Materi PowerPoint Pembelajaran Mata Kuliah Fisika Dasar

Fisika Dasar I
WAHIDIN ABBAS
FT Mesin UNY
abbas@uny.ac.id



Pengukuran dan Satuan
 Satuan dasar
 Sistem Satuan
 Konversi Sistem Satuan
 Analisis Dimensional



Kinematika Partikel
 Kecepatan dan percepatan rata-rata & sesaat
 Gerak dengan percepatan konstan

Physics 111: Lecture 1, Pg 1


Physics 111: Lecture 1, Pg 2

Physics 111: Lecture 1, Pg 3



Mekanika Klasik (Newton):
 Mekanika: Bagaimana dan mengapa benda-benda
dapat bergerak
 Klasik:
» Kecepatan tidak terlalu cepat (v > atom)



Pengalaman sehari-hari banyak yang terjadi berdasarkan
aturan-aturan mekanika klasik.
 Lintasan bola kasti
 Orbit planet-planet
 dll...
Physics 111: Lecture 1, Pg 4


Units



Bagaimana mengukur dimensi?
Semua ukuran di dalam mekanika klasik dapat dinyatakan
dengan satuan dasar:
 Length L Panjang
 Mass M Massa
 Time T Waktu



Contoh:
 Kecepatan mempunyai satuan L / T (kilometer per jam).
 Gaya mempunyai satuan ML / T2 .

Physics 111: Lecture 1, Pg 5


Panjang:
Jarak
Jari-jari alam semesta
Ke galaksi Andromeda
Ke bintang terdekat
Bumi - matahari
Jari-jari bumi
Sears Tower

Panjang (m)
1 x 1026
2 x 1022
4 x 1016
1.5 x 1011
6.4 x 106
4.5 x 102

Lapangan sepak bola
1.0 x 102
Tinggi manusia

2 x 100
Ketebalan kertas
1 x 10-4
Panjang gelombang sinar biru
4 x 10-7
Diameter atom Hidrogen
1 x 10-10
Diameter proton

1 x 10-15
Physics 111: Lecture 1, Pg 6

Waktu:
Interval
Time (s)
Umur alam semesta
5 x 1017
Umur Grand Canyon
3 x 1014
32 tahun

1 x 109
1 tahun
3.2 x 107
1 jam
3.6 x 103
Perjalanan cahaya dari mh ke bumi 1.3 x 100
Satu kali putaran senar gitar
2 x 10-3
Satu putaran gel. Radio FM
6 x 10-8
Umur meson pi netral
1 x 10-16
Umur quark top
4 x 10-25

Physics 111: Lecture 1, Pg 7

Massa:
Object
Mass (kg)

Galaksi Bima Sakti
4 x 1041
Matahari
2 x 1030
Bumi
6 x 1024
Pesawat Boeing 747
4 x 105
Mobil
1 x 103
Mahasiswa
7 x 101
Partikel debu
1 x 10-9
Quark top
3 x 10-25
Proton
2 x 10-27
Electron
9 x 10-31

Neutrino
1 x 10-38

Physics 111: Lecture 1, Pg 8

Satuan ...


Satuan Internasional, SI (Système International) :
 mks: L = meters (m), M = kilograms (kg), T = seconds (s)
 cgs: L = centimeters (cm), M = grams (gm), T = seconds (s)



Satuan Inggris:
 Inci (Inches, In), kaki (feet, ft), mil (miles, mi), pon (pounds)



Pada umumnya kita menggunakan SI, tetapi dalam masalah

tertentu dapat dijumpai satuan Inggris. Mahasiswa harus dapat
melakukan konversi dari SI ke Satuan Inggris, atau sebaliknya.

Physics 111: Lecture 1, Pg 9

Converting between different systems of units


Useful Conversion factors:
 1 inch = 2.54 cm
 1m
= 3.28 ft
 1 mile = 5280 ft
 1 mile = 1.61 km



Example: convert miles per hour to meters per second:
1


mi
mi
ft
1 m
1 hr
m
1
5280


0.447
hr
hr
mi 3.28 ft 3600 s
s

Physics 111: Lecture 1, Pg 10

Analisis Dimensional



Analisis dimensional merupakan perangkat yang sangat
berguna untuk memeriksa hasil perhitungan dalam sebuah
soal.
 Sangat mudah dilakukan!



Contoh:
Dalam menghitung suatu jarak yang ditanayakan di dalam
sebuah soal, diperoleh jawaban
d = vt 2 (kecepatan x waktu2)
Satuan untuk besaran pada ruas kiri= L
Ruas kanan = L / T x T2 = L x T
Dimensi ruas kiri tidak sama dengan dimensi ruas kanan,
dengan demikian, jawaban di atas pasti salah!!



Physics 111: Lecture 1, Pg 11


Lecture 1, Act 1
Dimensional Analysis


(a)

The period P of a swinging pendulum depends only on
the length of the pendulum d and the acceleration of
gravity g.
 Which of the following formulas for P could be
correct ?

P = 2 (dg)

2

(b)

d
P 2
g

(c)

P 2

d
g

Given: d has units of length (L) and g has units of (L / T 2).
Physics 111: Lecture 1, Pg 12

Lecture 1, Act 1
Solution


Realize that the left hand side P has units of time (T )



Try the first equation

(a)

(a)

L

L



 T2 

2

L4
 4 T
T

2

P 2  dg  (b)

Not Right !!

d
P 2
g

(c)

d
P 2
g

Physics 111: Lecture 1, Pg 13

Lecture 1, Act 1
Solution


(b)

(a)

Try the second equation

L
T 2 T
L
T2

2

P 2  dg  (b)

Not Right !!

d
P 2
g

(c)

d
P 2
g

Physics 111: Lecture 1, Pg 14

Lecture 1, Act 1
Solution


(c)

(a)

Try the third equation

L
 T 2 T
L
T2

2

P 2  dg  (b)

This has the correct units!!
This must be the answer!!

d
P 2
g

(c)

d
P 2
g

Physics 111: Lecture 1, Pg 15

Motion in 1 dimension


In 1-D, we usually write position as x(t1 ).



Since it’s in 1-D, all we need to indicate direction is + or .



Displacement in a time t = t2 - t1 is
x = x(t2) - x(t1) = x2 - x1
x
x

some particle’s trajectory
in 1-D

x2
x1
t1

t

t2

t
Physics 111: Lecture 1, Pg 16

1-D kinematics



Velocity v is the “rate of change of position”
Average velocity vav in the time t = t2 - t1 is:
v av 

x( t 2 )  x( t1 ) x

t 2  t1
t

x
x

trajectory

x2

Vav = slope of line connecting x1 and x2.

x1
t1

t2

t

t
Physics 111: Lecture 1, Pg 17

1-D kinematics...


Consider limit t1

t2



Instantaneous velocity v is defined as:
v( t ) 

x
x

dx( t )
dt

so v(t2) = slope of line tangent to path at t2.
x2
x1
t1

t2

t

t
Physics 111: Lecture 1, Pg 18

1-D kinematics...



Acceleration a is the “rate of change of velocity”
Average acceleration aav in the time t = t2 - t1 is:
aav 



v ( t 2 )  v ( t1 ) v

t 2  t1
t

And instantaneous acceleration a is defined as:
dv ( t ) d 2 x( t )
a( t ) 

dt
dt 2
using

v( t ) 

dx( t )
dt

Physics 111: Lecture 1, Pg 19

Recap


If the position x is known as a function of time, then we can
find both velocity v and acceleration a as a function of time!
x
x  x( t )

dx
v 
dt
dv
d 2x
a 
 2
dt
dt

v

a

t

t
t

Physics 111: Lecture 1, Pg 20

More 1-D kinematics



We saw that v = dx / dt
In “calculus” language we would write dx = v dt, which we
can integrate to obtain:
t2

x (t 2 )  x (t1 )  v (t )dt
t1



Graphically, this is adding up lots of small rectangles:
v(t)

+ +...+
= displacement
t
Physics 111: Lecture 1, Pg 21

1-D Motion with constant acceleration


n
High-school calculus: t dt 



dv
a

Also recall that
dt

1
t n 1  const
n 1



Since a is constant, we can integrate this using the above
rule to find:
v  a dt a dt at  v 0



Similarly, since v 

dx
we can integrate again to get:
dt

1
x  v dt  ( at  v 0 )dt  at 2  v 0 t  x0
2

Physics 111: Lecture 1, Pg 22

Recap


So for constant acceleration we find:

Plane
w/ lights

x
1
x  x0  v 0 t  at 2
2
v v 0  at
a const

t

v

a

t

t

Physics 111: Lecture 1, Pg 23

Lecture 1, Act 2
Motion in One Dimension


When throwing a ball straight up, which of the following is
true about its velocity v and its acceleration a at the
highest point in its path?

(a) Both v = 0 and a = 0.
(b) v  0, but a = 0.

y

(c) v = 0, but a  0.

Physics 111: Lecture 1, Pg 24

Lecture 1, Act 2
Solution


Going up the ball has positive velocity, while coming down
it has negative velocity. At the top the velocity is
momentarily zero.
x



Since the velocity is
continually changing there must
be some acceleration.
v
 In fact the acceleration is caused
by gravity (g = 9.81 m/s2).
 (more on gravity in a few lectures)
a



The answer is (c) v = 0, but a  0.

t
t

t

Physics 111: Lecture 1, Pg 25

Derivation:
v v 0  at


Solving for t:

t

v  v0
a

1
x  x0  v 0 t  at 2
2


Plugging in for t:

 v  v0  1  v  v0 
x  x0  v 0 
  a

a
2
a





2

2

v 2  v 0 2 a( x  x0 )

Physics 111: Lecture 1, Pg 26

Average Velocity


Remember that v v 0  at
v
v
vav
v0

t
t

v av 

1
v 0  v 
2

Physics 111: Lecture 1, Pg 27

Recap:


For constant acceleration:

Washers

1
x  x0  v 0 t  at 2
2
v v 0  at

a const


From which we know:
v 2  v 02 2a(x  x0 )
1
v av  (v 0  v)
2

Physics 111: Lecture 1, Pg 28

Problem 1


A car is traveling with an initial velocity v0. At t = 0, the
driver puts on the brakes, which slows the car at a rate of
ab

vo
ab

x = 0, t = 0

Physics 111: Lecture 1, Pg 29

Problem 1...


A car is traveling with an initial velocity v0. At t = 0, the
driver puts on the brakes, which slows the car at a rate of
ab. At what time tf does the car stop, and how much farther
xf does it travel?
v0

ab

x = 0, t = 0
v=0

x = x f , t = tf

Physics 111: Lecture 1, Pg 30

Problem 1...


Above, we derived: v = v0 + at



Realize that a = -ab



Also realizing that v = 0 at t = tf :
find 0 = v0 - ab tf or
tf = v0 /ab

Physics 111: Lecture 1, Pg 31

Problem 1...


To find stopping distance we use:
v 2  v 02 2a(x  x0 )



In this case v = vf = 0, x0 = 0 and x = xf

2

 v 0 2(  ab ) xf
2

v
xf  0
2 ab

Physics 111: Lecture 1, Pg 32

Problem 1...


So we found that

2
1 v0
tf 
, xf 
ab
2 ab

v0



Suppose that vo = 65 mi/hr = 29 m/s



Suppose also that ab = g = 9.81 m/s2


Find that tf = 3 s and xf = 43 m

Physics 111: Lecture 1, Pg 33

Tips:


Read !
 Before you start work on a problem, read the problem
statement thoroughly. Make sure you understand what
information is given, what is asked for, and the meaning
of all the terms used in stating the problem.



Watch your units !
 Always check the units of your answer, and carry the
units along with your numbers during the calculation.



Understand the limits !
 Many equations we use are special cases of more
general laws. Understanding how they are derived will
help you recognize their limitations (for example,
constant acceleration).
Physics 111: Lecture 1, Pg 34

Recap of today’s lecture





Scope of this course
Measurement and Units (Chapter 1)
 Systems of units
(Text: 1-1)
 Converting between systems of units
(Text: 1-2)
 Dimensional Analysis
(Text: 1-3)
1-D Kinematics
(Chapter 2)
 Average & instantaneous velocity
and acceleration
(Text: 2-1, 2-2)
 Motion with constant acceleration
(Text: 2-3)



Example car problem

(Ex. 2-7)



Look at Text problems Chapter 2: # 6, 12, 56, 119

Physics 111: Lecture 1, Pg 35