Teori Inferensi Statistik Pendahuluan

Jurnal Konvergensi Vol. 4, No. 1, April, 2014 Algoritma Penentuan Ukuran Sampel Eksak Untuk Distribusi … Dian Eka Wijayanti 27 ALGORITMA PENENTUAN UKURAN SAMPEL EKSAK UNTUK DISTRIBUSI NORMAL, DISTRIBUSI POISSON DAN DUA DISTRIBUSI BINOMIAL DALAM MODEL KELUARGA EKSPONENSIAL Dian Eka Wijayanti 1 Program Studi Matematika Universitas Ahmad Dahlan dianmath.uad.ac.id Abstrak Ketika akan melakukan suatu eksperimen dengan menggunakan pendekatan klasik ataupun pendekatan Bayesian, informasi tentang ukuran sampel yang tepat sangatlah penting. Penentuan ukuran sampel ini selain tergantung pada parameter yang diselidiki juga berkaitan dengan biaya yang dibutuhkan untuk survey data. Penentuan ukuran sampel yang tepat akan memberikan kesimpulan dan keputusan yang baik dengan biaya minimal. Tujuan dari penulisan ini adalah membahas masalah penentuan besarnya ukuran sampel untuk distribusi-distribusi dalam model keluarga eksponensial yaitu distribusi Normal, distribusi Poisson dan dua distribusi Binomial dengan menggunakan negatif log normed likelihood . Kata kunci : distribusi Normal, distribusi Poisson dan dua distribusi Binomial, fungsi likelihood, generalized likelihood ratio, ukuran sampel eksak

1. Pendahuluan

1.1 Teori Inferensi Statistik

Teori inferensi statistik merupakan teori yang berkaitan dengan penarikan inferensi mengenai populasi yang didasarkan pada data sampel. Inferensi dapat dilakukan dengan dua pendekatan yaitu pendekatan klasik frekuentif dan pendekatan Bayesian. Dalam pendekatan klasik, inferensi didasarkan sepenuhnya pada informasi yang diperoleh melalui data sampel yang diambil dari populasi , sedangkan dalam pendekatan Bayesian, selain didasarkan seperti pada pendekatan klasik, inferensi juga dilakukan berdasarkan pada parameter populasi yang timbul dari sumber investigasi statistik yang lain. Informasi dari investigasi awal ini dikenal sebagai informasi prior. Inferensi statistik dapat dibagi kedalam dua bagian yang besar yaitu estimasi penaksiran dan pengujian hipotesa. Teori estimasi ini cukup menarik karena biasanya parameter populasi tidak diketahui, sehingga inferensi yang dilakukan terhadap parameter populasi tersebut dilakukan dengan menggunakan informasi sampel. Penaksiran parameter populasi yang tidak diketahui dibedakan menjadi dua pendekatan, yaitu pendekatan klasik dan pendekatan teori keputusan. Dalam pendekatan klasik, metode-metode yang sering digunakan untuk menaksir parameter Jurnal Konvergensi Vol. 4, No. 1, April, 2014 Algoritma Penentuan Ukuran Sampel Eksak Untuk Distribusi … Dian Eka Wijayanti 28 populasi diantaranya adalah metode moment dan metode maksimum likelihood. Persoalan dalam penaksiran parameter populasi adalah menentukan estimator terbaik, dimana dalam statistik klasik kriteria kebaikan suatu estimator diketahui dengan menyelidiki sifat ketakbiasan, asas kecukupan, variansi minimum dan sebagainya. Dalam pendekatan teori keputusan, inferensi didasarkan pada kombinasi informasi sampel dan aspek lain yang relevan untuk mendapatkan keputusan yang terbaik. Salah satu aspek yang dianggap relevan tersebut adalah pengetahuan tentang konsekuensi yang mungkin timbul dari keputusan yang diambil. Pengetahuan ini sering diukur dalam bentuk fungsi kerugian yang mungkin untuk setiap keputusan. Fungsi resiko didefinisikan sebagai harga harapan dari fungsi kerugian. Kriteria kebaikan dari suatu estimator, salah satunya dilihat dari besarnya resiko estimator tersebut. Salah satu konsep yang ditawarkan dalam pendekatan teori keputusan ini adalah memperoleh keputusan dengan resiko minimal. Penggunaan konsep ukuran sampel tetap tidak mungkin digunakan karena adanya parameter-parameter pengganggu. Karenanya untuk memperoleh keputusan yang ditawarkan adalah prosedur keputusan sekuensial. Prosedur keputusan ini mempunyai dua komponen, yang pertama adalah rencana sampling dan kedua aturan keputusan. Karena itulah maka ukuran sampel yang akan diambil merupakan variabel random. Sebelum melakukan eksperimen dengan menggunakan pendekatan klasik atau pendekatan Bayesian, dibutuhkan ukuran sampel yang tepat dan penentuan ukuran sampel tersebut biasanya berhubungan dengan kondisi tertentu dalam menentukan sebuah parameter. Penentuan ukuran sampel secara langsung berhubungan dengan biaya survey serta memiliki pengaruh yang sangat besar pada kesimpulan dan keputusan tentang parameter yang akan diperoleh. Dalam tulisan ini dibahas masalah penentuan ukuran sampel yang diambil untuk distribusi Normal, distribusi Poisson dan dua distribusi Binomial yang merupakan keluarga eksponensial dengan menggunakan negatif log normed likelihood masing- masing model karena statistik cukup untuk model-model dalam keluarga eksponensial adalah Maksimum Likelihood Estimation.

1.2 Maksimum Likelihood Estimation MLE