Koefisien Perpindahan Panas Menyeluruh Faktor Kotoran Fouling Factor

Tabel 2.2 : Bilangan Nusselt untuk aliran laminar berkembang penuh didalam annulus dengan salah satu permukaan pipa isotermal dan permukaan lainnya adiabatik D i D o Nu i Nu o - 3,66 0,05 17,46 4,06 0,10 11,56 4,11 0,25 7,37 4,23 0,50 5,74 4,43 1,00 4,86 4,86 Sumber : Cengel Jika bilangan Nusselt diketahui, koefisien perpindahan panas untuk permukaan pipa bagian dalam dan bagian luar dapat dihitung dengan menggunakan persamaan Nu i = h i D h k 2.15 Nu o = h o D h k 2.16

2.6 Koefisien Perpindahan Panas Menyeluruh

Sebuah alat penukar kalor terdiri dari 2 fluida yang mengalir yang dipisahkan oleh sebuah dinding yang solid. Pertama sekali panas dipindahkan dari fluida panas ke dinding melalui konveksi, kemudian melewati dinding melalui konduksi, dan dari dinding ke fluida dingin lagi melalui konveksi. Efek radiasi apapun biasanya termasuk didalam koefisien perpindahan panas konveksi. Jaringan tahanan panas dihubungkan dengan proses perpindahan panas ini yang terdiri dari dua tahanan panas konveksi dan satu tahanan panas konduksi seperti yang ditunjukkan oleh gambar berikut Gambar 2.20 : Jaringan tahanan panas yang dihungkan dengan alat penukar kalor tabung sepusat Sumber : Cengel Huruf kecil i dan o adalah permukaan dalam dan permukaan luar tabung. Untuk alat penukar kalor tabung sepusat, A i = D i L dan A o = D o L, sehingga tahanan termal dinding tabung adalah R dinding = lnD o D i 2kL 2.17 Gambar 2.21 : Dua luasan area alat penukar kalor untuk dinding tabung yang tipis D i ≈ D o dan A i ≈ A o Sumber : Cengel k adalah konduktivitas termal dinding dan L adalah panjang tabung. Sehingga tahanan termal total menjadi R = R total = R i + R dinding + R o = 1 h i A i + lnD o D i 2kL + 1 h o A o 2.18 Dalam menganalisis alat penukar kalor, sangat diperlukan untuk menggabungkan semua tahanan panas yang terjadi pada fluida panas sampai fluida dingin menjadi sebuah tahanan panas R, dan laju perpindahan panas diantara kedua fluida adalah Q = Δ T R = UA ∆T = U i A i ∆T = U o A o ∆ T 2.19 U adalah koefisien perpindahan panas menyeluruh Wm 2 °C. Rumus diatas menjadi : 1 UA s = 1 U i A i = 1 U o A o = R = 1 h i A i +R dinding + 1 h o A o 2.20 Sebagai catatan bahwa U i A i = U o A o tetapi U i ≠ U o kecuali A i = A o

2.7 Faktor Kotoran Fouling Factor

Penumpukan kotoran pada permukaan alat penukar kalor biasanya mengakibatkan performansi alat penukar kalor semakin menurun seirinng dengan bertambahnya waktu pemakaian sebagai akibat terjadinya. Lapisan kotoran tersebut menimbulkan hambatan tambahan pada proses perpindahan panas dan mengakibatkan penurunan laju perpindahan panas pada alat penukar kalor. Penumpukan kotoran pada alat penukar kalor disebut faktor kotoran R f yang menjadi ukuran dalam tahanan termal. Faktor kotoran adalah nol untuk alat penukar kalor yang baru dan meningkat dengan meningkatnya lama pemakaian sehingga kotoran menempel pada permukaan alat penukar kalor. Faktor kotoran bergantung pada temperatur operasi dan kecepatan fluida, dan sebanding dengan panjang alat penukar kalor. Kotoran akan meningkat dengan meningkatnya temperatur dan menurunnya kecepatan. Persamaan koefisien perpindahan menyeluruh telah diberikan sebelumnya yang berlaku untuk permukaan alat penukar kalor yang bersih. Persamaan sebelumnya perlu dimodifikasi sebagai efek dari kotoran pada permukaan dalam dan luar tabung. Untuk alat penukar kalor tabung cangkang yang tidak memiliki sirip, persamaan sebelumnya menjadi : 1 UA s = 1 U i A i = 1 U o A o = R = 1 h i A i + R f,i A i + lnD o D i 2kL + R f,o A o + 1 h o A o 2.21 A i = D i L dan A o = D o L adalah luas area permukaan dalam dan luar alat penukar kalor. R f,i dan R f,o adalah faktor kotoran permukaan dalam dan luar alat penukar kalor. Tabel 2.3 : Faktor kotoran untuk berbagai fluida [9] Fluid R r , m 2 , o CW Distiled water, sea water, river water, boiler feedwater: Below 50 o C Above 50 o C 0,0001 0,0002 Fuel oil 0,0009 Steam oil free 0,0001 Refrigerants liquid 0,0002 Refrigerants vapor 0,0004 Alcohol vapors 0,0001 Air 0,0004 Sumber : Cengel

2.8 Metode LMTD Evaluasi performansi thermal sebuah alat penukar kalor pada keadaan

Dokumen yang terkait

Analisis dan Simulasi Keefektifan Alat Penukar Kalor Tabung Sepusat Aliran Sejajar Dengan Variasi Kapasitas Aliran

14 119 117

Analisis dan Simulasi Keefektifan Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan dengan Variasi Temperatur Air Panas Masuk Pada Kapasitas Aliran yang Konstan

2 65 102

Uji Eksperimental Optimasi Laju Perpindahan Kalor Dan Penurunan Tekanan Akibat Pengaruh Laju Aliran Udara Pada Alat Penukar Kalor Jenis Radiator Flat Tube

2 38 101

Alat Penukar Kalor Analisa Performance Heat Exchanger Jenis Shell And Tube

41 272 63

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

0 56 132

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

0 1 21

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

0 0 2

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

0 0 4

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

0 0 1

Analisis dan Simulasi Keefektifan Alat Penukar Kalor Tabung Sepusat Aliran Sejajar Dengan Variasi Kapasitas Aliran

0 0 20