Inverse Laplace Transform 199

3.4 Inverse Laplace Transform 199

Table 3.1 One-Sided Laplace Transforms

Function of Time

Function of s, ROC

1. δ( t)

1, whole s-plane

2. u(t)

s , Re[s] > 0

3. r(t)

s 2 , Re[s] > 0

4. e −at u(t), a > 0

1 s+a , Re[s] > −a

5. cos( 0 t)u(t)

s 2 + 2 0 , Re[s] > 0

6. sin( 0 t)u(t)

s 2 + 2 0 , Re[s] > 0

7. e −at cos( 0 t)u(t), a > 0

s+a

( s+a) 2 + 2 0 , Re[s] > −a

8. e −at sin( 0 t)u(t), a > 0

( s+a) 2 + 2 0 , Re[s] > −a

9. 2A e −at cos( 0 t + θ)u(t), a > 0

A∠θ

s+a−j 0 + A∠−θ s+a+j 0 , Re[s] > −a

10. ( 1 N−1)! t N−1 u(t)

1 s N N an integer, Re[s] > 0

11. 1 t N−1 e −at u(t)

( N−1)!

( s+a) N N an integer, Re[s] > −a

12. ( 2A N−1)! t N−1 e −at cos( 0 t + θ)u(t)

A∠θ

( s+a−j 0 ) N + A∠−θ ( s+a+j 0 ) N , Re[s] > −a

Table 3.2 Basic Properties of One-Sided Laplace Transforms Causal functions and constants α f (t), βg(t)

α F(s), βG(s)

Linearity

α f (t) + βg(t)

α F(s) + βG(s)

Time shifting

f (t − α)

e −αs F(s)

Frequency shifting

e α t f (t)

F(s − α)

Multiplication by t

t f (t)

− dF(s)

sF(s) − f (0−)

Second derivative 2 d f (t) 2 s 2 ( dt 1) F(s) − sf (0−) − f ( 0) Integral R t

Expansion/contraction

f (αt) α 6= 0

|α| F α s

Initial value

f (0+) = lim s→∞ sF(s)

Final value

lim t→∞ f (t) = lim s→0 sF(s)

Simple Real Poles

If X(s) is a proper rational function

N(s)

N(s)

X(s) = D(s) = Q

k ( s−p k )

C H A P T E R 3: The Laplace Transform

where the {p k } are simple real poles of X(s), its partial fraction expansion and its inverse are given by

X X(s) = p ⇔ x(t) = A

k e k t u(t)

k s−p k

where the expansion coefficients are computed as

A k = X(s)(s − p k ) s=p k

According to Laplace transform tables the time function corresponding to A k /( s−p k ) is A k e p k t u(t), thus the form of the inverse x(t). To find the coefficients of the expansion, say A j , we multiply both sides of the Equation (3.22) by the corresponding denominator (s − p j ) so that

X A k ( s−p j ) X(s)(s − p j ) =A j +

s−p k

k6=j

If we let s = p j , or s − p j = 0, in the above expression, all the terms in the sum will be zero and we find that

A j = X(s)(s − p j ) s=p j

■ Example 3.14

Consider the proper rational function

3s + 5

3s + 5

X(s) =

s 2 + 3s + 2

( s + 1)(s + 2)

Find its causal inverse.

Solution

The partial fraction expansion is

X(s) =

s+1

s+2

Given that the two poles are real, the expected signal x(t) will be a superposition of two decaying exponentials, with damping factors −1 and −2, or

x(t) = [A 1 e −t +A 2 e −t ]u(t)

where as indicated above,

3s + 5

A 1 = X(s)(s + 1)| s=−1 =

| s+2 s=−1 =2