Kelas XII SMAMA
166
Dari dua kemungkinan ini, dapat disimpulkan k + 1 habis dibagi oleh suatu
bilangan prima. Hal ini sama dengan mengatakan bahwa Pk − 1 bernilai benar.
3. Kesimpulan
Pn: setiap bilangan bulat positif n lebih dari satu habis dibagi oleh suatu bilangan prima.
Ayo Menanya
? ?
Setelah Anda mengamati dengan cermat langkah-langkah pembuktian pada induksi matematis kuat Contoh 3.11 dan 3.12, kemudian Anda bandingkan
dengan langkah-langkah pembuktian pada induksi matematis Contoh 3.8, 3.9, dan 3.10.
Sekarang Anda bekerja secara berkelompok 3 – 4 orang dan buatlah pertanyaan-pertanyaan yang berkenaan dengan induksi matematis dan induksi
matematis kuat. Tuliskan pertanyan-pertaanyaan itu pada tempat kosong berikut.
Ayo Menggali Informasi
+
=
+
Setelah Anda membuat pertanyaan, cobalah Anda mencoba menjawab pertanyaan tersebut.
Di unduh dari : Bukupaket.com
Matematika Kurikulum 2013
167
Ayo Menalar
Sekarang saatnya Anda secara berkelompok mendiskusikan dan menjawab pertanyaan berikut.
1. Bagaimana langkah-langkah pembuktian dengan induksi matematis? 2. Bagaimana langkah-langkah pembuktian dengan induksi matematis kuat?
3. Kapan kita menggunakan prinsip induksi matematis dan kapan kita menggunakan induksi matematis kuat?
Tuliskan jawaban pertanyaan-pertanyaan untuk masing-masing kelompok. Mintalah bantuan gurumu apabila Anda menemukan kesulitan atau
permasalahan yang berkenaan dengan pertanyaan tersebut.
Ayo Mengomunikasikan
Setelah diskusi kelompok Anda lakukan, sekarang coba Anda diskusikan secara klasikan untuk mencocokkan jawaban kelompok yang telah Anda buat.
Mintalah masukan atau penjelasan dari gurumu apabila dalam diskusi kelas menemukan permasalahan.
Setelah diskusi kelas, tuliskan kesimpulan Anda tentang hasil diskusi kelas tersebut secara individu dalam kotak berikut.
Kesimpulan
Di unduh dari : Bukupaket.com
Kelas XII SMAMA
168
Latihan 3.2
1. a. Apakah kalian dapat membuktikan pernyataan n
4
− n
2
habis dibagi 12 untuk semua bilangan asli n dengan menggunakan induksi
matematis seperti biasanya ? b. Cobalah untuk membuktikan pernyataan n
4
− n
2
habis dibagi 12 untuk semua bilangan asli n dengan menggunakan induksi
matematis kuat. 2. Buktikan hasil-hasil berikut dengan menggunakan induksi kuat
a. Misalkan
1 1
1
3 4
1, 2,
12
n n
n
x x
x x
x
− +
+ =
= =
dengan n adalah bilangan asli.
Buktikan : x
n+1
≤ 1, untuk semua bilangan asli n. b. Misalkan
x = 1, x
1
= 1, x
n+1
= x
n
+ x
n −1
dengan n adalah bilangan asli. Buktikan : x
n+1
≤ 2
n
, untuk semua bilangan asli n. c. x + y adalah faktor dari x
2n
− y
2n
, untuk setiap bilangan asli n. d. Misalkan barisan a
1
, a
2
, a
3
, ... dideinisikan sebagai berikut. a
1
= 1, a
2
= 2, a
3
= 3, dan a
n
= a
n −1
+ a
n −2
+ a
n −3
. Buktikan bahwa a
n
2
n
. 3. Perhatikan kembali barisan Fibonacci:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, … di mana dua suku pertama adalah 1 dan 1, dan sebarang suku selanjutnya
adalah jumlah dua suku sebelumnya. Kita menyatakan suku ke-n dari barisan ini sebagai F
n
. Jadi, F
1
= 1, F
2
= 1, dan F
n
= F
n-1
+ F
n-2
. Buktikan suku ke-n barisan ini dapat dinyatakan secara eksplisit
sebagai 1
1 1
5 1
5 2
2 5
n n
n
F
+ −
−
=
, untuk semua n bilangan asli.
Amati: suku-suku barisan Fibonacci merupakan bilangan Asli, tapi dalam rumus tersebut memuat bilangan irasional
5 , mungkinkah?.
Dalam matematika, dapat terjadi sesuatu yang kelihatannya secara intuisi tidak mungkin, namun dapat terjadi.
Di unduh dari : Bukupaket.com
Matematika Kurikulum 2013
169
Pengayaan
Proyek
Kegiatan
Kerjakan Tugas berikut secara berkelompok 3 – 4 orang, kemudian laporkan hasilnya dalam bentuk tertulis.
1. Barisan Terbatas