

Alp Res 31:272–277

moisture in four mature forest types in interior Alaska. Can J Welker JM, Fahnestock JT, Jones MH (2000) Annual CO 2 flux For Sci 15:97–106

from dry and moist arctic tundra: field responses to increases

in summer temperature and winter snow depth. Clim Change global temperature changes. Z Naturforsch 37:287–291

Schleser GH (1982) The response of CO 2 evolution from soils to

44:139–150

Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Witkamp M (1966) Decomposition of leaf litter in relation to Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass

environment, microflora, and microbial respiration. Ecology

accumulation and CO 2 flux in three Alaskan wet sedge

47:194–201

tundras: responses to nutrients, temperature, and light. Ecol Wookey PA, Parsons AN, Welker JM, Potter JC, Callaghan TV, Monogr 68:75–99

Lee JA, Press MC (1993) Comparative responses of subarctic Shaver GR, Canadell J, Chapin FS III, Gurevitch J, Harte J, Henry

and high arctic ecosystems to simulated climate change. Oikos G, Ineson I, Jonasson S, Melillo J, Pitelka L, Rustad L (2000)

67:490–502

Global warming and terrestrial ecosystems: a conceptual Wookey PA, Robinson CH, Parsons AN, Welker JM, Press M, framework for analysis. BioScience 50:871–882

Callaghan TV, Lee JA (1995) Environmental constraints on Singh JS, Gupta SR (1977) Plant decomposition and soil respiration

the growth and performance of Dryas octopetala ssp. at a high in terrestrial ecosystems. Bot Rev 43:449–528

arctic polar semi-desert. Oecologia 102:478–489