MAH Applications for SIR Mod of the Spread of Dengue Feve

552 Substitution of the general Lagrange multipliers in 34 to equation 18-20 yields the following iteration formula: ݔ ௡ାଵ ݐ = ݔ ௡ − න ൤ ݀ݔ ௡ ݀ݏ ௧ ଴ − ߤ ௛ 1 − ݔ ௡ + ߙݔ ௡ ݖ ௡ ൨ ݀ݏ, 35 ݕ ௡ାଵ ݐ = ݕ ௡ − න ൤ ݀ݕ ௡ ݀ݏ − ߙݔ ௡ ݖ ௡ ௧ ଴ + ߚݕ ௡ ൨ ݀ݏ, 36 ݖ ௡ାଵ ݐ = ݖ ௡ − න ൤ ݀ݖ ௡ ݀ݏ ௧ ଴ − ߛݕ ௡ + ߛݕ ௡ ݖ ௡ + ߜ ଵ ݖ ௡ ൨ ݀ݏ. 37 Iteration begins with the initial approximation as obtained from the data of the Indonesian health minister 2007, ܿ ଵ = ଻଺଻ହସ଴଺ ଻଺଻ହ଼ଽଷ , ܿ ଶ = ସ଼଻ ଻଺଻ହ଼ଽଷ , ܿ ଷ = 0.056, ߙ = 0.232198, ߚ = 0.328879, ߛ = 0.375, and ߜ ଵ = 0.0323. The iteration formulas 87 - 89 are obtained: ݔ ଵ = 0.9999365546 − 0.0130022687 ݐ, 38 ݕ ଵ = 0.00006344538675 + 0.01298140513 ݐ 39 ݖ ଵ = 0.056 − 0.001786340333 ݐ, 40 ݔ ଶ = 0.9999365546 − 0.0130022687 ݐ + 2.922132174 × 10 ିସ ݐ ଶ −1.797714851 × 10 ି଺ ݐ ଷ , 41 ݕ ଶ = 0.00006344538675 + 0.01298140513 ݐ + 0.1797714851 × 10 ିହ ݐ ଷ −0.002426569924 ݐ ଶ , 42 ݖ ଶ = 0.056 − 0.001786340333 ݐ + 0.002326579355 ݐ ଶ +0.2898650945 × 10 ିହ ݐ ଷ , 43 ݔ ଷ = 0.9999365546 − 0.01300226807ݐ − 0.0001831331308ݐ ଷ +0.0002922132174 ݐ ଶ + 0.1728532016 × 10 ିଵଶ ݐ ଻ +0.1290829001 × 10 ିଽ ݐ ଺ − 0.2997118573 × 10 ି଻ ݐ ହ +0.1623956764 × 10 ିହ ݐ ସ , 44 ݕ ଷ = 0.00006344538675 + 0.01298140513 ݐ + 0.000449144614 ݐ ଷ −0.00242656993 ݐ ଶ − 0.1728532016 × 10 ିଵଶ ݐ ଻ −0.1290829001 × 10 ିଽ ݐ ଺ + 0.2997118573 × 10 ି଻ ݐ ହ −0.1771743755 × 10 ିହ ݐ ସ , 45 ݖ ଷ = 0.056 − 0.00178634033 ݐ − 0.000308504557 ݐ ଷ +0.002326579355 ݐ ଶ − 0.2791579206 × 10 ିଵଶ ݐ ଻ +0.1782033109 × 10 ିଽ ݐ ଺ + 0.4208392710 × 10 ି଺ ݐ ଷ −0.3102165044 × 10 ିହ ݐ ସ , and so on. 46

3.2. MAH Applications for SIR Mod of the Spread of Dengue Feve

Disease In this section, we use the MAH to resolv the SIR model of dengue disease. To solv the SIR model, we defined not line operator as: ܰ[߶ݐ; ݌] = ߙݔݐݖݐ 47 ܰ[߶ݐ; ݌] = ߙݔݐݖݐ 48 ܰ[߶ݐ; ݌] = ߛݔݐݕݐ 49 and linier operator as: ܮ[߶ݐ; ݌] = ݀ݔݐ ݀ݐ + ߤ ௛ ݔݐ 50 ܮ[߶ݐ; ݌] = ݀ݕݐ ݀ݐ + ߚݕݐ 51 ܮ[߶ݐ; ݌] = ݀ݖݐ ݀ݐ + ߜݖݐ 52 With nature ܮ[ܿ ଵ ] = 0 53 553 Where ܿ ଵ is a constant Integration. Use the above definition, we built zero-order deformation equation:. 1 − ݌ܮ[߶ݐ; ݌ − ݔ ଴ ݐ] = ݌ܰℏ߶ݐ; ݌ 54 1 − ݌ܮ[߶ݐ; ݌ − ݕ ଴ ݐ] = ݌ܰℏ߶ݐ; ݌ 55 1 − ݌ܮ[߶ݐ; ݌ − ݖ ଴ ݐ] = ݌ܰℏ߶ݐ; ݌ 56 Obviously, when ݌ = 0 and ݌ = 1 ߶ݐ; 0 = ݔ ଴ ݐ and ߶ݐ; 1 = ݔݐ 57 ߶ݐ; 0 = ݕݐ and ߶ݐ; 1 = ݕݐ 58 ߶ݐ; 0 = ݖ ଴ ݐ and ߶ݐ; 1 = ݖݐ 59 Therefore, the parameter p is embedded ݌ up from 0 to 1, ߶ݐ; ݌ of the initial guess ݔ ଴ ݐ,, ݕ ଴ ݐ and ݖ ଴ ݐ to the solution ݔݐ, ݕݐ dan ݖݐ. Then we generate the equations of deformation order to m ܮ[ݔ ௠ ݐ − ߯ ௠ ݔ ௠ିଵ ݐ] = ℏܴ ௠ [ ݔ⃗ ௠ିଵ ݐ], 60 ܮ[ݕ ௠ ݐ − ߯ ௠ ݕ ௠ିଵ ݐ] = ℏܴ ௠ [ ݕ⃗ ௠ିଵ ݐ], 61 ܮ[ݖ ௠ ݐ − ߯ ௠ ݖ ௠ିଵ ݐ] = ℏܴ ௠ [ ݖ⃗ ௠ିଵ ݐ], 62 With nature ݔ ௠ 0 = 0, ݕ ௠ 0 = 0 dan ݖ ௠ 0 = 0, 63 where ܴ ௠ ݔ⃗ ௠ିଵ = ݀ݔ ௠ିଵ ݀ݐ − ߤ ௛ 1 − ݔ ௠ିଵ + ߙݔ ௠ିଵ ݖ ௠ିଵ 64 ܴ ௠ ݕ⃗ ௠ିଵ = ݀ݕ ௠ିଵ ݀ݐ − ߙݔ ௠ିଵ ݖ ௠ିଵ + ߚݕ ௠ିଵ 65 ܴ ௠ ݖ⃗ ௠ିଵ = ݀ݖ ௠ିଵ ݀ݐ − ߛ1 − ݖ ௠ିଵ ݕ ௠ିଵ + ߜݖ ௠ିଵ 66 Now, the solution to-m order deformation equation 60-62 for m ≥ 1 be ݔ ௠ ݐ = ߯ ௠ ݔ ௠ିଵ ݐ + ℏܮ ିଵ [ ܴ ௠ ݔ⃗ ௠ିଵ ] 67 ݕ ௠ ݐ = ߯ ௠ ݕ ௠ିଵ ݐ + ℏܮ ିଵ [ ܴ ௠ ݕ⃗ ௠ିଵ ] 68 ݖ ௠ ݐ = ߯ ௠ ݖ ௠ିଵ ݐ + ℏܮ ିଵ [ ܴ ௠ ݖ⃗ ௠ିଵ ] 69 From 188-189, we obtained ݔ ଵ ݐ = ૙. ૙૚૜૙૙૛૜ܐܜ 7 ݕ ଵ ݐ = −૙. ૙૚૛ૢૡ૚૝ܐܜ 7 ݖ ଵ ݐ = ૙. ૙૙૚ૠૡ૟૜૝ܐܜ 7 ݔ ଶ ݐ = ܐ ૙. ૙૚૜૙૙૛૜ + ܐ ૙. ૙૚૜૙૙૛૜ + ૙. ૙૙૙૛ૢ૛૛૚૜ܜ ܜ 7 ݕ ଶ ݐ = ܐ −૙. ૙૚૛ૢૡ૚૝ + ܐ −૙. ૙૚૛ૢૡ૚૝ − ૙. ૙૙૛૝૛૟૞ૠܜ ܜ 7 ݖ ଶ ݐ = ܐ ૙. ૙૙૚ૠૡ૟૜૝ + ܐ ૙. ૙૙૚ૠૡ૟૜૝ + ૙. ૙૙૛૜૛૟૞ૡܜ ܜ 7 ⋮ ݔ ଽ ݐ = ܐܜ ૙. ૙૙૟૞૙૚૙૟ + ܐ ૙. ૙૞૛૙૙ૡ૝ + ૙. ૙૙૙ૢૡૢ૜૝૟ܜ − ૙. ૙૙૛૝૜૝૟ૢܐ૛ −૚૙. ૚ૡ૞૚ + ܜ ૠ. ૜૝૙૟૜ + ܜ − ૙. ૙૙૙૝૛ૡૢ૞ૡܐ૜ −૞. ૛ૢૢૡ૛ + ܜ ૝. ૟૙ૡૡ૞ + ܜ ૜૝. ૠ૝૞ૢ + ܜ − ૝. ૛૝૝૚ × ૚૙ − ૟ܐ૞ −૛. ૠ૚૚ૢૡ + ܜ ૛. ૟૝૛૛ + ܜ ૝૚. ૢ૟૚ + ܜ ૛ૡ૞. ૛ૢ૚ + ૚ૠ. ૞૞ૠૡܜ + ܜ૛ − ૙. ૙૙૙૙૟૜૙ૠ૟ૢܐ૝ −૜. ૞ૡ૟ૡૡ + ܜ ૜. ૜૞ૡૡ૜ + ܜ ૞ૢૡ. ૡ૜૞ + ૜૝. ૛૜૙ૡܜ + ܜ૛ − ૜. ૟૜૞૞ૢ × ૚૙ − ૢܐૠ −૚. ૡ૛૜૝ૡ + ܜ ૚. ૡ૞૚ૢ૞ + ܜ ૝૞. ૢ૝૚ૠ + ܜ ૚૙ૡ. ૟ૡ + ૠ. ૡ૚૙ૡ૞ܜ + ܜ૛ ૡ૝ૡ. ૝૛૞ + ૝૙. ૟ૡ૝ܜ + ܜ૛ − ૚. ૠ૚ૠ૚ૡ × ૚૙ − ૠܐ૟ −૛. ૚ૡ૙૞ૢ + ܜ ૛. ૚ૠૠ૟ + ܜ ૚૟૞. ૡૡ૟ + ૚૚. ૙૞૚ܜ + ܜ૛ ૚૜૝૞. ૠ૞ + ૟૜. ૙ૢૡ૞ܜ + ܜ૛ − ૜. ૝૛ૡ૛ૡ × ૚૙ − ૚૚ܐૡ −૚. ૞૟૟ૢ૞ + ܜ ૚. ૟૚૚૙૜ + ܜ ૠ૟. ૡ૚૟ૡ + ૞. ૢ૛૟૙૛ܜ + ܜ૛ ૞ૡ૛. ૛ૡૢ + ૛ૢ. ૜૜૜૟ܜ + ܜ૛ ૚૟ૠૢ. ૝ + ૠ૙. ૠ૝૜૚ܜ + ܜ૛ 7 554 ݕ ଽ ݐ = ܐܜ ૙. ૙૙૟૝ૡ૙૚ૢ + ܐ ૙. ૙૞૚ૡ૝૚૞ + ૙. ૙૙ૠ૞૜૟૟૞ܜ + ܐ૛ ૙. ૚ૡ૚૝૝૞ + ૙. ૙૞૛ૠ૞૟૞ܜ + ૙. ૙૙૞૜૛૟૝ૢܜ૛ + ૙. ૙૙૚૜૙૝ૠૢܐ૜ ૚ૡ. ૡ૜ૡ૝ + ܜ ૚૝. ૠ૟૜૟ + ૞. ૟૞૞૛૝ܜ + ܜ૛ + ૙. ૙૙૙૙૚૚ૠ૝૛ૠܐ૞ ૜૙. ૠ૚૝ + ܜ ૞. ૚૛ૠ૜ + ૛. ૢ૛૜૚૚ܜ + ܜ૛ ૚ૢ૟. ૛૜ૡ + ૛૝. ૜ૠૠૢܜ + ܜ૛ + ૙. ૙૙૙૚ૠ૙૜૚૜ܐ૝ ૡ. ૚૛ૢ૚૛ + ૜. ૡૠ૛ૡૡܜ + ܜ૛ ૜૛ૠ. ૟૜ૢ + ૜૝. ૝૜૛ૠܜ + ܜ૛ + ૡ. ૢ૚ૡ૙ૢ × ૚૙ − ૢܐૠ ૜ૠ. ૢ૝૞૞ + ܜ ૛. ૞૟ૢૢ૟ + ૚. ૢ૝ૠ૝ܜ + ܜ૛ ૡ૞. ૝૞૝૚ + ૚૝. ૛૞૙૜ܜ + ܜ૛ ૟ૢૠ. ૞૟ૡ + ૝૟. ૞ૡ૜ૡܜ + ܜ૛ + ૝. ૝ૢ૚૝૟ × ૚૙ − ૠܐ૟ ૜. ૞૛૝૜૞ + ૛. ૜૜ૢૡ૞ܜ + ܜ૛ ૚૛૝. ૢૠૠ + ૚ૡ. ૚૝૝૚ܜ + ܜ૛ ૢ૚ૠ. ૚ૠ + ૞ૠ. ૢ૝ૢ૜ܜ + ܜ૛ + ૠ. ૝ૡ૝૜૚ × ૚૙ − ૚૚ܐૡ ૚. ૢ૞૟૝૛ + ૚. ૟૟૟૚૜ܜ + ܜ૛ ૟૚. ૡ૞ૠૡ + ૚૚. ૟૟૞૚ܜ + ܜ૛ ૝ૡ૙. ૚૛ૡ + ૜૟. ૟ૢૡૡܜ + ܜ૛ ૚૝ૢ૙. ૚૜ + ૟ૢ. ૚૛ૠ૜ܜ + ܜ૛ 77 ݖ ଽ ݐ = ܐܜ ૙. ૙૙૚ૠ૟૜ૡૡ + ܐ ૙. ૙૚૝૚૚૚ − ૙. ૙૚ૡ૚૛૜ૠܜ − ૙. ૙૙૟ૡ૞૛૙ૢܐ૛ −૙. ૜ૡ૚૝૝ + ܜ ૚ૡ. ૡૢ૟૜ + ܜ − ૙. ૙૙૙૛૟૟૟ૠૢܐ૝ −૙. ૚ૡૡૠ૟ૠ + ܜ ૛ૠ. ૛૙૜૟ + ܜ ૢ૙. ૚૟૛૝ + ૚૚. ૚૚ૢ૜ܜ + ܜ૛ − ૙. ૙૙૛૙૜૜ૢ૚ܐ૜ −૙. ૛૞૛૞૞૟ + ܜ ૚ૢ૛. ૛ૢ૞ + ૛૙. ૝૟૟૚ܜ + ܜ૛ − ૢ. ૢૢ૞ૢ૟ × ૚૙ − ૠܐ૟ −૙. ૚૛૞૝૚૛ + ܜ ૛ૢ. ૙૜૝ૢ + ܜ ૜૜. ૛૞૞ૠ + ૞. ૜૞૛ૢ૛ܜ + ܜ૛ ૝૙ૡ. ૙૚૟ + ૛ૢ. ૝૛ૢૢܜ + ܜ૛ − ૜. ૜૞ૢ૟ × ૚૙ − ૚૙ܐૡ −૙. ૙ૢ૜ૡૢૠ૛ + ܜ ૜૙. ૠ૚ૠૠ + ܜ ૚ૠ. ૚૛૛ૠ + ૜. ૝૚ૡ૟૜ܜ + ܜ૛ ૛૜૜. ૝ૢૠ + ૚ૡ. ૙ૡ૜૛ܜ + ܜ૛ ૝૞૞. ૛ૡૡ + ૛ૢ. ૠૠ૝ૡܜ + ܜ૛ − ૙. ૙૙૙૙૛૚૛૛૛૛ܐ૞ −૙. ૚૞૙ૠ૙૛ + ܜ ૞૚. ૞૜૝૜ + ૠ. ૜૚૚૜૜ܜ + ܜ૛ ૞ૢૢ. ૜૙ૢ + ૝૜. ૚૙૜૞ܜ + ܜ૛ − ૛. ૠ૞૚૞૜ × ૚૙ − ૡܐૠ −૙. ૚૙ૠ૜ૢ + ܜ ૛૜. ૛૚ૠ૞ + ૝. ૚ૡ૞૛૞ܜ + ܜ૛ ૛ૢ૞. ૢૠ + ૛૚. ૡ૛ૡૠܜ + ܜ૛ ૟ૢ૝. ૢ૞૝ + ૝૟. ૠ૞૙ૢܜ + ܜ૛ 7 In the end, we use nine terms to get th following approximation solution: ݔ ௔௣௣ ݐ = ෍ ݔ ௜ ଽ ௜ୀଽ 79 ݔ ௔௣௣ ݐ = ෍ ݕ ௜ ଽ ௜ୀଽ 80 ݔ ௔௣௣ ݐ = ෍ ݖ ௜ ଽ ௜ୀଽ 81 555

4. Result and Discussion From the data obtained by the researcher