Rancang Bangun Kompresor Dan Pipa Kapiler Untuk Mesin Pengering Pakaian Sistem Pompa Kalor Dengan Daya 1PK

(1)

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA

KALOR DENGAN DAYA 1 PK

SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

ZAKARIA BERNANDO NIM : 100 421 051

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA MEDAN


(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN

DAYA 1PK

Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara

Abstrak

Rancang bangun ini bertujuan untuk mengatasi masalah yang dihadapai usaha loundry pada penyediaan mesin untuk pencuci dan pengering yang dapat bekerja cepat. Oleh sebab itu dilakukan perancangan yang bertujuan untuk

menghasilkan suatu unit mesin pengering pakaian portable dengan

menggunankan AC rumah yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikan pada skala kecil dan besar . Perancangan model fisik kompresor dan pipa kapiler pada unit mesin pengering pakaian ini didasarkan pada hasil perhitungan teoritis dan Pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap menjadi batasan masalahnya. Manfaat penelitian ini adalah untuk memenuhi kebutuhan pengeringan pakaian pada sektor rumah tangga, khususnya usaha laundry di Indonesia. Metode yang digunakan untuk mencapai tujuan melalui perhitungan termodinamika dengan refrigerant yang dipakai HCFC-22. Kesimpulan perancangan ini diperoleh Koefisien Performansi (COP) sebesar 5,093 dengan daya kompresor sebesar 1,03 kW dan panjang pipa kapiler 0,0366 meter.

Kata kunci: portable , AC Rumah, refrigerant, HCFC-22, Coefficient of Perfomance (COP).


(11)

COMPRESOR AND CAPILARY PIPE DESIGN FOR CLOTHES DRYER MACHINE HEAT PUMP DRYING WITH FORCE 1 PK

Department of Mechanical Engineering Faculty of Engineering University of Sumatera Utara

ABSTRACK

This design is intended to solve the faced loundry problem efforts on providing for washing machines and dryers that can work quickly . so this design that aims to produce a unit of portable clothes dryer with housing AC (air conditioner) in oriented with eficiency of electrical energy efforts with applicated on small and large scale . Physical design model for compressor and capilary pipe for the unit of clothes dryer machine is based on the results of theoretical calculations and the heat pump operate used to the cycle of vapor compression for the problem limit. The benefits of this research has for solving of drying clothes in the household sector , in particular laundry business in Indonesia . The method used to achieve this is through thermodynamic calculations use with refrigerant HCFC - 22 . Conclusions design fetches a high coefficient of performance is 5.093 with the power of compression is1.03 kw and capillary length is 0.0366 meter.

Keyword: portable , Housing AC, refrigerant, HCFC-22, Coefficient of Perfomance (COP).


(12)

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa, atas

berkat dan kasih-Nya penulis dapat menyelesaikan tugas sarjana ini. Tugas sarjana

ini merupakan syarat dalam memperoleh gelar sarjana di Departemen Teknik

Mesin Universitas Sumatera Utara.

Tugas sarjana ini diambil dari bidang mata kuliah Perpindahan panas

dengan judul “RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER

UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1PK”

Dalam penyelesaian tugas sarjana ini, penulis mendapat banyak bimbingan

dan dukungan dari dosen pembimbing bapak Dr. Eng.Himsar Ambarita, ST, MT

dan teman – teman di Departemen Teknik Mesin Ekstensi Universitas Sumatera

Utara, baik berupa saran dan nasehat serta ilmu pengetahuan.

Dalam kesempatan ini, penulis ingin mengucapkan terima kasih yang

sebesar – besarnya kepada :

1. Kedua orang tua tercinta Bapak R. Pasaribu dan Ibu M. br. Manurung

yang telah berjuang untuk membimbing dan memberi dorongan moril

serta buat semua doa-doanya selama ini kepada penulis.

2. Bapak Dr. Eng.Himsar Ambarita, ST, MT, sebagai dosen pembimbing


(13)

nasehat kepada penulis sepanjang pengerjaan tugas sarjana ini hingga

selesai.

3. Bapak Dr. Ing. Ir. Ikhwansyah Isranuri, sebagai Ketua Departemen Teknik

Mesin Falkutas Teknik Universitas Sumatera Utara.

4. Bapak/Ibu dosen di Departemen Teknik Mesin Falkutas Teknik

Universitas Sumatera Utara yang telah mendidik penulis selama kuliah.

5. Bapak/Ibu staff pegawai yang banyak membantu penulis selama kuliah di

Departemen Teknik Mesin Falkutas Teknik Universitas Sumatera Utara.

Penulis menyadari tugas sarjana ini masih jauh dari sempurna, oleh karena

itu penulis mengharapkan saran dan kritik yang membangun dari pembaca dalam

penyempurnaan tugas sarjana ini. Akhir kata penulis berharap semoga tugas

sarjana ini dapat berguna bagi pembaca. Terima kasih.

Medan, 15 Februari 2014

Penulis,

Zakaria Bernando


(14)

DAFTAR ISI

KATA PENGANTAR ... i

DAFTAR ISI ... iii

DAFTAR TABEL ... vi

DAFTAR GAMBAR ... vii

DAFTAR NOTASI ... ix

BAB I PENDAHULUAN 1.1. Latar Belakang ... 1

1.2. Rumusan Masalah ... 2

1.3. Batasan Masalah ... 2

1.4. Tujuan Penelitian ... 2

1.4.1 Tujuan Umum ... 2

1.4.2 Tujuan Khusus ... 2

1.5. Manfaat Penelitian ... 3

BAB II TINJAUAN PUSTAKA 2.1. Teori Pengeringan ... 4

2.2. Siklus Kompresi Uap ... 7

2.2.1. Proses Kompresi (1 – 2) ... 8


(15)

2.2.4. Proses Evaporasi (4 – 1) ... 10

2.3. Komponen Utama Pompa Kalor Siklus Kompresi Uap ... 12

2.3.1. Kompresor ... 12

2.3.2. Katup Ekspansi ... 21

2.3.3. Refrigerant ... 24

2.4. Hasil Survey Usaha Loundry ... 30

BAB III METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian ... 34

3.2. Bahan dan Alat ... 34

3.2.1. Bahan ... 34

3.2.2. Alat ... 36

3.3. Data penelitian ... 41

3.4. Metode Pelaksanaan Penelitian ... 42

BAB IV PERANCANGAN KOMPONEN MESIN PENDINGIN 4.1. Perhitungan Termodinamika ... 43

4.2. Perhitungan Kompresor ... 46

4.2.1. Perhitungan Kapasitas Kompresor ... 47

4.2.2. Rasio Kompresi ... 47

4.2.3. Efisiensi Kompresi ... 47


(16)

4.2.5. Daya Motor Listrik Penggerak Kompresor ... 48

4.3. Perhitungan Pipa Kapiler ... 51

4.3.1. Perhitungan Panjang Pipa Kapiler ... 52

BAB V KESIMPULAN DAN SARAN

5.1. Kesimpulan ... 58

5.2. Saran ... 59

DAFTAR PUSTAKA


(17)

DAFTAR TABEL

Tabel 2.1 Penggunaan Beberapa Refrigeran ... ... 14

Tabel 2.2 Pedoman Efisiensi Energi untuk Industri di Asia ... …... 15

Tabel 2.3 Pembagian Refrigeran berdasarkan keamanan ... …... 26

Tabel 2.4 Nilai ODP Beberapa refrigeran ... …... 29


(18)

DAFTAR GAMBAR

Gambar 2.1 Siklus Kompresi Uap ... 7

Gambar 2.2 Siklus Refrigerasi Kompresi Uap pada Diagram P-h... 8

Gambar 2.2a Proses Kerja Kompresi ... 8

Gambar 2.2b Proses Kerja Kondensasi ... 9

Gambar 2.2a Proses Kerja Evaporasi ... 11

Gambar 2.3 Pembagian Kompresor ... 12

Gambar 2.4 Bagian – bagian Kompresor Sudu Luncur ... 13

Gambar 2.5 Assembling dari Sliding Vane Compressor ... 17

Gambar 2.6 Bentuk Roller dari Sliding Vane Compressor ... 18

Gambar 2.7 Pipa Kapiler ... 22

Gambar 2.8 Mesin Pengering Speed Queen dengan penambahan LPG ... 30

Gambar 2.9 Mesin Pengering Elektroluk ... 31

Gambar 2.10 Mesin Pengering dan ruang pengering rakitan ... 32

Gambar 2.11 Mesin pengering pakaian gas LPG type standart ... 32

Gambar 2.12 Mesin Pengering Loundry Gas Type TL - 25 ... 33

Gambar 3.1 Pakaian ... 35

Gambar 3.2 Rancangan Mesin Pengering Pompa Kalor ... 36

Gambar 3.3 Aluminium S Type Load Cell ... 37

Gambar 3.4 Rh Meter ... 38

Gambar 3.5 Hot Wire Annemometer ... 39


(19)

Gambar 3.7 Diagram alir proses pelaksanaan penelitian ... 42

Gambar 4.1 Skema rancangan bangun Mesin Pengering Pakaian ... 43

Gambar 4.2 P-h Diagram ... 44

Gambar 4.3 Diagram P-h Kompresor ... 46

Gambar 4.4 Diagram Pipa Kapiler ... 51


(20)

DAFTAR NOTASI

Notasi Arti Satuan

A Luas Permukaan Perpindahan Panas m2

Ta Temperatur air 0C

Tu Temperatur udara 0C

m& Laju aliran massa refrigeran Kg/s

w Laju aliran massa refrigeran persatuan luas Kg/m2.s

Q Laju perpindahan panas kW

ωi Rasio kelembaban udara

Pv,i Tekanan parsial uap air bar

LMTD Beda suhu rata-rata logaritma K

Do Diameter luar pipa mm

Di Diameter dalam pipa mm

t Tebal pipa mm

L Panjang pipa mm

NT Jumlah pipa

ρ Kerapatan udara Kg/m3

Cp Panas spesifik udara kJ/Kg.K

µ Viscositas (kekentalan) Kg/m.s

k Konduktivitas termal W/m.K


(21)

V Kecepatan refrigeran m/s

Re Bilangan Reynold

Nu Bilangan Nusselt

ho Koefisien perpindahan panas luar tube W/m2.K

hi Koefisien perpindahan panas internal W/m2.K

U Koefisien perpindahan panas total W/m2.K

t Tebal mm

L Jarak mm

D Diameter mm

Wc Daya Kompresor Kj/s

Qk Kalor yang dikeluarkan Kondensor kW

Qe Kalor yang dikeluarkan Evaporator kW

COP Coefficient of Performance

v Volume spesifik

Rc Rasio Kompresi

nc Efisiensi Kompresi


(22)

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN

DAYA 1PK

Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara

Abstrak

Rancang bangun ini bertujuan untuk mengatasi masalah yang dihadapai usaha loundry pada penyediaan mesin untuk pencuci dan pengering yang dapat bekerja cepat. Oleh sebab itu dilakukan perancangan yang bertujuan untuk

menghasilkan suatu unit mesin pengering pakaian portable dengan

menggunankan AC rumah yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikan pada skala kecil dan besar . Perancangan model fisik kompresor dan pipa kapiler pada unit mesin pengering pakaian ini didasarkan pada hasil perhitungan teoritis dan Pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap menjadi batasan masalahnya. Manfaat penelitian ini adalah untuk memenuhi kebutuhan pengeringan pakaian pada sektor rumah tangga, khususnya usaha laundry di Indonesia. Metode yang digunakan untuk mencapai tujuan melalui perhitungan termodinamika dengan refrigerant yang dipakai HCFC-22. Kesimpulan perancangan ini diperoleh Koefisien Performansi (COP) sebesar 5,093 dengan daya kompresor sebesar 1,03 kW dan panjang pipa kapiler 0,0366 meter.

Kata kunci: portable , AC Rumah, refrigerant, HCFC-22, Coefficient of Perfomance (COP).


(23)

COMPRESOR AND CAPILARY PIPE DESIGN FOR CLOTHES DRYER MACHINE HEAT PUMP DRYING WITH FORCE 1 PK

Department of Mechanical Engineering Faculty of Engineering University of Sumatera Utara

ABSTRACK

This design is intended to solve the faced loundry problem efforts on providing for washing machines and dryers that can work quickly . so this design that aims to produce a unit of portable clothes dryer with housing AC (air conditioner) in oriented with eficiency of electrical energy efforts with applicated on small and large scale . Physical design model for compressor and capilary pipe for the unit of clothes dryer machine is based on the results of theoretical calculations and the heat pump operate used to the cycle of vapor compression for the problem limit. The benefits of this research has for solving of drying clothes in the household sector , in particular laundry business in Indonesia . The method used to achieve this is through thermodynamic calculations use with refrigerant HCFC - 22 . Conclusions design fetches a high coefficient of performance is 5.093 with the power of compression is1.03 kw and capillary length is 0.0366 meter.

Keyword: portable , Housing AC, refrigerant, HCFC-22, Coefficient of Perfomance (COP).


(24)

BAB I PENDAHULUAN

1.1.Latar Belakang

Mencuci merupakan kebutuhan pokok semua orang. Selama orang masih

pakai baju, bisnis laundry masih tetap akan hidup. Pangsa pasar mulai dari

mahasiswa, kost, rumah tangga, industri, perhotelan, rumah makan,

perkantoran,dan segala bisnis yang berkaitan dengan konveksi. Bisnis laundry

kiloan tak pernah surut. Bisnis ini tumbuh subur, terutama di kawasan perkotaan.

Maklum, banyak masyarakat kota hampir tidak punya waktu buat mencuci

pakaiannya sendiri. Alhasil, jasa laundry semakin dibutuhkan.

Laundry atau jasa cuci pakaian/ kain merupakan salah satu usaha yang

prospektif saat ini, banyak kota-kota kabupaten atau kota kecamatan yang belum

ada usaha laundry ini, baik laundry kiloan atau laundry per item. Kendala yang

dihadapai untuk membuka londry terletap pada penyediaan mesin untuk pencuci

dan pengering yang dapat bekerja cepat. Selain itu harga mesin laundry ini tidak

sama dengan harga mesin cuci biasa untuk skala rumahan, harga mesin laundry

jauh lebih mahal dibandingkan dengan mesin cuci biasa. Merek mesin loudry

yang banyak dicari pengusaha saat ini adalah Elektrolux, Zerowatt dan Modena,

bayangkan saja mesin cuci elektrolux yang biasa saja harganya bisa mencapai


(25)

1. 2 Rumusan Masalah

Dalam penelitian ini terlebih dahulu dilakukan pembuatan model fisik unit

mesin pengering pakaian sistem pompa kalor. Selanjutnya diuji mengeringkan

pakaian basah untuk menyelidiki dan mempelajari parameter-parameter yang

mempengaruhi performansi mesin pengering tersebut.

1. 3 Batasan Masalah

1. Perancangan model fisik kompresor dan pipa kapiler pada unit mesin

pengering pakaian ini didasarkan pada hasil perhitungan teoritis.

2. Pompa kalor yang digunakan beroperasi menggunakan siklus kompresi uap.

3. Hasil uji dan grafik pengujian mesin pengering pakaian dengan daya 1 PK

hanya dilampirkan.

1. 4 Tujuan Penelitian 1. 4 .1 Tujuan Umum

Tujuan umum dari penelitian ini adalah untuk menghasilkan suatu unit

mesin pengering pakaian portable yang berorientasikan pada upaya efisiensi energi listrik yang dapat diaplikan pada skala kecil dan besar.

1. 4. 2 Tujuan Khusus


(26)

1. Untuk mengetahui koefisien Performansi (COP) dari system.

2. Untuk mengetahui perencanaan kompresor dan pipa kapiler untuk mesin

pengering pakaian system pompa kalor dengan daya 1PK.

1. 5 Manfaat Penelitian

Manfaat yang didapat dari hasil penelitian ini adalah

1. Sistem yang sederhana ini secara luas berkontribusi untuk memenuhi

kebutuhan pengeringan pakaian pada sektor rumah tangga, khususnya

usaha laundry di Indonesia.

2. Pemanfaatan konversi energi surya yang menarik dan terarah yang dapat

mengurangi ketergantungan terhadap pemakaian energi berupa bahan bakar

gas yang berlebihan.

3. Sebagai pengembangan dalam bidang energi terbarukan khususnya


(27)

BAB II

TINJAUAN PUSTAKA

2.1. Teori Pengeringan

Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang dipindahkan dari permukaan bahan yang dikeringkan oleh media engering yang biasanya berupa panas.

Pengeringan Buatan

Pengeringan dengan menggunakan alat pengering dimana, suhu, kelembapan udara, kecepatan udara dan waktu dapat diatur dan di awasi.

Keuntungan Pengering Buatan:

ƒ Tidak tergantung cuaca

ƒ Kapasitas pengeringa dapat dipilih sesuai dengan yang diperlukan

ƒ Tidak memerlukan tempat yang luas

ƒ Kondisi pengeringan dapat dikontrol

ƒ Pekerjaan lebih mudah.

Jenis Jenis Pengeringan Buatan Berdasarkan media panasnya,

ƒ Pengeringan adiabatis ; pengeringan dimana panas dibawa ke alat pengering oleh udara panas, fungsin udara memberi panas dan membawa air.

ƒ Pengeringan isotermik; bahan yang dikeringkan berhubungan langsung dengan alat/ plat logam yang panas.

Proses pengeringnan:


(28)

ƒ Dengan cara menurunkan RH dengan mengalirkan udara panas disekeliling bahan

ƒ Proses perpindahan panas; proses pemanasan dan terjadi panas sensible dari medium pemanas ke bahan, dari permukaan bahan kepusat bahan.

ƒ Proses perpindahan massa ; proses pengeringan (penguapan), terjadi panas laten, dari permukaan bahan ke udara

ƒ Panas sensible ; panas yang dibutuhkan/ dilepaskan untuk menaikkan /menurunkan suhu suatu benda

ƒ Panas laten ; panas yang diperlukan untuk mengubah wujud zat dari padat kecair, cair ke gas, dst, tanpa mengubah suhu benda tersebut.

Faktor faktor yang mempengaruhi pengeringan.

Pada pengeringan selalu diinginan kecepatan pengeringan yang maksimal. Oleh karena itu perlu dilakukan usah- usah untuk memercepat pindah panas dan pindah massa ( pindah massa dalam hal ini adalah perpindahan air keluar dari bahan yang dikeringksan dalam proses pengeringan tersebut.

Ada beberapa faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum, yaitu :

(a) Luas permukaan

(b) Suhu

(c) Kecepatan udara

(d) Kelembapan udara

(e) Tekanan atm dan vakum

(f) Waktu.

Dalam rancang mesin ini faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum adalah :


(29)

Suhu

Semakin besar perbedaan suhu ( antara medium pemanas dengan bahan bahan) maka akan semakin cepat proses pindah panas berlangsung sehingga mengakibatkan proses penguapan semaki cepat pula. Atau semkain tinggi suhu udara pengeringan maka aka semakin besar anergi panas yang dibawa ke udara yang akan menyebabkan proses pindahan panas semakin cepat sengingga pindah massa akan berlangsung juga dengan cepat.

ƒ Kecepatan udara

Umumnya udara yang bergerak akan lebih banyak mengambil uap air dari permukaan bahan yang dikeringkan. Udara yang bergerak adalah udara yang mempunyai kecepatan gerak yang tinggi yang berguna untuk mengambil uap air dan menghilangkan uapa air dari permukaan bahan yang dikeringkan, sehingga dapat mencegah terjadinya udara jenuh yang dapat memperlambat penghilangan air.

ƒ Kelembaban Udara (RH)

Semakin lembab udara di dalam ruang pengering dan sekitarnya maka akan semakin lama proses pengerngan berkangsung kering, begitu juga sebaliknya. Karena udara kering dapat mengabsobsi dan menahan uap air. Setiap bahan mempunyai keseimbangan kelembaban nisbi ( RH keseimbangan) masing- maasin, yaitu kelembaban pada suhu tertentu dimana bahan tidak akan kehilangan air ( pindah) ke atmosfir atau tidak akan mengambil uap air dari atmosfir.

Jika RH udara < RH keseimbangan maka bahan masih dapat dikeringkan

Jika RH udara > RH keseimbangan maka bahan malahan akan menarik uap air dari udara.


(30)

Semakin lama waktu (batas tertentu) pengeringan maka akan semakin cepat proses pengeringan selesai. Dalam pengeringan diterapkan konsep HTST ( High Temperature Short Time), short time dapat menekan biaya pengeringan.

2.2 Siklus Kompresi Uap

Sistem kompresi uap merupakan dasar sistem refrigerasi yang terbanyak di gunakan, dengan komponen utama nya adalah kompresor, evaporator, alat

ekspansi (Throttling Device), dan kondensor. Keempat komponen tersebut melakukan proses yang saling berhubungan dan membentuk siklus refrigerasi

kompresi uap.

Gambar 2.1. Siklus Kompresi Uap

Pada diagram P-h, siklus kompresi uap dapat digambarkan pada gambar


(31)

Gambar 2.2. Diagram T-S dan Diagram P-h

Proses yang terjadi pada Siklus Refrigerasi Kompresi Uap adalah sebagai berikut:

2.2.1 Proses Kompresi (1 – 2)

Proses ini berlangsung di kompresor secara isentropik adiabatik. Kondisi

awal refrigeran pada saat masuk di kompresor adalah uap jenuh

bertekanan rendah, setelah di kompresi refrigeran menjadi uap bertekanan

tinggi. Oleh karena proses ini di anggap isentropik, maka temperatur

keluar kompresor pun muningkat. Besarnya kerja kompresi per satuan

massa refrigeran bisa di hitung dengan rumus :

Gambar 2.2a. Proses kerja Kompresi

W = = ...(2.1)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal :5)


(32)

= besarnya kerja kompresi yang di lakukan (kJ/kg)

= entalpi refrigeran saat masuk kompresor (kJ/kg)

= entalpi refrigeran saat keluar kompresor (kJ/kg)

= laju aliran refrigeran pada sistem (kg/s)

Dalam pengujian besarnya daya kompresor untuk melakukan kerja dapat juga ditentukan dengan rumus:

= daya listrik kompresor (Watt)

= tegangan listrik (Volt)

= kuat arus listrik (Ampere)

= 0,6 – 0,8

2.2.2 Proses Kondensasi (2 – 3)

Proses ini berlangsung di kondensor, refrigeran yang bertekanan dan temperatur tinggi keluar dari kompresor membuang kalor sehingga fasanya berubah menjadi cair. Hal ini berarti bahwa di kondensor terjadi penukaran kalor antara refrigeran dengan udara, sehingga panas berpindah dari refrigeran ke udara pendingin dan akhirnya refrigeran mengembun menjadi cair.

Besarnya kalor per satuan massa refrigerant yang di lepaskan di kondensor dinyatakan sebagai:


(33)

...(2.2)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012,hal :5)

Dimana :

= besarnya kalor dilepas di kondensor (kJ/kg)

= entalpi refrigeran saat masuk kondensor (kJ/kg)

= entalpi refrigeran saat keluar kondensor (kJ/kg)

2.2.3 Proses Ekspansi (3 – 4)

Proses ini berlangsung secara isoentalpi, hal ini berarti tidak terjadi

penambahanentalpi tetapi terjadi drop tekanan dan penurunan temperatur. Proses

penurunan tekanan terjadi pada katup ekspansi yang berbentuk pipa kapiler atau

orifice yang berfungsi mengatur laju aliran refrigerant dan menurunkan tekanan. =

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal :5)

Dimana :

h3 = entalpi refrigeran saat keluar kondensor (kJ/kg)

h4 = harga entalpi masuk ke evaporator (kJ/kg) 2.2.4 Proses Evaporasi (4 – 1)

Proses ini berlangsung di evaporator secara isobar isotermal. Refrigerant dalam wujud cair bertekanan rendah menyerap kalor dari lingkungan / media yang

di dinginkan sehingga wujudnya berubah menjadi gas bertekanan rendah.


(34)

Gambar 2.2c. Proses Kerja Evaporasi

...(2.3)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal :6)

Maka :

COP = Wc

Qe

...(2.4)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal :6)

COP diperlukan untuk menyatakan performansi unjuk kerja dari siklus refrigerasi :

Dimana :

= kalor yang di serap di evaporator ( kW )

= efek pendinginan (efek refrigerasi) (kJ/kg)

= harga entalpi ke luar evaporator (kJ/kg)

= harga entalpi masuk ke evaporator (kJ/kg)

Selanjutnya refrigeran kembali masuk ke kompresor dan bersirkulasi kembali, begitu seterusnya sampai kondisi yang diinginkan tercapai.


(35)

2.3 Komponen Utama Pompa Kalor Siklus Kompresi Uap 2.3.1 Kompresor

Pada sistem mesin refrigerasi, kompresor berfungsi seperti jantung. Kompresor berfungsi untuk mensirkulasikan refrigeran dan menaikan tekanan refrigerant agar dapat mengembun di kondensor pada temperatur di atas

temperatur udara sekeliling.(www:Google/Komponen Utama Siklus Kompresi Uap).

Berdasarkan cara kerjanya, kompresor yang biasa dipakai pada sistem

refrigerasi dapat dibagi menjadi:

KOMPRESOR

RECIPROCATING

ROTARY EJEKTOR TURBO

VANE SCROLL ROLLING

PISTON SCREW CENTRIFUGAL AXIAL

Gambar 2. 3 Pembagian Kompresor (Teknik Pendingin & Pengkondisian Udara

,Dr. Eng. Himsar Ambarita, 2012, hal : 46)


(36)

1. Kompresor perpindahan (positive displacement)

Kompresor yang memerangkap refrigeran dalam suatu ruangan yang

terpisah dari saluran masuk dan keluarnya, kemudian dimampatkan. Kompresor

ini dapat dibagi lagi menjadi:

a. Bolak-balik (reciprocating) kompresor torak. b. Putar (rotary)

c. Kompresor sudu luncur (rotary vane atau sliding vane) d. Kompresor ulir (screw)

e. Kompresor gulung (Scroll)

2. Analisa Sliding Vane Compressor

Disebut juga rotary vane compressor atau kompresor sudu luncur. Teridiri

atas sebuah rotor yang dipasang secara eksentris pada slinder yang sedikit lebih

besar daripada rotor. Gambar berikut menunjukan bagian – bagian kompresor

sudu luncur :

Gambar 2. 4 bagian – bagian kompresor sudu luncur (www.google/Bab-8-Kompresor-Rotary1.pdf).


(37)

Baling-baling bergerak maju mundur secara radial dalam slot rotor

mengikuti kontur dinding silinder saat rotor berputar. Sudu didorong oleh gaya

sentrifugal yang timbul saat rotor berputar sehingga selalu rapat dengan dinding

silinder. Untuk menjamin kerapatan antara sudu dengan dinding silinder dipasang

pegas pada slot rotor. Untuk menjaga agar sudu tidak cepat aus, maka biasanya

diujung sudu yang bersinggungan dengan casing digunakan logam lain. Kapasitas

kompresor untuk ukuran rotor dan casing yang sama adalah fungsi jumlah sudu.

Semakin banyak sudunya, makin besar kapasitasnya, tetapi perbandingan

kompresinya lebih rendah dan volume vane lebih besar. (www.google/Bab-8-Kompresor-Rotary1.pdf).

Tabel 2.1 Penggunaan beberapa refrigerant

Refrigeran Jenis Kompresor Keterangan Penggunaan

Amonia

Screw Unit Pembuat es, ruang dingin,

pendingin larutan garam, peti es, pendingin pabrik kimia

Reciprocating

R-11 Sentrifugal Pendingin air sentrifugal

R-12 Sentrifugal

Penyegar udara, refrigerasi pada umumnya, pendingin air sentrifugal ukuran besar, AC mobil

R-12 Reciprocating

Rotary

R-134a Reciprocating AC Mobil

R-134a Screw AC Mobil

R-22 Sentrifugal Penyegar Udara, Refrigerasi pada

umumnya, Pendingin, Beberapa unit refrigerasi, unit temperatur rendah. Pendinginan air sentrifugal

temperature rendah ukuran besar. R-22 Reciporating

R-22 Scroll R-22 Screw

R-500

Torak Refrigerasi pada umumnya,

pendinginan, pendingin air sentrifugal temperatur rendah


(38)

Berikut diberikan beberapa informasi komersial dari kompresor

sentrifugal yang umum dijual dipasaran. Temperature dan tekanan evaporasi yang

biasa menggunakan kompresor sentrifugal adalah -100 0C sampai 100C dan 14

kPa sampai 700 kPa. Sementara tekanan kondensasi bisa mencapai 2000 kPa.

Kecepatan putar motor untuk kompresor sentrifugal adalah 1800 samapai 90.000

rpm dan kapasitas refrigerasi bervariasi antara 300 kW sampai 30.000 kW.

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal

: 48)

Tabel 2. 2 Pedoman Efisiensi Energi untuk Industri di Asia – www.energyefficienc

yasia.org

Item reciprocating Baling-baling

putar Ulir putar Sentrifugal

Efisiensi pada

beban penuh Tinggi Medium-tinggi Tinggi Tinggi

Efisiensi pada beban sebagian Tinggi karena bertahap-tahap staging Buruk dibawah 60% beban penuh Buruk dibawah 60% beban penuh Buruk dibawah 60%beban penuh Efisiensi tanpa beban (daya sama dengan persen bebas penuh) Tinggi (10%-25%) Medium (30%-40%) Tinggi-buruk (25%-60%) Tinggi- medium(20%-30%) Tingkat

kebisingan Bising Tenang

Tenang jika

tertutup Tenang

Ukuran Besar Kompak Kompak Kompak

Penggantian

minyak pelumas Sedang

Rendah-

medium Rendah Rendah

Getaran Tinggi Hampir-tidak

ada

Hamper tidak ada

Hampir tidak ada

Perawatan Banyak bagian

peralatan Sedikit peralatan yang dipakai Sangat sedikit bagian peralatan yang dipakai Sensitif terhadap debu dan udara

Kapasitas Rendah-tinggi Rendah-medium Rendah-tinggi Medium-tinggi

Tekanan Medium- sangat


(39)

- Kecepatan tip Vane (u2), dihitung dengan persamaan:

u2 = ω x r2...(2.5)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal : 49)

dimana ω adalah kecepatan sudut Vane - Kecepatan absolut fluida adalah V2

- Kecepatan relative fluida terhadap Vane adalah Vr,2

- Kecepatan tangensial dari V2 adalahVr,2

- Kecepatan normal dari V2 adalah Vr,2

Dengan mengasumsikan bahwa uap refrigeran masuk Vane secara

tangensial, maka besarnya torsi pada fluida dapat dihitung dengan persamaan:

τ = mr2Vt,2...(2.6)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita,

2012, hal : 49)

sementara, daya terhadap Vane adalah:

W = τ ω = mr2ωVt,2 = mu2Vt,2...(2.7)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita,

2012, hal : 49)

Dari diagram segitiga kecepatan dapat dibuktikan bahwa kecepatan absolut

fluida arah tangensial adalah:

Vt,2 = u2 – Vn,2cotβ = u2 

  

 

2 2 , cot

1

u

vn β


(40)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita,

2012, hal : 49)

Dengan mensubstitusi persamaan (2.7) ke persamaan (2.8) akan didapat

daya yang diberikan kepada blade adalah:

W = mu22 

  

 

2 2 , cot

1

u

vn β

...(2.9)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita,

2012, hal : 49)

Dimana βadalah sudut blade dari Vane dan jika blade dalam posisi radial, nilai β = 90 (cotβ= 0). Daya pada persamaan dapat dihitung dengan menggunakan diagram Ph refrigerant, yaitu perbedaan h2 dan h1. (Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012).

Gambar 2.5. Assembling dari Sliding Vane Compressor(www.google/rotary sliding vane compressor).


(41)

Gambar 2.6. Bentuk Roller dari Sliding Vane Compressor (www.google/rotary sliding vane compressor).

Maka :

V

p

= m

r-22 .

v

1

…..………...…….….………...(2.10)

(Arismunandar, 2002).

Dimana:

Vp = Kapasitas kompresor (m3/s)

mr-22 = laju aliran massa refrigerant R-22

v = volume (m3/kg)

- Rasio Kompresi :

Rc

=

1 2

P P

….. ... (2.11)

(Arismunandar, 2002).

Dimana:

P1= Laju aliran massa ideal gas refrigerant (kg/s)

P2 = Berat jenis dari gas refrigerant yang masuk kompresor (kg/m3)

Rc = Rasio Kompresi


(42)

PM =

m c

C

x P η

η ………..………

………..……(2.12)

(Arismunandar, 2002).

Dimana :

Pc = Tekanan kompresor

ηm = 0,82 (Arismunandar, 2002)

ηc = 0,9

Berikut ini adalah komponen yang terdapat pada Sliding Vane Compressor: (www.Google/Komponen sistem Pendingin)

A. Akumulator

Adalah salah satu alt bantu dalam sistem refrigerasi yang berfungsi untuk menampungatau memisahkanantara cairan refrigerant dan gas refrigerant agar yg masuk kedalam kompresor semuanya berbentuk gas refrigerant. Akumulator biasanya dipasang setelah evaporator dan sebelum kompresor atau pada bagian sisi tekanan rendah pada sistem.

B. Shock Absorber

Adalah untuk meredam getaran dari kompresor pada saat sistem berjalan agar tidak menyebabkan pipa dari bagian suction dan discharger menjadi patah. Alat ini dipasang pipa suction atau discharge. C. Liquid Receiver

Mempunyai fungsi untuk menampung sementara cairan refrigerant yang keluar dari kondensor, agar refrigerant yang mengalir ke katup


(43)

ekspansi semuanya berbentuk cairan. Cairan refrigerant ditampung pada bagian bawah dari alat ini, sedangkan uap refrigerant berada di bagian atas dari alat ini.

E. Selenoid Valve

Alat ini mempunyai fungsi untuk mengalirkan dan menghentikan refrigerant dalam sistem refrigerasi dan tata udara. cara krja alat ini adalah apabila plunyer [inti besi] di aliri arus listrik maka akan menjadi medan magnet sehingga akan menarik plunyer keatas dan menyebabkan katup menjadi terbuka dan aliran refrigerant pun akan mengalir, sedangkan apabila arus listrik diputus maka tidak akan trjadi medan magnet pada plunyer dan dng karena beratnya plunyer tersebut akan turun ke bawah dan menutup aliran refrigerant. Beberapa type dari solenoid valve yaitu :

a. Solenoid dua jalan ~ mempunyai dua sambungan pipa, satu sambungan masuk satu sambungan kluar.

b. Solenoid tiga jalan ~ mempnyai tiga sambungan pipa, satu sambungan masuk dua sambungan kluar.

c. Solenoid empat jalan [reversing valve] ~ banyak digunakan pada heat pump,satu smbungan masuk, tiga smbngan kluar.

E. Filter Dryer

Alat ini mempunyai fungsi untuk menyaring kotoran dari sistem, pada alat ini didalamnya trdapat silica gel. Silica gel inilah yg dapat menyerap kotoran dari sistem. Alat ini dipasang sesudah liquid receiver dan sebelum sight glass

F. Sight Glass

Fungsi ~ melihat keadaan refrigerant di dalam sistem. pada alat ini trdapat dua indikator yaitu kuning dan hijau. kuning mengindikatorkan bahwa sistem trsbut trdapat uap air dan hijau mengindikatorkan bahwa sistem trsbut tidak ada uap air. jika di dalam


(44)

sight glass trdapat buih buih refrigerant maka sistem trsebut kurang refrigerant.(www.Google/Komponen sistem Pendingin)

2. 3. 2 Katup Ekspansi

Komponen utama yang lain untuk mesin refrigerasi adalah katup ekspansi. Katup ekspansi ini dipergunakan untuk menurunkan tekanan dan untuk mengekspansikan secara adiabatik cairan yang bertekan dan bertemperatur tinggi sampai mencapai tingkat tekanan dan temperatur rendah, atau mengekspansikan refrigeran cair dari tekanan kondensasi ke tekanan evaporasi, refrigeran cair diinjeksikan keluar melalui oriffice, refrigeran segera berubah menjadi kabut yang tekanan dan temperaturnya rendah.

Selain itu, katup ekspansi juga sebagai alat kontrol refrigerasi yang berfungsi : 1. Mengatur jumlah refrigeran yang mengalir dari pipa cair menuju evaporator

sesuai dengan laju penguapan pada evaporator.

2. Mempertahankan perbedaan tekanan antara kondensor dan evaporator agar penguapan pada evaporator berlangsung pada tekanan kerjanya.

Pipa Kapiler

Pipa kapiler adalah salah satu alat ekspansi. Alat ekspansi ini mempunyai dua kegunaan yaitu untuk menurunkan tekanan refrigeran cair dan untuk mengatur aliran refrigeran ke evaporator. Cairan refrigeran memasuki pipa kapiler tersebut dan mengalir sehingga tekanannya berkurang akibat dari gesekan dan percepatan refrigeran. Pipa kapiler hampir melayani semua sistem refrigerasi yang berukuran kecil, dan penggunaannya meluas hingga pada kapasitas regrigerasi 10 kw. Pipa kapiler mempunyai ukuran panjang 1 hingga 6 meter, dengan diameter dalam 0,5 sampai 2 mm (Stoecker, 1996). Diameter dan panjang pipa kapiler ditetapkan berdasarkan kapasitas pendinginan, kondisi operasi dan jumlah refrigeran dari mesin refrigerasi yang bersangkutan.


(45)

Konstruksi pipa kapilar sangat sederhana, sehingga jarang terjadi gangguan. Pada waktu kompresor berhenti bekerja, pipa kapiler menghubungkan bagian tekanan tinggi dengan bagian tekanan rendah, sehingga menyamakan tekanannya dan memudahkan start berikutnya.

Gambar 2.7. Pipa Kapiler (Sunyoto,2010)

1. Laju aliran massa refrigeran persatuan luas

W=

A mr22

………

………(2.13)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) Dimana :

w = Laju aliran Massa R-22

A = Luas Penampang (m3)

2. Kecepatan refrigeran pada pipa kapiler di titik 3

V3 = w . v3

-……….………(2.14)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) v3= Volume spesifik cair jenuh (m3/kg)


(46)

3. Bilangan Reynolds

Re = V3.D/µ3. v3

-………..….….…(2.15)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251)

µ3 = Viskositas cair jenuh

D = Diameter dalam pipa kapiler = 2 mm

4. Faktor gesek

f =

0,33/Re0.25………....………..….…(2.16)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251)

mencari harga Fraksi Uap (x) :

a = (v4V -

v-4L)2.

( )

w 2.0,5……….……….…...…(2.17)

b = 1000(h4V- h4L) + v4L(v4V –v4L).

( )

w 2……….………(2.18)

c = 1000(h4c-h1)+

( )

w 2.0,5. V4L2

-     

2

2 3 V

………..…….….……..(2.19)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) maka fraksi uap (x) yang terkandung pada evaporator di titik 4,


(47)

x =

a c a b b

2

. . 4

2

± −

………...……….….….…….2.20)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) Dimana :

h4L = Entalpi untuk cair jenuh (kJ/kg ) h4V = Entalpi untuk uap jenuh ( kJ/kg ) h4c = Entalpi untuk campuran ( kJ/kg) v4L = Volume spesifik cair jenuh ( m3/kg) v4V = Volume spesifik uap jenuh, ( m3/kg)

µ4L= Viskositas cair jenuh (Ns/m2)

µ4V = Viskositas uap jenuh (Ns/m2)

2. 3. 3 Refrigrant

Refrigerant adalah fluida kerja utama pada suatu siklus refrigerasi yang bertugas menyerap panas pada temperatur dan tekanan rendah dan membuang

panas pada temperatur dan tekanan tinggi. Umumnya refrigerant mengalami

perubahan fasa dalam satu siklus.

1. Kecepatan refrigeran pada Evaporator di titik 4

V4 = w . v4

-…………..……….……….……..………(2.21)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) v4= Volume spesifik cair jenuh (m3/kg)


(48)

Re = V3.D/µ4. v4

-….……….……….….…(2.22)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251)

µ3 = Viskositas cair jenuh

D = Diameter dalam pipa kapiler = 2 mm

3. Faktor gesek

f =

0,33/Re0.25……….………....……….….…(2.23)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) 4. Faktor gesek rata-rata untuk tiap ruas

fm=

2 4 3 f f + ……….………..…..………….…. …(2.24)

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker, hal :251) 5. Kecepatan rata-rata refrigeran

Vm =

2 4 3 V V + ………..…..………….….…(2.25 )

(

)

(

4 3

)

. 2

4 3

2v A mV V

V x D L x f P

P m m = −

        − − ……….….…(2.26)


(49)

1. Pengelompokan Refrigrant

Refrigerant dirancang untuk ditempatkan didalam siklus tertutup atau

tidak bercampur dengan udara luar. Tetapi, jika ada kebocoran karena sesuatu hal

yang tidak diinginkan, maka refrigerant akan keluar dari system dan bisa saja

terhirup manusia. Untuk menghindari hal-hal yang tidak diinginkan maka

refrigerant harus dikategorikan aman atau tidak aman. Ada dua faktor yang

digunakan untuk mengklassifikasikan refrigerant berdasarkan keamanan, yaitu

bersifat racun (toxicity) dan bersifat mudah terbakar (flammability).

Berdasarkan toxicity, refrigerants dapat dibagi dua kelas, yaitu kelas A bersifat tidak beracun pada konsentrasi yang ditetapkan dan kelas B jika bersifat

racun. Batas yang digunakan untuk mendefinisikan sifat racun atau tidak adalah

sebagai berikut. Refrigerant dikategorikan tipe A jika pekerja tidak mengalami

gejala keracunan meskipun bekerja lebih dari 8 jam/hari (40 jam/minggu) di

lingkungan yang mengandung konsentrasi refrigerant sama atau kurang dari 400

ppm (part per million by mass). Sementara kategori B adalah sebaliknya.

Berdasarkan flammability, refrigerant dibagi atas 3 kelas, kelas 1, kelas 2, dan kelas 3. Yang disebut kelas 1 jika tidak terbakar jika diuji pada tekanan 1 atm

(101 kPa) temperature 18,3°C. Kelas 2 jika menunjukkan keterbakaran yang

rendah saat konsentrasinya lebih dari 0,1 kg/m3 pada 1 atm 21.1°C atau kalor


(50)

Refrigerant ini akan terbakar jika konsentrasinya kurang dari 0,1 kg

kg/m3 atau kalor pembakarannya lebih dari 19 MJ/kg. Berdasarkan defenisi ini,

sesuai standard 34-1997, refrigerants diklassifikasikan menjadi 6 kategori, yaitu:

(Refrigerasi dan Pengkondisian Udara, Edisi II, W.F. Stoecker ). 1. A1: Sifat racun rendah dan tidak terbakar

2. A2: Sifat racun rendah dan sifat terbakar rendah

3. A3: Sifat racun rendah dan mudah terbakar

4. B1: Sifat racun lebih tinggi dan tidak terbakar

5. B2: Sifat racun lebih tinggi dan sifat terbakar rendah

6. B3: Sifat racun lebih tinggi dan mudah terbakar

Tabel 2. 3. Pembagian Refrigerant berdasarkan keamanan Refrigerant

number Chemical Formula

Safety group

Old New

10 CCl4 2 B1

11 CCl3F 1 A1

12 CCl2F2 1 A1

13 CClF3 1 A1

13B1 CBrF3 1 A1

14 CF4 1 A1

21 CHCl2F 2 B1

22 CHClF2 1 A1

23 CHF3 A1

30 CH2CL2 2 B2

32 CH2F2 A2

40 CH3Cl 2 B2

50 CH4 3a A3

113 CCl2FCClF2 1 A1

114 CClF2CClF2 1 A1

115 CClF2CF3 1 A1


(51)

123 CHCl2CF3 B1

124 CHClFCF3 A1

125 CHF2CF3 A1

134a CF3CH2F A1

142b CClF2CH3 3b A2

143a CF3CH3 A2

152a CHF2CH3 3b A2

170 CH3CH3 3a A3

218 CF3CF2CF3 A1

Sumber, ASHRAE Inc., (2008). ASHRAE Handbook – HVAC Systems and Equipment. SI Edition. Atlanta.

2. Persyaratan Refrigerant

Beberapa persyaratan dari penggunaan refrigerant adalah sebagai berikut:

a. Tekanan Evaporasi dan Tekanan Kondensasi

Tekanan evaporasi refrigerant sebaiknya lebih tinggi dari atmosfer. Hal

ini menjaga agar udara luar tidak masuk ke siklus jika terjadi kebocoran minor.

Tekanan kondensasi refrigerant sebaiknya tidak terlalu tinggi. Tekanan yang

tinggi pada kondensor akan membuat kerja kompressor lebih tinggi dan

kondensor harus dirancang untuk tahan pada tekanan tinggi, hal ini akan

menambah biaya.

b. Sifat ketercampuran dengan pelumas (oil miscibility)

Refrigerant yang baik jika dapat bercampur dengan oli dan membantu

melumasi kompressor. Oli sebaiknya kembali ke compressor dari kondensor,

evaporator, dan part lainnya. Refrigerant yang tidak baik justru melemahkan sifat

pelumas dan membentuk semacam lapisan kerak yang melemahkan laju


(52)

c. Tidak mudah bereaksi (Inertness)

Refrigerant yang bersifat inert tidak bereaksi dengan material lainnya

untuk menghindari korosi, erosi, dan kerusakan lainnya.

d. Mudah dideteksi kebocorannya (Leakage Detection)

Kebocoran refrigerant sebaiknya mudah di deteksi, jika tidak akan

mengurangi performansinya. Umumnya refrigerant tidak berwarna (colorless) dan tidak berbau (odorless). Metode deteksi kebocoran refrigerant:

a. Halide torch, jika udara mengalir di atas permukaan tembaga yang dipanasi dengan api methyl alcohol, uap dari refrigerant akan berdekomposisi dan

mangubah warna api. Lidah api menjadi hijau pada kebocoran kecil, dan

mengecil dan kemerahan pada kebocoran besar.

b. Electronic detector, caranya dengan melepaskan arus pada inonisasi refrigerant yang telah terdekomposisi. Tetapi tidak dapat digunakan untuk jika udara

mengandung zat yang mudah terbakar.

c. Bubble method, campuran sabun yang mudah menggelembung dioleskan pada bagian yang diduga bocor. Jika terjadi gelembung, berarti terjadi kebocoran.

d. ODP, singkatan dari Ozone Depletion Potential, potensi penipisan lapisan ozon. Faktor yang dijadikan pembanding adalah kemampuan CFC-11 (R-11)

merusak lapisan ozon. Jika suatu refrigerant X mempunyai 6 ODP, artinya


(53)

Tabel 2.4 Nilai ODP beberapa Refrigerant

Refrigerant Chemical Formula ODP Value

CFC-11 CCl3F 1.0

CFC-12 CCl2F2 1.0

CFC-13B1 CBrF3 0

CFC-113 CCl2FCClF2 0.8

CFC-114 CClF2CClF2 1.0

CFC-115 CClF2CF4 0.6

CFC/HFC-500 CFC-12(73.8%)/HFC-152a(26.2%) 0.74

CFC/HCFC-502 HCFC-22(48.8%)/CFC-115(51.2%) 0.33

HCFC-22 CHClF2 0.05

HCFC-123 CHCl2CF3 0.02

HCFC-124 CHCClF3 0.02

HCFC-142b CH3CClF2 0.06

HCFC-125 CHF2CF3 0

HFC-134a CF3CH2F 0

HFC-152a CH3CHF2 0

Sumber, ASHRAE Inc., (2008). ASHRAE Handbook – HVAC Systems and Equipment. SI Edition. Atlanta

e. GWP adalah global warming potential, ada dua jenis angka (indeks) yang biasa

digunakan untuk menyatakan potensi peningkatan suhu bumi. Pertama HGWP

(halocarbon global warming potential) yaitu perbandingan potensi pemanasan

global suatu refrigerant dibandingkan dengan R-11. GWP yang menggunakan

CO2 sebagai acuan. Sebagai contoh perhitungan 1 lb R-22 mempunyai efek

pemanasan global yang sama dengan 4100 lb gas CO2 pada 20 tahun pertama


(54)

2. 4 Hasil Survey Usaha Loundry Hasil survey mesin pengering dilapangan:

1. Loundry Cilik

Nama mesin pengerig yang di gunakan adalah Speed Queen

Kapasitas Mesin : arus listrik : 1600 watt / 3.7 A / 50 H

Load size : 10.5 kg

Btu / hour : 20.000

Biaya listrik :± Rp 300.000/ perhari. ( Ditambah gas 16 kg) Keterangan tentang mesin pengering SpeedQueen :

(a) Mesin ini menggunakan aliran listrik dan gas

(b) proses kerja di dalam mesin ini dengan cara berputar, dan baju di keringkan melalui panas api dari bawah mesin.

Gambar 2.8 Mesin Pengering Speed Queen dengan penambahan LPG

2. Loundry Bule

Alamat : Jl. Djamin Ginting No. 2 Medan Nama Mesin : Elektrolux

Gambar 2.9 Mesin Pengering Elektroluk

Kapasitan mesin Pengerin ini: arus listrik : 1600 watt Load size : 5 kg

Biaya listrik : ± Rp 600.000/bulan

Keterangan mesin pengering Elektrolux (a) Mesin ini hanya menggunakan tenaga listrik.


(55)

(b) Letak api mesin ini berada di bagian belakang (bukan dari bawah).

- Kelemahan mesin ini, tidak bisa mengeringkan baju jenis kulit karea bisa meleleh.

3. Loundry Fresh’O

Alamat : Jl. Stela Raya No. 10 B Medan

Kapasitan mesin Pengerin ini: arus listrik : 1800 watt

Load size : Tak Ditentukan

Biaya listrik : ± Rp 800.000/bulan

( Ditambah gas 15 kg)

Mesin pengering ini dirakit sendiri.

Gambar 2.10 Mesin Pengering dan ruang pengering rakitan

4. NAIA Loundry

Nama Mesin : Raja Pengering

Alamat : Jl.Djamin Ginting . Gg Kamboja No. Padang Bulan. Medan

Kapasitan mesin Pengerin ini: arus listrik : 1600 watt

Load size : 5 kg

Biaya listrik : ± Rp 800.000/bulan

Gambar 2.11 Mesin pengering pakaian gas LPG type standart

Dilengkapi : Fungsi :

- 1 pc Remote Control : Jangkauan max 20 meter

- 1 pc Thermostat :Untuk pengaman suhu mesin


(56)

- Variable Speed Blower :Dapat disesuaikan kapasitas

- 1 set slang + Regulator

Harga Mesin : Rp. 3.500.000 Catatan :

Daya menggunakan blower digital 50 watt, untuk mengeringkan pakaian sesuai

kapasitas memerlukan waktu 90 ment, untuk gas LPG 3 kg nonstop 10 jam.

Asumsi kapasitas minimum 40 kg dengan 7 kali proses.

5. Tania Loundry

Mesin Pengering Laundry Gas LPG type TL – 25 Kpasitas 5 – 25 Kg Kapasitan mesin Pengerin ini: arus listrik : 1600 watt

Load size : 5 kg

Biaya listrik : ± Rp 600.000/bulan

( Ditambah gas 15 kg)

Alamat : Jl. Karya Bakti No. 103

Pandangan depan. Pandangan belakang.

Gambar 2.12 Mesin Pengering Laundry Gas Type TL – 25 Catatan :

Mesin pengering ini saat disuervey sudah rusak total akibat pemakain yang


(57)

BAB III

METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian

Penelitian dilakukan di laboratorium Teknik pendingin Departemen

Teknik Mesin Universitas Sumatera Utara dan direncanakan dilaksanakan selama

9 bulan.

Tabel 3.1 Jadwal pelaksanaan penelitian

No

. Uraian Kegiatan

Tahun 2013 – 2014

Mei Jun Ju

l Ag

u

Sep Okt No p

Des Jan

1. Studi literatur

2. Penyusunan proposal

3. Survey Loundry 4. Asembling Alat

5. Pengujian alat dan pengumpulan data

6.

Analisis data dan Penulisan laporan Skripsi

7. Seminar 8. Perbaikan 9. Ujian Sidang


(58)

3.2 Bahan dan Alat 3.2.1 Bahan.

1. Pakaian

Bahan yang menjadi objek pengeringan pada penelitian ini adalah

pakaian. Pakaian yang akan dikeringkan merupakan pakaian yang

umum dipakai oleh masyarakat sehari-hari yang antara lain terbuat dari

cotton, linen, wool, dan denim (bahan jeans).

a. Cotton, merupakan bahan yang sering digunakan untuk pakain T-Shirt atau kaos.

b. Linen, merupakan bahan yang sering digunakan untuk pakaian kemeja.

c. Wool

d. Denim, merupakan bahan yang sering digunakan untuk bahan/pakaian jeans


(59)

2. Pompa Kalor (Heat Pump)

Pompa kalor dirancang untuk mengeringkan pakaian. Gambar 3.2

menunjukkan rancangan sistem pompa kalor.Pompa Kalor terdiri dari

Kompresor, Kondensor, Evaporator, katup ekspansi dan ruang

Pengering.

Gambar 3.2 Rancangan Mesin Pengering Pompa Kalor

3.2.2 Alat

Peralatan yang digunakan untuk mengukur variabel-variabel penelitian,

antara lain:

1. Load Cell

Load Cell digunakan untuk mengukur berat produk yang akan dikeringkan


(60)

adalah untuk mengetahui pengurangan berat material selama proses

pengeringan. Jenis Load Cell yang digunukan adalah Aluminium S Type

Load Cell.

Gambar 3.3 Aluminium S Type Load Cell.( www./Google/Gambar/ Loadcell)

Spesifikasi:

Product size: 52 x 50 x 10 mm Technical Parameter

- Rate load : 10 kg

- Rate ourput : 1.0± 0.1mv/v - Zero balance : ± 0.04 mv/v - Temp. Effect on Sensitivity : ± 0.03%/10 oC - Temp. Effect on Zero. : ± 0.03%/10oC - Nonlinearity Erro : ± 0.03% - Hysteresis Erro : ± 0.03% - Repeatability Erro : ± 0.03%

- Creep : ± 0.03%/20min


(61)

- Output resistance : 350± 5Ω - Excitation voltage : 10V - Insulation resistance : ≥ 2000MΩ 2. Rh (Relative Humidity) Meter

Merupakan alat ukur suhu dan kelembaban udara. Jenis Rh meter yang

digunakan adalah EL-USB-2-LCD (High Accuracy Humidity, Temperature and Dew Point Data Logger with LCD).

Gambar 3.4 Rh Meter (www.google/gambar/RH Meter) Spesifikasi:

Relative Humidity:

- Measurement range (%) : 0 – 100 - Repeatability (short term) (%RH) : ±0.1 - Accuracy (overall error) (%RH) : ±2.0* ±4 - Internal resolution (%RH) : 0.5 - Long term stability (%RH/yr) : 0.5 Temperature

- Measurement range (°C /°F) : -35/-31 - +80/+176 - Repeatability(°C/°F) : ±0.1/±0.2


(62)

- Accuracy (overall error) (°C /°F) : ±0.3/±0.6 - ±1.5/±3 - Internal resolution (°C /°F) : 0.5/1

Dew Point

- Accuracy (overall error) (°C /°F) : ±1.1 /±2**

Logging rate : every 10s every 12hr

Operating temperature range*** (°C/°F) : -35/-31 - +80/+176) 3. Annemometer

Digunakan untuk mengukur kecepatan aliran udara yang mengalir didalam

suatu aliran. Jenis Annemometer yang digunakan adalah Hot Wire Annemometer.

Gambar 3.5 Hot Wire Annemometer (www.google/Gambar/Anemometer/.) Spesifikasi:

Measuring Range of Temperature : -10oC to 45oC Wind Speed Measuring Range : 0.3 to 30 m/s Accuracy of temperature : ±2 C

Accuracy of Wind speed : ±3%±0.1dgts

Wind Speed Unit Selection : M/s,Ft/min,Knots, Km/hr,Mph


(63)

Data hold function : 500 4. Pressure Gauge

Digunakan untuk mengukur tekanan refrigran yang masuk kompresor,

keluar kompresor dan juga masuk ke evaporator.

Gambar 3.6 Pressure gauge (www.google/gambar/pressure gauge/.) Spesifikasi dari alat pengukur tekanan refrigerasi:

Sambungan: 1/8 "NPT

Kisaran tekanan: -30 ", psi Hg-0-500 atau -30" Hg-0-250 psi


(64)

3. 3 Data Penelitian

Adapun data yang direncakana akan dikumpulkan dan selanjutnya dilakukan

analisis dalam penelitian ini antara lain adalah sebagai berikut :

1. Massa Pakaian (M)

Massa dari pakaian di ukur pada saat keadaan kering (Mk) dan pada saat

keadaan basah (Mb).

2. Waktu pengeringan (t)

Waktu pengeringan yang dibutuhkan untuk mengingkan pakaian yaitu pada

saat basah sampai pada saat keadaan kering (berat basah sampai berat kering).

3. Temperatur (T)

Temperatur yang di ukur adalah temperatur udara pada saat masuk ke

evaporator (T1), keluar evaporator (T2), ruang pengeringan (T3) dan keluar

ruang pengeringan (T4).

4. Kelembaban udara (Rh)

Kelembaban udara yang diukur pada titik saat masuk ke evaporator (Rh1),

keluar evaporator (Rh2), ruang pengeringan (Rh3) dan kelur ruang

pengeringan (Rh4).

5. Kecepatan aliran udara (V)

Udara yang mengalir didalam saluran aliran di ukur kecepatannya.

6. Tekanan (P)

Refrigeran yang masuk ke dalam kompresor (P1), ke luar kompresor (P2) dan


(65)

Mulai

Studi Literatur

Usulan Perancangan

Tahap Persiapan:

1.Persiapan Mesin Pengering

(pompa kalor)

2.Pengujian Mesin Pengering

Pengumpulan data:

‐ Daya Kompresor (Kj/s) ‐ Temperatur (oC)

‐ Panjang Pipa Kapiler (m2) ‐ Tekanan Refrigerant(N/m2) ‐ Laju Aliran massa (Kg/s)

Kesimpulan/Laporan

Selesai

Tidak

Ya

Pengolahan dan Analisis Data

Ya Perancangan/ Pembuatan Alat

Tidak


(66)

Gambar 3.7 Diagram alir proses pelaksanaan penelitian.

BAB IV

PERANCANGAN KOMPONEN MESIN PENDINGIN

4. 1 Perhitungan termodinamika

Dari pengujian mesin AC yang dipakai didapat data sebagai :

Data Perencanaan awal :

- Tekanan Kerja Kondensor (PK ) = 2,3 Mpa - Tekanan Kerja Evaporator (Pe ) = 0,76 Mpa - Daya Kompresor (Wc ) = 1 Hp = 746 Watt - Temperatur Kondensor (Tk) = 57,47 0C - Temperatur Evaporator (Te) = 14 0C


(67)

Dari data hasil pengujian maka dapat dianalisa kondisi kerja mesin tersebut

dengan menggunakan diagram Mollier, seperti terlihat pada gambar berikut ini :

Gambar 4.2 P-h Diagram

Kondisi tiap titik pada 22 kondisi kerja mesin AC Samsung.

Titik 1: T1 =14 oC , P = 0,76698 MPa = 110,24 Psi h1 = 409, 60 kJ/kg

S1 = 1,7306 kj/kg.K

Titik 2’: P = 333,623 Psi = 2,3 MPa (Dari spesifikasi Mesin AC) h2' = 417,19 kJ/kg , T2’ = 57,47 0C

S2’ = 1,6730

Titik 2 : h2 = 436,230,19 kJ/Kg, S2 = 1,7306 kj/kg.K

Titik 3: h3 = 273,891 kJ/kg, P = 2,3 Mpa T3 = 49,7 0C

Titik 4: T4= T1 dan P1= P4 h4= h3 (disenthalphy)


(68)

ƒ

Laju aliran massa refrigeran

Wc = 1 Hp = 746 watt = 0,746 Kj/s

Wc = (h2 - h1)

...(2.1)

0,746 kJ/s =

.

m(436,230 kJ/s – 409 kJ/kg) = 0.0280 Kg/s

Kalor yang dikeluarkan oleh kondensor QK = (h3 - h2

-)………...(2.2) QK = 0,0280 (273,891 – 436,230)

Qk = 4,545 kW

Dampak refrigrasi Qe = (h1 - h4

-)………...(2.3) Qe = 0,0280 x (409,60 – 273,891)

Qe = 3,799 kW

ƒ COP (Coefficient Of Performance)

COP diperlukan untuk menyatakan performansi unjuk kerja dari siklus refrigerasi

COP =

Wc Qe


(69)

P2 = P3

P1 = P4

=

746 , 0

799 , 3

= 5,093

4.2 Perhitungan kompresor

Dari hasil pengambilan data keadaan di kompresor dapat dilihat pada diagram P-h

seperti tercantum dibawah ini.

Gambar 4.3 Diagram P-h Kompresor

Dari gambar diatas didapat :

Titik 1: T1 = 14oC dan P = 0,76 Mpa h1 = 409,60 kJ/kg

v1 = 0,03079 m3/kg

Titik 2: T2 = 57.47 oC dan P = 2,3 Mpa h2 = 436,2301 kJ/kg

v2 = 0,00958 m3/kg

h3 = h4

1

2 3

4


(70)

Dasar-dasar perencanaan kebutuhan daya kompresor

− Masa refrigeran yang bersirkulasi (mr-22) = 0,0280 kg/s − Temperatur buang kompresor (T3) = 57,47 0C − Temperatur hisap kompresor (T2) = 14 0C

− Tekanan hisap kompresor (P1) = 0,76 Mpa

− Tekanan keluar kondesor (P2) = 2,3 MPa

− Daya kompresor teoritis(N) = 0,746 kW

4.2.1. Perhitungan kapasitas kompresor Vp = mr-22 .

v1…..………...………..…………...(2.5)

= 0,0280 x 0,03079

= 0,00086212 m3/s

4.2.2. Rasio Kompresi Rc

=

1 2

P P

…..………...………...…….(2.6)

= 76 , 0

3 , 2

= 3,002

4.2.3. Efisiensi kompresi (ηc)

Gas yang ada di dalam kompresor, dikompresikan dan mengalami hambaatan,

terutama pada waktu melalui katup ekspansi dan katup buang . Oleh karena itu,


(71)

gas di dalam pipa isap. Selain itu, tekanan gas keluar kompresor sedikit lebih

tinggi dari pada tekanan gas di dalam pipa buang .

(

)

com r c h h x m ω

η = −22 2 − 1 = 0,99

4.2.4. Efisiensi mekanik (ηm)

Pada kompresor selalu terjadi gesekan antara bagian yang bergerak,

misalnya antara torak dan bagian silinder, antara poros dan bantalan serta

gesekan-gesekan lainnya. Oleh karena itu, diperlukan daya tambahan untuk

mengatasi gesekan tersebut diatas. Dari grafik efisiensi mekanik dari kompresor

didapat efisiensi mekanik sebesar η = 0,82 (Arismunandar, 2002). 4.2.5. Daya motor listrik penggerak kompersor

Pm = m c C x P η η …..………...………...………..……….(2.7) = 82 , 0 9 , 0 746 , 0 x = 1,0108 kW

Pm = Daya teoritis

Namun sebaiknya dipergunakan daya motor penggerak kompresor 2-10%

lebih daripada N’,untuk mengatasi kenaikan beban karena terjadinya perubahan

kondisi operasi, dan supaya memberikan momen putar yang tinggi pada waktu


(72)

Jadi daya yang dipakai adalah (1,01 x 2%) + 1,0108 = 1,03 kW.

Dimana βadalah sudut Vane dan jika Vane dalam posisi radial, nilai β = 90 (cotβ= 0). Daya pada persamaan yang dirumuskan pada persamaan (12) dapat dihitung dengan menggunakan diagram Ph refrigerant, yaitu perbedaan h2 dan h1. Diketahui : SKU dengan refrigeran R-22,

Jika diasumsikan refrigeran masuk kompresor pada kondisi kering pada tekanan

saturasi dan kompresi isentropik dan uap refrigeran masuk impeler secara axial

dengan Vane radial,

T1 = 14oC, h1 = 409,60 kJ/Kg

T2 = 57.47 oC, h2 = 273,891 kJ/kg

N = 1800 Rpm, β =90K

(

cotβ =0

)

Vn = V2 Sin β,

Maka daya refrigeran pada masing- masing tingkat adalah :

(

h2 h1

)

m

W =

= (409,60 – 273,891)

= 135,709 kJ/Kg


(73)

   

  − =

u Cot V u

m

W n 90

1

2

...(2.9)

135,709 = u2

(

1−0

)

u = 11,649 m/s

Jari-jari Vane dengan menggunakan persamaan kecepatan angular :

r

u

...(2.5)

11,649 = 60

1800 2πx

r

r = 0,061 m

= 6,18 cm

Maka Diameter Vane adalah :

D = 2r = 2 x 6,18 = 12,36 cm


(74)

P2 = P3

P1 = P4

4.3 Perhitungan Pipa kapiler

Gambar 4.4 Diagram P-h Pipa Kapiler

Pada perancangan ini penulis memilih katup ekspansi tipe pipa kapiler dengan

spesifikasi sebagai berikut :

Tekanan dan temperatur masuk pipa kapiler = 1,93 Mpa dan 49,7 oC Tekanan dan temperatur keluar pipa evaporator = 0,76 Mpa dan 14oC Diameter dalam pipa kapiler = 2 mm

Bahan pipa kapiler = tembaga Laju masa refrigeran = 0,0280 kg/s

1 4

3

2

h1 h2


(75)

Gambar 4.5 Panjang Ruas Pipa Kapiler

4.3.1 Perhitungan panjang pipa kapiler ƒ Untuk titik 3

Kondisi pada titik 3 yaitu pada saat refrigeran masuk pipa kapiler pada saat

temperatur refrigeran 49,7 oC

Tekanan, P3= 280 psi = 1930 kPa

Entakpi untuk cair jenuh, h3= 273,891 kJ/kg

Volume spesifik cair jenuh, v3= 0.00104 m3/kg (tabel saturasi R-22)

Viskositas cair jenuh, µ3= 0,0001657 Ns/m2 1. Laju aliran massa refrigeran persatuan luas

w =

4 : ) ) 002 , 0 ( 14 , 3 (

0280 , 0

2

x …..…….………....……….…...……….(2.8)

= 8917,197 kg/m2.s

2. Kecepatan refrigeran V3 =w .

v-3…..………....….………..….………….……...(2.9)

=8917,197 x 0,00104 =9,2730 m/dt


(76)

Re = V3.D/µ3. v -3…..………...…………...………...….(2.10) = 00104 , 0 000165 , 0 002 , 0 273 , 9 x x = 107808,857

4. Faktor gesek

f3 =

0,33/Re0.25…..………...……….……….(2.11)

= 25 . 0 857 , 107808 33 , 0 = 0,0182

ƒ Untuk titik 4

Temperatur refrigeran, T4 = 140C Tekanan, P4 = 0,76 Mpa

Dari tabel saturasi untuk R-22 Diperoleh data sebagai berikut : Entalpi untuk cair jenuh, h4L = h3 = 273,891 kJ/kg

Entalpi untuk uap jenuh, h4V = 417,191 kJ/kg Entalpi untuk campuran, h4c = 193,2 kJ/kg Volume spesifik cair jenuh, v4L= 0,00104 m3/kg Volume spesifik uap jenuh, v4V= 0,00965 m3/kg Viskositas cair jenuh , µ4L= 0,0002144 Ns/m2 Viskositas uap jenuh , µ4V= 0,0000132 Ns/m2


(77)

a = (v4V - v4L)2.

( )

w 2.0,5…..………...……….……..(2.12) = (0,00965 – 0,00104)2 x 8917,1972 x 0,5

= 2947,358

b = 1000(h4V- h4L) + v4L(v4V –v4L).

( )

w 2…..………...……...….(2.13)

= 1000(417,191 – 273,891)+ 0,00104 (0,00965 – 0,00104) x 8917,1972

= 144012,021

c = 1000(h4c-h1)+

( )

w 2.0,5. V4L2-       2 2 3 V …..……….…………...…….(2.14)

= 1000 x (193,2 – 216,74) + 8917,1972 x 0,5 x 0,001042-       2 273 , 9 2

= - 23539,99

maka fraksi uap (x) yang terkandung pada titik 4,

x = a c a b b 2 . . 4 2 ± − …..……...……….………....(2.15) = 008 , 57151 2 ) 99 , 23539 ( 358 , 2947 ( 4 021 , 144012 021 , 144012 2 x x − − + − = 0,008

Dari persamaan diatas maka didapat :

h4 = 273,891 kJ/kg v4 = 0,00965 m3/kg µ4 =0,000214 Ns/m2


(78)

suku berikut sekarang dapat dihitung

1. Kecepatan refrigeran pada titik 4

V4 =w/A . v4……...…………...……....…….(2.16)

= 8917,197 x 0,00123

= 10,989 m/dt

2. Bilangan Reynolds pada titik 4

Re4 = V4.D/µ4. v

-4……...……….…...……....…..….(2.17)

=

00104 , 0 000214 ,

0

002 , 0 989 , 10

x x

= 98382,749

3. faktor gesek

f4 =

0,33/Re0.25……...……….…...……...……....(2.18)

= 0.25

749 , 98382

33 , 0

= 0,0186


(79)

fm= 2 4 3 f f + ……...………...……....…...….(2.19) = 2 0186 , 0 0182 , 0 +

= 0,0184

5. Kecepatan rata-rata refrigeran Vm =

2 4 3 V V + ……...……….…...……...…….(2.20) = 2 989 , 10 2730 , 9 +

= 10,131 m/s

Dengan menggunakan persamaan dibawah ini maka didapat ∆L

(

)

(

4 3

)

. 2

4 3

2v A mV V

V x D L x f P

P m m = −

        − − ….…...……...…….(2. 21)

(

)

(

)

0,002 0,0280

(

10,989 9,2730

)

00965 , 0 2 2732 , 9 002 , 0 0188 , 0 760 1930 2 − =       x x L x L

∆ = 0,0366 m

pipa kapiler yang dibutuhkan untuk menurunkan tekanan yang dimaksud adalah 0,0366 Penerusan ruas-ruas selanjutnya kondisi pada titik 2 yang baru saja dihitung adalah kondisi masuk ke ruas berikutnya, dan terus berlanjut sampai pada suhu 14 0C. Panjang komulatif meter.


(80)

BAB V

KESIMPULAN DAN SARAN 5.1 Kesimpulan

Berdasarkan analisa data dan pembahasan dapat diambil kesimpulan sebagai berikut:

1. Kompresor yang digunakan pada mesin pengering pakaian system pompa kalor ini adalah Rotary Vane Compressor atau kompresor sudu luncur. Dengan Spesifikasi mesin :

- Tekanan Kerja Kondensor (PK ) = 2,3 Mpa - Tekanan Kerja Evaporator (Pe ) = 0,76 Mpa - Daya Kompresor (Wc ) = 1 Hp = 746 Watt

- Temperatur Kondensor (Tk) = 57,47 0C - Temperatur Evaporator (Te) = 14 0C

Diperoleh unjuk kerja dari siklus refrigerasi adalah sebesar 5,093.

Koefisien prestasi yang tinggi sangat diharapkan karena hal itu menunjukkan bahwa sejumlah kerja tertentu refrigerasi hanya memerlukan sejumlah kecil kerja dan proses pengering.

3. Dari perhitungan termodinamika yang berdasarkan atas spesifikasi mesin diperoleh Daya motor listrik penggerak kompresor sebesar 1,03 kW dengan efisiensi kompresi sebesar 0,99.

4. Diperoleh fraksi uap sebesar 0.008, dengan kecepatan refrigerant yang mengalir pada pipa kapiler sebesar 10,989 m/dt. Dengan faktor gesek sebesar 0,0186 dimana diperoleh panjang pipa kapiler sebesar 0,0366 meter.


(81)

. 5.2. Saran

Berdasarkan penelitian yang telah dilakukan, penulis menyarankan beberapa hal berikut:

1. Perlu dilakukan perancangan ulang mesin pengering ini dengan mengganti ducting pada mesin yang telah dirancang, untuk mendapatkan tekanan udara yang mengalir lebih cepat.

2. Perancangan mesin pengering pakaian yang telah dibuat memerlukan sedikit ruang agar udara luar dapat mengalir kedalam untuk menjaga suhu pengeringan tetap stabil .


(82)

DAFTAR PUSTAKA

1. Cengel, A., Yunus, Boles, A., Michael, Thermodynamics An engineering Approach, Third Edition, WCB/ McGraw-Hill, United States of America, 1989.

2. M.J. Moran dan H.N Shapiro, Fundamental of Engineering Thermodynamics, Edisi 5, John Wiley & Sons Inc, 2006.

3. S.K. Wang, Handbook of Air Conditioning and Refrigerant, Edisi 2, McGraw-Hill, 2000.

4. ASHARAE, ASHRAE Handbook 1997, Fundamentals, Atlanta, GA, 1998.

5. Kulshrestha, S, K, Termodinamika Terpakai, Teknik Uap dan Panas, Terjemahan Budiardjo, I Made Kartika D., Budiarso, Penerbit Universitas Indonesia (UI-Press), Jakarta, 1989.

6. Wilbert F.Stoecker, Jerold W.Jones, Supratman Hara, Refrigerasi dan Pengkondisian Udara, Penerbit Erlangga, Jakarta, 1989.

7. J. P. Holman, Perpindahan Kalor, Edisi Enam, Penerbit Erlangga, Jakarta, 1986.

8. S.K. Wang, Handbook of Air Conditioning and Refrigeration,Edisi 2, McGraw-Hill, 2000

9. www./pengaruh laju pelepasan kalor pada kompresor terhadap karakteristik mesin pendingin system system absorbs/.com

10. www.Goole.com/prinsip kerja mesin pendingin.docs/.com


(83)

DAFTAR LAMPIRAN I

Tabel Hasil Pengujian 1 (speed 1) 1pc kaos oblong

Ja m Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Aru s (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2)

T1 (oC)

T2 (oC )

T3 (oC )

113 338 5,6 23,5 22,0 8,3 58,

0 53,

5

200 5,1

113 242 6,3 26,0 24,3 11,1

1 62, 0 58, 0 200 5,7

113 173 6,5 28,0 25,0 11,1

1 62, 5 59, 0 200 6,0

113 157 6,5 28,0 25,0 11,1

1 62, 5 59, 0 200 4,9

Tabel Hasil Pengujian 2 (speed 2) 1pc kaos oblong

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2)

T1 (oC)

T2 (oC )

T3 (oC )

12:1 4

125 336 5,6 23,0 21,0 7,7 55,

0 54, 0 200 4,8 12:4 4

125 250 5,7 20,8 22,3 11,1

1 62, 0 58, 0 200 4,6 13:1 4

125 178 6,2 20,4 23,0 11,1

1 62, 0 58, 0 200 4,6 13:4 4

125 166 6,2 20,9 26,0 10,5

5 62, 0 59, 0 200 4,7

Tabel Hasil Pengujian 3 (speed 3) 1pc kaos oblong

Jam Mass a Pakai an Kerin g Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC )


(84)

(gr) 14:5

8

125 336 5,2 19,0 18,0 6,6

6 52, 0 50, 0 200 4,8 15:2 8

125 251 6,0 23,0 21,5 10 60,

0 54, 0 200 4,8 15:5 8

125 177 6,1 22,5 21,0 5,5

5 60, 0 55, 5 200 5,0 16:2 8

125 154 6,1 22,6 21,0 5,5

5 60, 0 55, 0 200 5,0

Tabel Hasil Pengujian 4 (speed 1) 1pc Kemeja

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC )

10:3 2

80 196 2,0 10,9 14,0 4,4

4 42, 0 40, 0 200 4,0 11:0 2

80 147 5,7 20,7 21,0 9,4

4 61, 0 58, 0 200 5,0 11:3 2

80 124 6,0 25,0 24,0 10 62,

0 60, 0 200 5,9 12:1 2

80 119 6,0 25,0 24,0 10 62,

0 60,

0

200 5,9

Tabel Hasil Pengujian 5 (speed 2) 1pc Kemeja

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC )

12:4 0

80 186 5,8 20,4 20,0 3,8

8 59, 0 52, 0 200 4,3 13:1 0

80 106 5,8 20,4 21,0 4,4

4 60, 0 55, 0 200 4,3


(85)

Tabel Hasil Pengujian 6 (speed 3) 1pc Kemeja

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC )

13:5 3

80 186 5,7 20,0 18,0 7,2

2 51, 0 50, 0 200 4,3 14:2 3

80 127 5,7 20,2 18,0 9,4

4 59, 0 52, 0 200 4,3 14:5 3

80 115 5,8 20,3 19,0 9,4

4 59, 0 53, 0 200 4,5 14:5 8

80 115 5,8 20,3 19,0 9,4

4 59, 0 53, 0 200 4,5

Tabel Hasil Pengujian 7 (speed 1) 1pc Celana Jeans

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2)

T1 (oC)

T2 (oC )

T3 (oC )

11:3 0

329 760 2,0 10,9 14,0 10,0 41,

0 40, 0 200 3,9 12:0 0

329 648 5,8 20,9 23,0 9,44 61,

0 60, 0 200 5,2 12:3 0

329 636 6,2 25,2 24,1 10,5

5 66, 0 61, 0 200 5,9 13:0 0

329 556 6,3 25,2 24,9 10,5

5 66, 0 62, 0 200 6,0 13:3 0

329 474 6,3 25,2 24,9 10,5

5 66, 0 62, 0 200 6,0 13:3 8

329 464 6,3 25,2 24,9 10,5

5 66, 0 62, 0 200 6,0

Tabel Hasil Pengujian 8 (speed 2) 1pc Celana Jeans


(86)

a Pakai an Kerin g (gr) a Pakai an Basah (gr) 22 an (Volt) at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC)

T2 (o C) T3 (o C) 13:5 5

329 760 5,7 20,3 20,0 4,7 58 53 200 4,9

14:3 6

329 662 5,9 24,0 22,0 10 61 53 200 5,0

14:5 6

329 600 6,2 24,0 22,0 10,5

5

62 58 200 5,2

15:2 4

329 521 6,2 24,5 23,0 11,1

1

63 58 200 5,4

15:5 4

329 449 6,2 24,5 23,0 10,5

5

62 60 200 5,4

16:2 4

329 409 6,1 24,5 23,0 10,5

5

62 59 200 5,1

16:5 4

329 398 6,1 24,5 23,0 10,5

5

62 59 200 5,0

Tabel Hasil Pengujian 9 (speed 1) 1pc Celana Jeans

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC)

T2 (o C) T3 (o C) 13:1 5

329 780 5,9 28 22,1 9,44 61 59 200 5,0

13:4 5

329 679 6,2 25 25,0 10,5

5

66 62 200 6,0

14:1 5

329 611 6,4 28 25,0 11,1

1

68 62 200 6,1

14:4 5

329 521 6,4 28 27,0 13,3

3

68 64 200 6,1

15:1 5

329 455 6,4 28 25,0 12,2

2

68 64 200 6,0

15:4 5

329 420 6,4 28 25,0 12,2

2

68 62 200 6,0

Tabel Hasil Pengujian 10 (speed 3) 1pc Celana Jeans


(87)

a Pakai an Kerin g (gr) a Pakai an Basah (gr) R-22 an (Volt) at Aru s (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC )

10:3 4

329 780 2,7 19,5 18 7,7 7

41 39 200 3,9

11:0 4

329 697 5,9 22,0 20 10 59 54 200 5,0

11:3 4

329 610 6,0 22,5 21 10 51 55 200 5,0

12:0 4

329 518 6,1 23,0 21 10 60 55 200 5,0

12:3 4

329 452 6,1 23,0 21 10 60 55 200 5,0

13:0 4

329 422 6,1 23,0 21 10 60 55 200 5,0

Tabel Hasil Pengujian 11 (speed 1) 1pc kaos oblong,Kemeja,

Celana Jeans

Jam Mass a Pakai an Kerin g (gr) Mass a Pakai an Basah (gr)

Tekanan R-22 Temperatur

R-22 Tegang an (Volt) Ku at Ar us (A) P1 (kg/c m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC)

T2 (o C) T3 (o C) 13:2 0

641 1810 3,0 17,0 16,0 6,1 49 46 200 4,0

13:5 0

641 1519 5,9 24,8 23,2 10 60 56 200 5,5

14:2 0

641 1164 6,4 25,3 25,0 11,6

6

63 59 200 6,0

14:5 0

641 1044 6,4 25,3 25,0 11,1

1

68 62 200 6,0

15:2 0

641 974 6,4 25,4 25,0 12,2

2

66 62 200 6,0

Tabel Hasil Pengujian 12 (speed 2) 1pc kaos oblong,1 pc Kemeja,

1 pc Celana Jeans

Jam Mass a

Mass a

Tekanan R-22 Temperatur

R-22

Tegang an

Ku at


(88)

Pakai an Kerin g (gr) Pakai an Basah (gr) P1 (kg/c

m2)

P2 (kg/c

m2)

P3 (kg/c

m2) T1 (oC

T2 (oC )

T3 (oC ) (Volt) Aru s (A) 16:0 3

641 1758 5,5 21,5 20 8,8 8

59 53 200 5

16:2 7

641 1366 5,9 24,0 21 8,8 8

60 55 200 5

16:5 7

641 1170 5,9 23,5 23 10 61 58 200 5

17:2 3

641 1000 6,1 28,0 22 10 61 59 200 5

17:5 3

641 857 6,1 23,5 22 10 61 58 200 5

18:2 3


(89)

Grafik Hasil Pengujian I RH Meter Masukan Evaporator

Grafik Hasil Pengujian II RH Meter Masukan Evaporator

T (0C) Humidity (%rh)


(90)

Grafik Hasil Pengujian III RH Meter Masukan Evaporator

T (0C) Humidity(%rh

)


(91)

Grafik Hasil Pengujian IV RH Meter Masukan Evaporator

Grafik Hasil Pengujian V RH Meter Masukan Evaporator T (0C)

Humidity (%rh)

Waktu

T(0C) Humidity (%rh)


(92)

Grafik Hasil Pengujian VI RH Meter Masukan Evaporator

Grafik Hasil Pengujian VII RH Meter Masukan Evaporator

T (0C) Humidity


(93)

Grafik Hasil Pengujian VIII RH Meter Masukan Evaporator

T (0C) Humidity (%rh)

Waktu (s)

T (0C)

Humidity (%rh)


(94)

Grafik Hasil Pengujian I RH Meter Pada Keluaran Evaporator

Grafik Hasil Pengujian II RH Meter Pada Keluaran Evaporator

T (0C) Humidity


(95)

Grafik Hasil Pengujian III RH Meter Pada Keluaran Evaporator

T (0C) Humidity (%rh)

Waktu(s)

T (0C) Humidity

(%rh)


(96)

Grafik Hasil Pengujian IV RH Meter Pada Keluaran Evaporator

Grafik Hasil Pengujian V RH Meter Pada Keluaran Evaporator

T (0C) Humidity (%rh)

Waktu(s

T (0C) Humidity


(97)

Grafik Hasil Pengujian VI RH Meter Pada Keluaran Evaporator

Grafik Hasil Pengujian VII RH Meter Pada Keluaran Evaporator T (0C)

Humidity (%rh)


(98)

Grafik Hasil Pengujian VIII RH Meter Pada Keluaran Evaporator T (0C)

Humidity (%rh)

Waktu(s)

T (0C) Humidity


(99)

Grafik Hasil Pengujian I RH - Meter Pada Ruang Pengering


(100)

(1)

Grafik Hasil Pengujian VIII RH Meter Pada Keluaran Evaporator

T (0C)

Humidity (%rh)

Waktu(s)

T (0C) Humidity


(2)

Grafik Hasil Pengujian I RH - Meter Pada Ruang Pengering

Grafik Hasil Pengujian II RH-Meter Pada Ruang Pengering


(3)

(4)

Grafik Hasil Pengujian IV RH- Meter Pada Ruang Pengering

Grafik Hasil Pengujian V RH- Meter Pada Ruang Pengering


(5)

Grafik Hasil Pengujian VI RH -Meter Pada Ruang Pengering


(6)

Grafik Hasil Pengujian VIII RH - Meter Pada Ruang Pengering