R diagram 1.4 <part-of> data model; data model <part-of> design specification;
E-R diagram 1.4 data model; data model design specification;
we create a hierarchy of SCIs.
It is unrealistic to assume that the only relationships among objects in an object hier- Data models and data
XRef
archy are along direct paths of the hierarchical tree. In many cases, objects are inter- flow diagrams are
related across branches of the object hierarchy. For example, a data model is interrelated discussed in Chapter
12. to data flow diagrams (assuming the use of structured analysis) and also interrelated to a set of test cases for a specific equivalence class. These cross structural relation-
ships can be represented in the following manner:
data model <interrelated> data flow model; data model <interrelated> test case class m;
In the first case, the interrelationship is between a composite object, while the sec- ond relationship is between an aggregate object (data model) and a basic object (test case class m).
The interrelationships between configuration objects can be represented with a module interconnection language (MIL) [NAR87]. A MIL describes the interdepen- dencies among configuration objects and enables any version of a system to be con- structed automatically.
The identification scheme for software objects must recognize that objects evolve throughout the software process. Before an object is baselined, it may change many times, and even after a baseline has been established, changes may be quite frequent. It is possible to create an evolution graph [GUS89] for any object. The evolution graph describes the change history of an object, as illustrated in Figure 9.3. Configuration object 1.0 undergoes revision and becomes object 1.1. Minor corrections and changes result in versions 1.1.1 and 1.1.2, which is followed by a major update that is object
1.2. The evolution of object 1.0 continues through 1.3 and 1.4, but at the same time,
a major modification to the object results in a new evolutionary path, version 2.0. Both versions are currently supported. Changes may be made to any version, but not necessarily to all versions. How does the developer reference all components, documents, and test cases for ver- sion 1.4? How does the marketing department know what customers currently have a major modification to the object results in a new evolutionary path, version 2.0. Both versions are currently supported. Changes may be made to any version, but not necessarily to all versions. How does the developer reference all components, documents, and test cases for ver- sion 1.4? How does the marketing department know what customers currently have
version 2.1? How can we be sure that changes to the version 2.1 source code are properly reflected in the corresponding design documentation? A key element in the answer to all these questions is identification.
A variety of automated SCM tools has been developed to aid in identification (and other SCM) tasks. In some cases, a tool is designed to maintain full copies of only the most recent version. To achieve earlier versions (of documents or programs) changes (cataloged by the tool) are "subtracted" from the most recent version [TIC82]. This scheme makes the current configuration immediately available and allows other ver-
CASE Tools—SCM sions to be derived easily.
Parts
» The Concurrent Development Model
» SUMMARY Software engineering is a discipline that integrates process, methods, and tools for
» PEOPLE In a study published by the IEEE [CUR88], the engineering vice presidents of three
» THE PROCESS The generic phases that characterize the software process—definition, development,
» THE PROJECT In order to manage a successful software project, we must understand what can go
» METRICS IN THE PROCESS AND PROJECT DOMAINS
» Extended Function Point Metrics
» METRICS FOR SOFTWARE QUALITY
» INTEGRATING METRICS WITHIN THE SOFTWARE PROCESS
» METRICS FOR SMALL ORGANIZATIONS
» ESTABLISHING A SOFTWARE METRICS PROGRAM
» Obtaining Information Necessary for Scope
» An Example of LOC-Based Estimation
» QUALITY CONCEPTS 1 It has been said that no two snowflakes are alike. Certainly when we watch snow
» SUMMARY Software quality assurance is an umbrella activity that is applied at each step in the
» R diagram 1.4 <part-of> data model; data model <part-of> design specification;
» SYSTEM MODELING Every computer-based system can be modeled as an information transform using an
» Facilitated Application Specification Techniques
» Data Objects, Attributes, and Relationships
» Entity/Relationship Diagrams
» Hatley and Pirbhai Extensions
» Creating an Entity/Relationship Diagram
» SUMMARY Design is the technical kernel of software engineering. During design, progressive
» Data Modeling, Data Structures, Databases, and the Data Warehouse
» Data Design at the Component Level
» A Brief Taxonomy of Styles and Patterns
» Quantitative Guidance for Architectural Design
» Isolate the transform center by specifying incoming and outgoing
» SUMMARY Software architecture provides a holistic view of the system to be built. It depicts the
» The User Interface Design Process
» Defining Interface Objects and Actions
» D E S I G N E VA L U AT I O N
» Testing for Real-Time Systems
» Organizing for Software Testing
» Criteria for Completion of Testing
» The Transition to a Quantitative View
» The Attributes of Effective Software Metrics
» Architectural Design Metrics
» Component-Level Design Metrics
» SUMMARY Software metrics provide a quantitative way to assess the quality of internal product
» Encapsulation, Inheritance, and Polymorphism
» Identifying Classes and Objects
» The Common Process Framework for OO
» OO Project Metrics and Estimation
» Event Identification with Use-Cases
» SUMMARY Object-oriented analysis methods enable a software engineer to model a problem by
» Partitioning the Analysis Model
» Designing Algorithms and Data Structures
» Program Components and Interfaces
» SUMMARY Object-oriented design translates the OOA model of the real world into an
» Testing Surface Structure and Deep Structure
» Deficiencies of Less Formal Approaches 1
» What Makes Cleanroom Different?
» Design Refinement and Verification
» SUMMARY Cleanroom software engineering is a formal approach to software development that
» Structural Modeling and Structure Points
» Describing Reusable Components
» SUMMARY Component-based software engineering offers inherent benefits in software quality,
» Guidelines for Distributing Application Subsystems
» Middleware and Object Request Broker Architectures
» An Overview of a Design Approach
» Consider expert Web developer will create a complete design, but time and cost can be appropriate
» A Software Reengineering Process Model
» Reverse Engineering to Understand Data
» Forward Engineering for Client/Server Architectures
» SUMMARY Reengineering occurs at two different levels of abstraction. At the business level,
Show more