6. DAFTAR PUSTAKA - PENGARUH PENAMBAHAN Spirulina platensis TERHADAP KARAKTERISTIK FISIKOKIMIA ADONAN TEPUNG KETAN SELAMA PENGUKUSAN - Unika Repository

6. DAFTAR PUSTAKA

  Anderson, K. and Naujoks, B. (1994). The SSB Viscometer System: Starch Application, Cargill, Inc. Angka SL, Suhartono TS. 2000. Bioteknologi Hasil Laut. Bogor: Pusat Kajian Sumber Daya Pesisir dan Lautan. Institut Pertanian Bogor. hlm 49-56. Apriyantono, A., D. Fardiaz, N.L. Puspitasari, Sedarnawati , dan S. Budiyanto. (1989).

  Analisa Pangan. PAU Pangan dan Gizi. IPB. Bogor. Ashraf M. Sharoba. 2014. Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. Journal of Agroalimentary Processes and Technologies, 20 (4), 330-350. Carlsen, M. H., B. L. Halvorsen, K. Holte, S. K. Bohn, S. Dragland, L. Sampson, C.

  Willey, H. Senoo, Y. Umezono, C. Sanada, I. Barikmo, N. Berhe, W. C. Willet, K. M. Philips, D.R. Jacobs Jr, R. Blomhoff. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9:3.

  Christianti, Yessy. (2013). Pemanfaatan Mikroalga Spirulina sp dalam Formulasi Butter

  Cookies : Studi Karateristik Fisikokimia dan sensori. Skripsi. Universitas Katolik Soegijapranata Semarang.

  Christwardana, M., dan Hadiyanto M.M.A. Nur. 2012. Spirulina platensis:potensinyasebagaibahanpanganfungsional.. Jurnal Aplikasi Teknologi Pangan. Vol 2. UNDIP: Semarang.

  Chueamchaitrakun, P., P. Chompreeda, V. Haruthaithanasan, T. Suwonsichon & S.

  Kasemsamran. (2011). Physical Properties of Butter Cake Made from Mixed Hom-Mali and Glutinous Rice Flours. Kasetsart J. (Nat. Sci.) 45 : 295 – 304.

  Codex Alimentarius Commission. (1995). Codex Standard For Rice. CODEX STAN 198-1995. Damodaran, S and A. Paraf. (1997). Food Proteins and Their Application New York.

  Marcel Dekker, Inc. Frei.M. and K. Becker. (2004). On Rice, Biodiversity & Nutrients. University of Hohenheim, Germany. Haryadi. 2006. Teknologi Pengolahan Beras. Gadjah Mada University Press.

  Yogyakarta. Haryati R. 2008. Pertumbuhan dan biomassa Spirulina sp. dalam skala laboratoris.

  Laboratorium Ekologi dan Biosistematik, Jurnal Jurusan Biologi FMIPA. UndipBIOMA, ISSN: 1410-8801 Vol. 10, No. 1, Hal. 19-22.

  Henrikson, R. (2009). Earth food Spirulina. How this remarkable blue-greenalgae can transform your health and our planet. Ronore Enterprises, Inc. Hawaii USA. 175 p.

  Henrikson, R. (2010). Sprulina Wold Food Updated and Revisied. Ronore Enterprises.

  American. Hoseney, R.C. 1994. Principles of Cereal Science and Technology, 2

  nd

  edition. The American Association of Cereal Chemistry, Inc. USA. Hug C,von der Weid D. Spirulina in the Fight Against Malnutrition. Fondation Antenna Technologies. 2011. Kabinawa. 2006. Spirulina: Ganggang Penggempur Aneka Penyakit. PT AgroMedia Pustaka. Jakarta. Kusnandar, Ferri. (2010). Mengenal Sifat Fungsional Protein. Departemen Ilmu

  Teknologi Pangan – IPB. Liang, S. ; X. Liu ; F. Chen & Z. Chen. (2004). Current Microalgal Helath Food R & D Activities in China. Hydrobiologia. Vol. 512:45-48.

  Lebesi, Dimitra M. and Constantina Tzia. (2009). Effect of the Addition of Different Dietary Fiber and Edible Cereal Bran Source on the Baking and Sensory Characteristic of Cupcakes. Journal Food Bioprocess Technology.

  Matz, S.A. (1992). Bakery Technology and Eginering. 3th edition. Van Nostrand Reinhold. Texas. Prasanna, R., A. Sood, A. Suresh, S. Nayak, & B.D. Kaushik. 2007. Potential and aplications of algal pigment in biology. .Acta Botan. Hungaria 49 (1- 2): 131-

  156.

  Selatan; Fakultas Matematika dan Ilmu Pengetahuan Alam. Lembaga Penelitian Universitas Terbuka. Rahman, R.S.; W.D.R. Putri, dan I. Purwantiningrum. (2015). Karakterisasi Beras

  Tiruan Berbasis Tepung Ubi Jalar Oranye Termodifikasi Heat Moisture Treatment (HMT). Jurnal Pangan dan Agroindustri Vol 3 No 2p. 713-722. Ravi, M., S. Lata De, S. Azharudin and S. F. D. Paul. (2010). The Beneficial Effects of

  Spirulina Focusing on its Immunomodulatory and antioxidant Properties Nutrition and Dietary Supplements.

  Ravichandran, K.; N. M. M. T. Saw; A. A.A. Mohdaly; A. M.M. Gabr; A. Kastell; H.

  Riedel; Z. Cai; D. Knorr; & I. Smetanska. (2013). Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Research International 50: 670 –675.

  Rimbawan dan A. Siagian. (2004). Indeks Glikemik Pangan. Jakarta: Penebar Swadaya. Roy, P., Daisuke, N., Takahiro, O., Hiroshi, O., Mmanasikan, T., Nobutaka, N., and

  Takeo, S. (2010). Cooking Properties of Different From of Rice Cooked With an Automatic Induction Heating System Rice Cooker. As. Food Ag-Ind 3(04). 373-388.

  Sanchez M, et al. Spirulina (Arthrospira): An Edible Microorganism. Universidad Javeriana Bogota;2003. Selmo, M. S. and Salas-Mellado, M. M. (2014). Technological quality of bread from rice flour with Spirulina. International Food Research Journal 21(4): 1523-1528. Setiari, N dan Y. Nurchayanti. (2009). Ekplorasi Kandungan Klorofil beberapa Sayuran Hijau sebagai Alternatif Bahan Dasar Food Supplement. Bioma, 11 (1) : 6-10. Sudarmadji, S.; B. Haryono & E. Suhardi. (1989). Analisa Bahan Makanan. Liberty.

  Yogyakarta. Swinkels, J.J.M. (1985). Source of Starch, its chemistry and physics. Di dalam:G.M.A.V. Beynum dan J.A. Roels (eds). Starch Conversion Technology.

  Marcel Dekker, Inc., New York. Tabita A., (2012). Karakteristik Fungsional Protein Spirulina Platensis. (Skripsi).

  Jurusan Teknologi Pangan. Fakultas Teknologi Pertanian. Unika Soegijapranata. Semarang. Tongsiri, S. Mang-Amphan, K and Y. Peerapornpisal. (2010). Effect of Replacing

  Fishmeal with Spirulina on Growth, Carcass, Composition and Pigment of the

Mekong Giant Catfish . Asian Journal of Agricultural Science 2(3):106-110.

  Wang, L., B. Pan, J. Sheng, J. Xu, and Q. Hu. 2007. Antioxidant activity of Spirulina

  platensis extract by supercritical carbon dioxide ex-traction. Food Chemistry, 105:36-41.

  Winarno, F.G., 2002. Kimia Pangan dan Gizi. Gramedia Pustaka Utama, Jakarta.

7. LAMPIRAN Lampiran 1. Diagram Warna

  • 60 -40 -20

  • 60 -40 -20

  20

  60 Adonan Tepung Ketan +10%Spirulina menit 0 menit 3 menit 6 menit 9 menit 12 menit 15 a b *

  40

  20

  60

  40

  20

  60 Adonan Tepung Ketan + 5% Spirulina menit 0 menit 3 menit 6 menit 9 menit 12 menit 15 a b *

  40

  20

  60

  40

  40

  60 Adonan Tepung Ketan + 1 % Spirulina menit 0 menit 3 menit 6 menit 9 menit 12 menit 15 a* b *

  20

  60

  40

  20

  60 Adonan Tepung Ketan + 0% Spirulina menit 0 menit 3 menit 6 menit 9 menit 12 menit 15 a* b *

  40

  20

  60

  40

  20

  

Konsentrasi Sel Kering Spirulina 0% Konsentrasi Sel Kering Spirulina 1%

Konsentrasi Sel Kering Spirulina 5% Konsentrasi Sel Kering Spirulina 10%

  • 60
  • 40
  • 20
  • 60
  • 40
  • 20
  • 60 -40 -20
  • 60 -40 -20
  • 60
  • 40
  • 20
  • 60
  • 40
  • 20

  Lampiran 2. Kurva Standar Amilosa Kurva Standar Amilosa

  0.4 y = 0.0185x - 0.0055

  0.35 R² = 0.9987

  0.3

  0.25 ansi b

  0.2 absorbansi sor b

  0.15 A Linear

  0.1 (absorbansi)

  0.05

  4

  8

  12

  16

  

20

  24 ppm

  Lampiran 3. Hasil Olah Data dengan SPSS versi 16.0 Uji Viskositas Uji Normalitas Post Hoc One Way Anova

  • .961
  • .934
  • .878

  • .932
  • .914
  • .894
  • .859
  • .931
  • .946
  • .901
  • .833
  • .970
  • .846

  6 .146 menit ke 12 .277 6 .165 .830 6 .108 menit ke 15 .306 6 .083 .726 6 .012 *. This is a lower bound of the true significance.

  6 .893 menit ke 3 .358 6 .015 .758 6 .024 menit ke 6 .279 6 .159 .830 6 .107 menit ke 9 .265 6 .200

  L_10 menit ke 0 .197 6 .200

  6 .113 menit ke 12 .290 6 .124 .810 6 .072 menit ke 15 .276 6 .171 .873 6 .238

  6 .379 menit ke 9 .268 6 .200

  6 .705 menit ke 6 .229 6 .200

  6 .590 menit ke 3 .197 6 .200

  L_5 menit ke 0 .242 6 .200

  6 .187 menit ke 12 .272 6 .187 .850 6 .157 menit ke 15 .293 6 .118 .799 6 .058

  6 .338 menit ke 3 .300 6 .097 .755 6 .022 menit ke 6 .315 6 .064 .874 6 .243 menit ke 9 .254 6 .200

  L_1 menit ke 0 .250 6 .200

  6 .461 menit ke 15 .315 6 .063 .849 6 .156

  6 .596 menit ke 12 .229 6 .200

  6 .261 menit ke 9 .209 6 .200

  6 .611 menit ke 6 .200 6 .200

  6 .827 menit ke 3 .233 6 .200

  L_0 menit ke 0 .215 6 .200

  Shapiro-Wilk Statistic df Sig. Statistic df Sig.

  a

  Pengukusan Kolmogorov-Smirnov

  Uji Warna (L) Uji Normalitas Tests of Normality

a. Lilliefors Significance Correction

  Post Hoc One Way Anova

Lightness Konsentrasi Spirulina 0%

  Duncan a Pengukusan N Subset for alpha = 0.05

  1

  2

  3

  4

  5 6 63.1683 menit ke 15 menit ke 12

  6 63.8300 menit ke 9 6 64.0300 64.0300 6 64.4700 menit ke 6

  6 65.2067 menit ke 3

  6 89.6717 menit ke 0

  

Sig. 1.000 .489 .134 1.000 1.000

Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a Lighness Konsentrasi Spirulina 1% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2 menit ke 15 6 44.8717 menit ke 12 6 45.5150 menit ke 9 6 45.7200 menit ke 6 6 46.2592 menit ke 3 6 47.5833 menit ke 0 6 72.5050

  Sig. .070 1.000 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

   Lightness Konsentrasi Spirulina 5% a

  Duncan Pengukusan N Subset for alpha = 0.05

  1

  2

  3

  4 menit ke 15 6 30.5383 menit ke 12 6 30.6783 menit ke 9 6 31.3717 31.3717 menit ke 6 6 31.7283 31.7283 menit ke 3

  6 32.4950 menit ke 0 6 53.2433

  Sig. .092 .439 .102 1.000 Means for groups in homogeneous subsets are displayed.

  Lightness Konsentrasi Spirulina 10% Duncan a

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3 menit ke 15 6 27.3600 menit ke 12 6 27.5683 menit ke 9 6 28.0967 menit ke 6 6 28.8700 28.8700 menit ke 3

  6 30.0050 menit ke 0 6 44.4317

  Sig. .112 .190 1.000 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Warna (a*) Uji Normalitas Tests of Normality

  Pengukusan Kolmogorov-Smirnov

  a

  Shapiro-Wilk Statistic df Sig. Statistic df Sig. a_0 menit ke 0 .262

  • .895
  • .936
  • .895
  • .936
  • .929
  • .920
  • .974
  • .845
  • .943
  • .911
  • .946
  • .939
  • .950
  • .930
  • .931
  • .986
  • .942
  • . This is a lower bound of the true significance.

  6 .344 menit ke 3 .291 6 .122 .780 6 .038 menit ke 6 .181 6 .200

  6 .444 menit ke 12 .177 6 .200

  6 .678

  6 .976 menit ke 12 .180 6 .200

  6 .589 menit ke 9 .121 6 .200

  6 .578 menit ke 6 .252 6 .200

  6 .737 menit ke 3 .259 6 .200

  6 .654 a_10 menit ke 0 .236 6 .200

  6 .707 menit ke 15 .191 6 .200

  6 .685 menit ke 9 .207 6 .200

  6 .630 menit ke 9 .189 6 .200

  6 .143 menit ke 6 .223 6 .200

  6 .200

  6 .919 menit ke 12 .376 6 .008 .666 6 .003 menit ke 15 .393 6 .004 .635 6 .001 a_5 menit ke 0 .301 6 .094 .830 6 .107 menit ke 3 .232

  6 .507 menit ke 9 .192 6 .200

  6 .570 menit ke 6 .252 6 .200

  6 .200

  6 .346 menit ke 12 .352 6 .020 .829 6 .105 menit ke 15 .291 6 .121 .890 6 .318 a_1 menit ke 0 .214 6 .200

  6 .631 menit ke 3 .164 6 .200

a. Lilliefors Significance Correction

  Post Hoc One Way Anova a a* Konsentrasi Spirulina 0% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3

  4 menit ke 15 6 -1.4867 menit ke 12 6 -1.4283 menit ke 9

  6 -1.2733 menit ke 6 6 -1.2250 menit ke 3 6 -1.0850 menit ke 0 6 -.3133

  Sig. .248 .337 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a a* Konsentrasi Spirulina 1% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2 menit ke 0 6 -5.8700 menit ke 3 6 -3.7050 menit ke 9 6 -3.4817 menit ke 6 6 -3.4733 menit ke 15 6 -3.3817 menit ke 12 6 -3.3233

  1.000 .093 Sig.

  Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a a* Konsentrasi Spirulina 5% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3 menit ke 0 6 -8.1067 menit ke 3 6 -1.6183 menit ke 6

  6 -1.3717 -1.3717 menit ke 9 6 -1.2900 menit ke 12 6 -1.2550 menit ke 15 6 -1.1633

  Sig. 1.000 .094 .192

  a* Konsentrasi Spirulina 10% Duncan a

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3 menit ke 0 6 -8.1883 menit ke 6 6 -1.1033 menit ke 3 6 -1.0767 menit ke 15 6 -1.0000 menit ke 12 6 -.7883 menit ke 9 6 -.7583 Sig.

  1.000 .284 .739 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Warna (b*) Uji Normalitas Tests of Normality

  Pengukusan Kolmogorov-Smirnov

  a

  Shapiro-Wilk Statistic df Sig. Statistic df Sig. b_0 menit ke 0 .202

  • .938
  • .801
  • .967
  • .926
  • .897
  • .913
  • .910
  • .895
  • .903
  • .913
  • .913
  • .875
  • .886
  • .968
  • .902
  • .914
  • .875
  • .939
  • .971
  • .943

  6 .642 menit ke 3 .265 6 .200

  6 .297 menit ke 9 .192 6 .200

  6 .681 menit ke 15 .296 6 .109 .883 6 .283

  6 .901 menit ke 12 .189 6 .200

  6 .653 menit ke 9 .213 6 .200

  6 .247 menit ke 6 .172 6 .200

  6 .200

  6 .466 b_10 menit ke 0 .279 6 .157 .843 6 .139 menit ke 3 .253

  6 .387 menit ke 15 .197 6 .200

  6 .882 menit ke 12 .187 6 .200

  6 .245 menit ke 6 .263 6 .200

  6 .060 menit ke 6 .166 6 .200

  6 .457 menit ke 3 .256 6 .200

  6 .456 b_5 menit ke 0 .204 6 .200

  6 .390 menit ke 15 .182 6 .200

  6 .345 menit ke 12 .211 6 .200

  6 .435 menit ke 9 .251 6 .200

  6 .200

  6 .355 menit ke 3 .236 6 .200

  6 .551 menit ke 15 .307 6 .081 .868 6 .219 b_1 menit ke 0 .249 6 .200

  6 .871 menit ke 9 .294 6 .115 .883 6 .283 menit ke 12 .184 6 .200

  6 .456 menit ke 6 .215 6 .200

  Post Hoc One Way Anova a b* Konsentrasi Spirulina 0% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3 6 3.5150 menit ke 3 6 3.6133 menit ke 9 6 3.6683 menit ke 6 6 4.7550 menit ke 12 6 4.9900 menit ke 15 6 5.5700 menit ke 0

  .287 .088 1.000 Sig.

  Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a b* Konsentrasi Spirulina 1% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3 menit ke 0 6 .3700 menit ke 6 6 3.4600 menit ke 3 6 3.4717 menit ke 12 6 3.5267 menit ke 9 6 3.6183 menit ke 15 6 4.3933

  Sig. 1.000 .215 1.000 Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a b* Konsentrasi Spirulina 5% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2

  3

  4 menit ke 0 6 -1.3300 menit ke 3 6 .5517 menit ke 9

  6 .8617 .8617 menit ke 6 6 .8800 .8800 menit ke 15 6 .9683 menit ke 12 6 1.4000

  Sig. 1.000 .068 .547 1.000

  a b* Konsentrasi Spirulina 10% Duncan

  Pengukusan N Subset for alpha = 0.05

  1

  2 6 -1.4783 menit ke 0 menit ke 9

  6 .3033 menit ke 3 6 .3283 menit ke 12 6 .3483 menit ke 6 6 .4467 menit ke 15 6 .4950

  Sig. 1.000 .084 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Tekstur Uji Normalitas

  Post Hoc One Way Anova Kadar Air Uji Normalitas

  Post Hoc One Way Anova

  Uji Amilosa Uji Normalitas Post Hoc One Way Anova a Amilosa_non_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1 6 2.4740

  Spirulina 10% Spirulina 5%

  6 2.4810 1% 6 2.5227

  Spirulina Spirulina 0%

  6 2.6910 Sig.

  .082 Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a Amilosa_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1

  2

  3 Spirulina 10% 6 1.3803 Spirulina 5% 6 1.4857 1.4857 Spirulina 1% 6 1.6170 Spirulina 0% 6 1.8622 Sig. .121 .057 1.000 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Amilopektin Uji Normalitas Post Hoc One Way Anova a Amilopektin_non_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1 6 97.3090 Spirulina 0% 6 97.4773 Spirulina 1% 6 97.5190 Spirulina 5% 6 97.5260 Spirulina 10%

  .082 Sig.

  Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a Amilopektin_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1

  2

  3 Spirulina 0% 6 98.1378 Spirulina 1% 6 98.3830 Spirulina 5% 6 98.5143 98.5143 Spirulina 10% 6 98.6195 Sig. 1.000 .057 .122 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Aktifitas Antioksidan Uji Normalitas Post Hoc One Way Anova a Antioksidan_non_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1

  2

  3

  4 Spirulina 0% 6 2.4811 Spirulina 1% 6 3.6601 Spirulina 5% 6 5.3821 Spirulina 10% 6 6.9683 Sig. 1.000 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a. Uses Harmonic Mean Sample Size = 6.000. a Antioksidan_kukus Duncan

  Perlakuan N Subset for alpha = 0.05

  1

  2

  3

  4 Spirulina 0% 6 .9932 Spirulina 1% 6 2.4900 Spirulina 5% 6 4.1633 Spirulina 10% 6 5.8700 Sig. 1.000 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

  Uji Protein Uji Normalitas Post Hoc One Way Anova Korelasi Kandungan Amilosa dan Amilopektin terhadap Viskositas Adonan Sebelum Pengukusan

  

Korelasi Kandungan Amilosa dan Amilopektin dengan Tekstur Setelah

Pengukusan

Korelasi Kandungan Antioksidan dengan Warna L, a*, b* Adonan Sebelum

Pengukusan

  

Korelasi Kandungan Antioksidan dengan Warna L, a*, b* Adonan Setelah

Pengukusan Korelasi Tekstur dengan Kandungan Protein