BAB 6. TURUNAN - BAB 6 TURUNAN

BAB 6. TURUNAN Program Studi Teknik Mesin Fakultas Teknik

1 Turunan

  Konsep Turunan Definisi turunan Aturan turunan Aplikasi turunan

1 Turunan

  Konsep Turunan

  Definisi turunan Aturan turunan Aplikasi turunan Untuk mendefinisikan pengertian garis singgung secara formal, perhatikanlah gambar

  Gradien garis singgung tersebut dapat dinyatakan :

1 Turunan

  Konsep Turunan

  Definisi turunan

  Aturan turunan Aplikasi turunan Definisi

  1 f xD

  Misalkan sebuah fungsi real dan f

  2 f x

  Turunan dari di titik , ditulis

f

x h f x

  ( ) − ( ) + ′ f x

  ( ) = lim h →0 h Definisi

  1

  f xD Misalkan sebuah fungsi real dan

  f

  2 f x

  Turunan dari di titik , ditulis

f

x h f x

  ( ) − ( ) + ′ f x

  ( ) = lim h →0 h Definisi

  1

  f xD Misalkan sebuah fungsi real dan

  f

  2

  f x Turunan dari di titik , ditulis f x h f x

  ( ) − ( ) +

  ′

  f x ( ) = lim

  h →0 h Definisi

  1

  f xD Misalkan sebuah fungsi real dan

  f

  2

  f x Turunan dari di titik , ditulis f x h f x

  ( ) − ( ) +

  ′

  f x ( ) = lim

  h →0 h Definisi

  1

  f xD Misalkan sebuah fungsi real dan

  f

  2

  f x Turunan dari di titik , ditulis f x h f x

  ( ) − ( ) +

  ′

  f x ( ) = lim

  h →0 h

1 Turunan

  Konsep Turunan Definisi turunan

  Aturan turunan

  Aplikasi turunan

  

x

  6 D x [( f . g

  [ g ( x )] ( g ( x )

  [ f ( x )] . g ( x )− f ( x ) . D x

  )] = D x

  )( x

  7 D x [( f g

  )]

  ( x

  

D

x [

g

  ( x ).

  ) + f

  ( x

  ( x )]. g

  )] = D x [ f

  )( x

  )]

  2 D x [ x

  ( x

  )] ± D x [ g

  ( x

  )] = D x [ f

  )( x

  5 D x [( f ± g

  )]

  ( x

  )] = kD x [ f

  ( x

  4 D x [ kf

  ] = nx n −1

  3 D x [ x n

  ] = 1

  2 )

  

x

  6 D x [( f . g

  [ g ( x )] ( g ( x )

  [ f ( x )] . g ( x )− f ( x ) . D x

  )] = D x

  )( x

  7 D x [( f g

  )]

  ( x

  

D

x [

g

  ( x ).

  ) + f

  ( x

  ( x )]. g

  )] = D x [ f

  )( x

  )]

  2 D x [ x

  ( x

  )] ± D x [ g

  ( x

  )] = D x [ f

  )( x

  5 D x [( f ± g

  )]

  ( x

  )] = kD x [ f

  ( x

  4 D x [ kf

  ] = nx n −1

  3 D x [ x n

  ] = 1

  2 )

  

x

  6 D x [( f . g

  [ g ( x )] ( g ( x )

  [ f ( x )] . g ( x )− f ( x ) . D x

  )] = D x

  )( x

  7 D x [( f g

  )]

  ( x

  

D

x [

g

  ( x ).

  ) + f

  ( x

  ( x )]. g

  )] = D x [ f

  )( x

  )]

  2 D x [

  ( x

  )] ± D x [ g

  ( x

  )] = D x [ f

  )( x

  5 D x [( f ± g

  )]

  ( x

  )] = kD x [ f

  ( x

  4 D x [ kf

  ] = nx n −1

  3 D x [ x n

  x ] = 1

  2 )

  

x

  

D

x [

g

  )( x

  )] = D x [ f

  ( x )]. g

  ( x

  ) + f

  ( x ).

  ( x

  )]

  )]

  7 D x [( f g

  )( x

  )] = D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [( f . g

  ( x

  2 D x [

  4 D x [ kf

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  ( x

  )] ± D x [ g

  )] = kD x [ f

  ( x

  )]

  5 D x [( f ± g

  )( x

  )] = D x [ f

  ( x

  2 )

  

x

  ( x ).

  6 D x [( f . g

  )( x

  )] = D x [ f

  ( x )]. g

  ( x

  ) + f

  

D

x [

g

  ( x

  ( x

  )]

  7 D x [( f g

  )( x

  )] = D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  )]

  )] ± D x [ g

  2 D x [

  4 D x [

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  kf ( x

  ( x

  )] = kD

  x [

  f ( x

  )]

  5 D x [( f ± g

  )( x

  )] = D x [ f

  2 )

  

x

  ( x ).

  )]

  6 D x [( f . g

  )( x

  )] = D x [ f

  ( x )]. g

  ( x

  ) + f

  

D

x [

g

  x [

  ( x

  )]

  7 D x [( f g

  )( x

  )] = D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  g ( x

  )] ± D

  2 D x [

  kf ( x

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  )] = kD

  f ( x

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  2 )

  

x

  ( x ).

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  D

  )]

  

x [

  g ( x

  )]

  7 D x [( f g

  )( x

  )] = D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  

x

  D

  f . g

  )( x

  )] = D

  x [

  f ( x )]. g

  ( x

  ) + f

  ( x ).

  

x [

  )]

  g ( x

  )]

  7 D x [( f g

  )( x

  )] =

  D x

  [ f ( x )] . g ( x )− f ( x ) . D x

  [ g ( x )] ( g ( x )

  6 D x [(

  g ( x

  2 D x [

  )] = kD

  x ] = 1

  3 D x [

  x

  n

  ] = nx

  n −1

  4 D x [

  kf ( x

  x [

  x [

  f ( x

  )]

  5 D x [(

  f ± g )( x

  )] = D

  x [

  f ( x

  )] ± D

  2 )

  • sinx

  2 . sinx

  , maka f

  . sinx

  ) = 5 x +1 3 x −2

  ( x

  3 Jika f

  2 ) =?

  ′ ( Q

  , maka f

  ) = x

  Contoh

  ( x

  2 Jika f

  ) =?

  ′ ( x

  , maka f

  2

  ) = 5 x

  ( x

  1 Jika f

  ′ (1) =?

  • sinx

  ) = x

  , maka f

  . sinx

  ) = 5 x +1 3 x −2

  ( x

  3 Jika f

  2 ) =?

  ′ ( Q

  , maka f

  2 . sinx

  ( x

  Contoh

  2 Jika f

  ) =?

  ( x

  ′

  , maka f

  2

  ) = 5 x

  f ( x

  1 Jika

  ′ (1) =?

  • sinx

  2 .

  , maka f

  . sinx

  ) = 5 x +1 3 x −2

  ( x

  3 Jika f

  ) =?

  2

  ( Q

  ′

  sinx , maka f

  ) = x

  Contoh

  f ( x

  2 Jika

  ) =?

  ( x

  ′

  , maka f

  2

  ) = 5 x

  f ( x

  1 Jika

  ′ (1) =?

  • sinx

  sinx , maka f

  ′

  , maka f

  . sinx

  5 x +1 3 x −2

  ) =

  f ( x

  3 Jika

  ) =?

  2

  ( Q

  ′

  2 .

  Contoh

  ) = x

  f ( x

  2 Jika

  ) =?

  ( x

  ′

  , maka f

  2

  ) = 5 x

  f ( x

  1 Jika

  (1) =? Aturan Rantai

  Misalkan y = f ( u ) dan u = g ( x ). Jika g terdefinisikan di x dan f terdefinisikan di ◦ ◦ u g x f g f g x f g x

  = ( ), maka fungsi komposit , yang didefinisikan oleh ( )( ) = ( ( )),

  ′ ′ ′

  ◦ adalah terdiferensiasikan di x dan ( f g ) ( x ) = f ( g ( x )) g ( x ) yakni

  ′ ′ D ( f ( g ( x ))) = f ( g ( x )) g ( x ) x

  • 5)

  2 Jika f

  ′ ( x

  ), maka f

  3 x

  2 −

  2 ( x

  ) = sin

  ( x

  ) =?

  Contoh

  ′ (

x

  3 , maka f

  3 x

  2 −

  ) = ( x

  ( x

  1 Jika f

  

) =?

  • 5)

  ) =?

  ′ ( x

  ), maka f

  3 x

  2 −

  2 ( x

  ) = sin

  ( x

  2 Jika f

  ( x

  Contoh

  ′

  , maka f

  3

  3 x

  −

  2

  ) = ( x

  f ( x

  1 Jika

  

) =?

  • 5)

  2 Jika

  ( x

  ′

  ), maka f

  3 x

  −

  2

  ( x

  2

  ) = sin

  f ( x

  ) =?

  Contoh

  ( x

  ′

  , maka f

  3

  3 x

  −

  2

  ) = ( x

  f ( x

  1 Jika

  ) =? Turunan tingkat tinggi ′

  f x f x f Misalkan ( ) sebuah fungsi dan ( ) turunan pertamanya. Turuna kedua dari

  2

  adalah f ”( x ) = D ( f ). Dengan cara yang sama turunan ketiga , keempat dst. Salah

  x

  S t satu penggunaan turunan tingkat tinggi adalah pada masalah gerak partikel. Bila ( )

  ′

  v ( t ) = S ( t ) dan menyatakan posisi sebuah partikel, maka kecepatannya adalah

  ′

  a t v t S t percepatannya ( ) = ( ) = ”( )

1 Turunan

  Konsep Turunan Definisi turunan Aturan turunan

  Aplikasi turunan y=f’(x)

  ′

1 Gradien g singgung : m = y

  2 fungsi naik : y

  ′ >

  3 fungsi turun : y

  ′ <

  4 fungsi stasioner : y

  ′ = 0

  5 kecepatan : v

  ′ = ds dt

  = S

  ′ ′ dv ′ y=f’(x)

  ′

1 Gradien g singgung : m = y

  2 fungsi naik : y

  ′ >

  3 fungsi turun : y

  ′ <

  4 fungsi stasioner : y

  ′ = 0

  5 kecepatan : v

  ′ = ds dt

  = S

  ′ ′ dv ′ y=f’(x)

  ′

1 Gradien g singgung : m = y

  2

  fungsi naik : y

  ′

  >

  3 fungsi turun : y

  ′ <

  4 fungsi stasioner : y

  ′ = 0

  5 kecepatan : v

  ′ = ds dt

  = S

  ′ ′ dv ′ y=f’(x)

  ′

1 Gradien g singgung : m = y

  2

  fungsi naik : y

  ′

  >

  3

  fungsi turun : y

  ′ y=f’(x)

  <

  4 fungsi stasioner : y

  ′ = 0

  5 kecepatan : v

  ′ = ds dt

  = S

  ′ ′ dv

  ′

1 Gradien g singgung : m = y

  fungsi naik : y

  ′

  >

  3

  fungsi turun : y

  ′

  < y=f’(x)

  2

  fungsi stasioner : y

  ′

  = 0

  5 kecepatan : v

  ′ = ds dt

  = S

  ′ ′ dv

  4

  ′

1 Gradien g singgung : m = y

  fungsi naik : y

  = 0

  ′ ′ dv

  = S

  ds dt

  =

  ′

  kecepatan : v

  5

  ′

  ′

  2

  4

  <

  ′

  fungsi turun : y

  3

  >

  fungsi stasioner : y y=f’(x)

  ′

1 Gradien g singgung : m = y

  fungsi naik : y

  = 0

  ′ ′ dv

  = S

  ds dt

  =

  ′

  kecepatan : v

  5

  ′

  ′

  2

  4

  <

  ′

  fungsi turun : y

  3

  >

  fungsi stasioner : y y=f”(x)

  Uji jenis

  1 maximum : y ” > 0

  2 minimum : y

  ” < 0

  3 titik belok : y

  ” = 0 y=f”(x)

  Uji jenis

  1

  maximum : y ” > 0

  2 minimum : y

  ” < 0

  3 titik belok : y

  ” = 0 y=f”(x)

  Uji jenis

  1

  maximum : y ” > 0

  2

  minimum : y

  ” < 0

  3 titik belok : y

  ” = 0 y=f”(x)

  Uji jenis

  1

  maximum : y ” > 0

  2

  minimum : y

  ” < 0

  3

  titik belok : y

  ” = 0