Quantitative Analysis for Management Linear Programming Models:.

(1)

Quantitative Analysis

for Management

Linear Programming

Models:


(2)

Linear Programming

Problem

1. Tujuan adalah maximize or minimize

variabel dependen dari beberapa kuantitas

variabel independen (fungsi tujuan).

2. Batasan-batasan yang diperlukan guna

mencapai tujuan.

Tujuan dan Batasan dinyatakan dalam

persamaan linear.


(3)

Basic Assumptions of Linear

Programming

Certainty

Proportionality

Additivity

Divisibility


(4)

Flair Furniture Company

Data -

Table 7.1

Hours Required to Produce One Unit

Department

X

1

Tables

X

2

Chairs

Available

Hours This

Week

Carpentry

Painting/Varnishing

4

2

3

1

240

100


(5)

Flair Furniture Company

Data -

Table 7.1

Constraints:

Maximize:

Objective:

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

2

1

5

7

X

+

X

)

(carpentry

240

3

4

X

1

+

X

2

STEP 1:


(6)

Flair Furniture Company

Feasible Region

120

100

80

60

40

20

0

Number

of

Chai

rs

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

Feasible

Region


(7)

Flair Furniture Company

Isoprofit Lines

Numb

er

of

Chai

rs

120

100

80

60

40

20

0

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

7

X

1

+ 5

X

2

= 210

7

X

1

+ 5

X

2

= 420


(8)

Flair Furniture Company

Optimal Solution

Number

of

Chairs

120

100

80

60

40

20

0

20

40

60

80

100

Number of Tables

Painting/Varnishing

Carpentry

Solution

(

X

1

= 30,

X

2

= 40)

Corner Points

1

2

3


(9)

Test Corner Point Solutions

Point 1) (0,0) => 7(0) + 5(0) = $0

Point 2) (0,100) => 7(0) + 5(80) = $400

Point 3) (30,40) => 7(30) + 5(40) = $410


(10)

Solve Equations Simultaneously

4X1 + 3X2 <= 240

2X1 + 1X2 <= 100

X1 = 60 - 3/4 X2 X1 = 50 - 1/2 X2

60 - 3/4 X2 = 50 - 1/2 X2

60 - 50 = 3/4 X2 - 1/2 X2

10 = 1/4 X2

40 = X2;

so, 4X1 + 3(40) = 240

4X1 = 240 - 120

X1 = 30

To get X1 & X2 values for Point 3:


(11)

Special Cases in LP

Infeasibility

Unbounded Solutions

Redundancy

Degeneracy


(12)

A Problem with No Feasible

Solution

X

2

X

1

8

6

4

2

0

2

4

6

8

Region Satisfying

3rd Constraint


(13)

A Solution Region That is

Unbounded to the Right

X

2

X

1

15

10

5

0

5 10 15

Feasible Region

X

1

>

5

X

2

< 10


(14)

A Problem with a

Redundant Constraint

X

2

X

1

30

25

20

15

10

5

0

5

10

15

20

25

30

Feasible

Region

2

X

1

+

X

2

< 30

X

1

< 25

X

1

+

X

2

< 20

Redundant

Constraint


(15)

An Example of Alternate

Optimal Solutions

8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

8

Optimal Solution Consists of All

Combinations of

X

1

and

X

2

Along

the

AB

Segment

Isoprofit Line for $12

Overlays Line Segment

Isoprofit Line for $8

A

B


(16)

Marketing Applications

Media Selection - Win Big Gambling Club

Medium

Audience

Reached

Per Ad

Cost

Per

Ad($)

Maximum

Ads Per

Week

TV spot (1 minute)

5,000

800

12

Daily newspaper

(full-page ad)

8,500

925

5

Radio spot (30

seconds, prime time)

2,400

290

25

Radio spot (1 minute,

afternoon)


(17)

Win Big Gambling Club

:

to

Subject

)

spots/week

TV

(max

12

X

1

expense)

radio

(max

1800

380X

290X

3

+

4

)

spots/week

radio

(min

+

4

5

3

X

X

ad

budget)

weekly

+

+

+

925

290

380

8000

800

X

1

X

2

X

3

X

4

(

)

spots/week

radio

min.

-1

(max

20

4

X

)

spots/week

radio

sec.

-30

max

25

3

(

X

ads/week)

newspaper

max

5

2

(

X

:


(18)

Manufacturing Applications

Variety

of Tie

Selling

Price per

Tie ($)

Monthly

Contract

Minimum

Monthly

Demand

Material

Required

per Tie

(Yds)

Material

Require

ments

All silk

6.70

6000

7000

0.125 100%

silk

All

polyester

3.55

10000

14000

0.08 100%

polyester

Poly-cotton

blend 1

4.31

13000

16000

0.10 50%

poly/50%

cotton

Polycotton

-blend 2

4.81

6000

8500

0.10 30%

poly/70%

cotton


(19)

Fifth Avenue

4.00X

3.56X

3.07X

4.08X

:

Maximize

1

+

2

+

3

+

4

1)

blend

max,

(contract

X

3

16000

2)

blend

max,

(contract

8500

4

X

2)

blend

min,

(contract

6000

4

X

1)

blend

min,

(contract

13000

3

X

polyester)

all

max,

(contract

14000

2

X

polyester)

all

min,

(contract

1000

2

X

silk)

max,

(contract

7000

1

X

silk)

min,

(contract

6000

1

X

:

to

Subject

cotton)

(yards

1600

07

0

05

0

.

X

3

+

.

X

4

polyester)

(yards

3000

03

0

05

0

08

0

.

X

2

+

.

X

3

+

.

X

4

silk)

of

(yards

800

125


(20)

Manufacturing Applications

Truck Loading - Goodman Shipping

Item

Value ($)

Weight

(lbs)

1

22,500

7,500

2

24,000

7,500

3

8,000

3,000

4

9,500

3,500

5

11,500

4,000


(21)

Goodman Shipping

1

1

1

1

1

1

10000

3500

4000

3500

3000

7500

7500

9750

11500

9500

8000

24000

22500

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

+

+

+

+

+

+

+

+

+

+

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(Capacity)

:

to

Subject

:

value

load

Maximize


(22)

Flair Furniture Company

Hours Required to Produce One Unit

Department

X

1

Tables

X

2

Chairs

Available

Hours This

Week

Carpentry

Painting/Varnishing

4

2

3

1

240

100

Profit/unit

Constraints:

$7

$5

Maximize:

Objective:

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

2

1

5

7

X

+

X

)

(carpentry

240

3


(23)

Flair Furniture Company's

Feasible Region & Corner Points

Numb

er

of

Chairs

100

80

60

40

20

0

20

40

60

80

100

X

X

2

Number of Tables

B = (0,80)

C = (30,40)

D = (50,0)

Feasible

Region

240

3

4

X

1

+

X

2

100

1


(24)

Flair Furniture - Adding

Slack Variables

)

varnishing

&

(painting

100

1

2

X

1

+

X

2

)

(carpentry

240

3

4

X

1

+

X

2

Constraints:

Constraints with Slack Variables

)

varnishing

&

(painting

)

(carpentry

100

1

2

240

3

4

2

2

1

1

2

1

=

+

+

=

+

+

S

X

X

S

X

X

2

1

5

7

X

+

X

Objective Function

Objective Function with Slack Variables

2

1

2

1

5

1

1


(25)

Flair Furniture’s Initial Simplex

Tableau

Profit

per

Unit

Column

Production

Mix

Column

Real

Variables

Columns

Slack

Variables

Columns

Constant

Column

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

Profit per

unit row

2

1

1

0

4

3

0

1

$0

$0

$0

$0

$7

$5

$0

$0

$0

$0

S

1

S

2

Z

j

C

j

-

Z

j

100

240

$0

$0

Constraint

equation

rows

Gross

profit row

Net

profit row


(26)

Pivot Row, Pivot Number Identified

in the Initial Simplex Tableau

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

2

1

1

0

4

3

0

1

$0

$0

$0

$0

$7

$5

$0

$0

$0

$0

S

1

S

2

Z

j

C

j

-

Z

j

100

240

$0

$0

Pivot row

Pivot number


(27)

Completed Second Simplex Tableau

for Flair Furniture

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

1/2

1/2

0

0

1

-2

1

$7

$7/2

$7/2

$0

$0

$3/2

-$7/2

$0

$7

$0

X

1

S

2

Z

j

C

j

-

Z

j

50

40

$350


(28)

Pivot Row, Column, and Number

Identified in Second Simplex Tableau

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

1/2

1/2

0

0

1

-2

1

$7

$7/2

$7/2

$0

$0

$3/2

-$7/2

$0

$7

$0

X

1

S

2

Z

j

C

j

-

Z

j

50

40

$350

(Total

Profit)

Pivot row

Pivot number


(29)

Calculating the New

X

1

Row

for Flair’s Third Tableau

(

Number

in new

X

1

row

)

Number

in old

X

1

row

(

)

above pivot

Number

number

(

)

Corresponding

number in

new

X

2

row

(

)

=

-

x

=

-

x

1

0

3/2

-1/2

30

1

1/2

1/2

0

50

(1/2)

(1/2)

(1/2)

(1/2)

(1/2)

(0)

(1)

(-2)

(1)

(40)

=

-

x

=

-

x

=

-

x


(30)

Final Simplex Tableau for

the Flair Furniture Problem

C

j

Solution

Mix

X

1

X

2

S

1

S

2

Quantity

$7

$5

$0

$0

1

0

3/2

-1/2

0

1

-2

1

$7

5

$1/2

$3/2

$0

$0

-$1/2 -$3/2

$7

$5

X

1

X

2

Z

j

C

j

-

Z

j

30

40

$410


(31)

Simplex Steps for

Maximization

1. Choose the variable with the greatest positive

C

j

- Z

j

to enter the solution.

2. Determine the row to be replaced by selecting that

one with the smallest (non-negative)

quantity-to-pivot-column ratio.

3. Calculate the new values for the pivot row.

4. Calculate the new values for the other row(s).

5. Calculate the C

j

and C

j

- Z

j

values for this tableau.

If there are any C

j

- Z

j

values greater than zero,


(32)

Surplus & Artificial Variables

Constraints

900

30

25

210

8

10

5

2

1

3

2

1

=

+

+

+

X

X

X

X

X

900

30

25

210

8

10

5

2

2

1

1

1

3

2

1

=

+

+

=

+

-+

+

A

X

X

A

S

X

X

X

Constraints-Surplus & Artificial Variables

Objective Function

3

2

1

9

7

5

X

+

X

+

X

:

Min

2

1

1

3

2

1

9

7

0

5

X

+

X

+

X

+

S

+

MA

+

MA

:

Min


(33)

Simplex Steps for

Minimization

1. Choose the variable with the greatest negative

C

j

- Z

j

to enter the solution.

2. Determine the row to be replaced by selecting that

one with the smallest (non-negative)

quantity-to-pivot-column ratio.

3. Calculate the new values for the pivot row.

4. Calculate the new values for the other row(s).

5. Calculate the C

j

and C

j

- Z

j

values for this tableau.

If there are any C

j

- Z

j

values less than zero, return

to Step 1.


(34)

Special Cases

Infeasibility

C

j

5

8

0

0

M

M

Solution

Mix

X

1

X

2

S

1

S

2

A

1

A

2

Qty

5

X

1

1

0 -2

3

-1

0

200

8

X

2

0

1

1

2

-2

0

100

M

A

2

0

0

0

-1

-1

1

20

Z

j

5

8 -2 31-M -21-M

M 1800+20M


(35)

Special Cases

Unboundedness

C

j

6

9

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

9

X

2

-1

1

2

0

30

0

S

2

-2

0

-1

1

10

Z

j

-9

9

18

0

270

C

j

-Z

j

15

0

-18

0


(36)

Special Cases

Degeneracy

C

j

5

8

2

0

0

0

Solution

Mix

X

1

X

2

X

3

S

1

S

2

S

3

Qty

8

X

2

1/4

1

1

-2

0

0

10

0

S

2

4

0

1/3

-1

1

0

20

0

S

3

2

0

2

2/5

0

1

10

Z

j

2

8

8

16

0

0

80

C

j

-Z

j

3

0

6

16

0

0


(37)

Special Cases

Multiple Optima

C

j

3

2

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

2

X

2

3/2

1

1

0

6

0

S

2

1

0

1/2

1

3

Z

j

3

2

2

0

12


(38)

Sensitivity Analysis

High Note Sound Company

60

1

3

80

4

2

120

50

2

1

2

1

2

1

+

+

+

X

X

X

X

X

X

:

to

Subject

:

Max


(39)

Sensitivity Analysis


(40)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

C

j

-Z

j

0

0

-30

0


(41)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400


(42)

Nonbasic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400


(43)

Basic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120+

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60+1/2

120+

30+1/4

0

2400+20


(44)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

C

j

-Z

j

0

0

-30

0

Objective increases by 30 if 1 additional

hour of electricians time is available.


(45)

Steps to Form the Dual

To form the Dual:

If the primal is max., the dual is min., and vice

versa.

The right-hand-side values of the primal constraints

become the objective coefficients of the dual.

The primal objective function coefficients become

the right-hand-side of the dual constraints.

The transpose of the primal constraint coefficients

become the dual constraint coefficients.


(46)

Primal & Dual

60

1

3

80

4

2

120

50

2

1

2

1

2

1

+

+

+

X

X

X

X

X

X

:

to

Subject

:

Max

Primal:

Dual

120

1

4

50

3

2

60

80

2

1

2

1

2

1

+

+

+

U

U

U

U

U

U

:

to

Subject

:

Min


(47)

Comparison of the Primal and

Dual Optimal Tableaus

Du

al’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

X

2

S

2

Z

j

C

j

-

Z

j

20

40

$2,400

X

1

X

2

S

1

S

2

$50

$120

$0

$0

1/2

1

1/4

0

5/2

0

-1/4

1

60

120

30

0

-10

0

-30

0

Primal’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

U

1

S

1

Z

j

C

-

Z

30

10

$2,400

X

1

X

2

S

1

S

2

80

60

$0

$0

1

1/4

0

-1/4

0

-5/2

1

-1/2

80

20

0

-20

$0

40

0

20

A

1

A

2

M

M

0

1/2

-1

1/2

0

40

M

M

-40


(1)

Nonbasic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400


(2)

Basic Objective Function

Coefficients

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120+

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60+1/2

120+

30+1/4

0

2400+20


(3)

Simplex Solution

High Note Sound Company

C

j

50

120

0

0

Solution

Mix

X

1

X

2

S

1

S

2

Qty

120

X

2

1/2

1

¼

0

20

0

S

2

5/2

0

-1/4

1

40

Z

j

60

120

30

0

2400

C

j

-Z

j

0

0

-30

0


(4)

Steps to Form the Dual

To form the Dual:

If the primal is max., the dual is min., and vice

versa.

The right-hand-side values of the primal constraints

become the objective coefficients of the dual.

The primal objective function coefficients become

the right-hand-side of the dual constraints.

The transpose of the primal constraint coefficients

become the dual constraint coefficients.


(5)

Primal & Dual

60

1

3

80

4

2

120

50

2

1

2

1

2

1

+

+

+

X

X

X

X

X

X

:

to

Subject

:

Max

Primal:

Dual

120

1

4

50

3

2

60

80

2

1

2

1

2

1

+

+

+

U

U

U

U

U

U

:

to

Subject

:

Min


(6)

Comparison of the Primal and

Dual Optimal Tableaus

Du

al’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

X

2

S

2

Z

j

C

j

-

Z

j

20

40

$2,400

X

1

X

2

S

1

S

2

$50

$120

$0

$0

1/2

1

1/4

0

5/2

0

-1/4

1

60

120

30

0

-10

0

-30

0

Primal’

s Op

tima

l So

lut

ion

C

j

Solution

Mix

Quantity

$7

$5

U

1

S

1

Z

j

C

-

Z

30

10

$2,400

X

1

X

2

S

1

S

2

80

60

$0

$0

1

1/4

0

-1/4

0

-5/2

1

-1/2

80

20

0

-20

$0

40

0

20

A

1

A

2

M

M

0

1/2

-1

1/2

0

40