inetika Pertumbuhan Fermentasi | Blog Mas'ud Effendi

Kinetika Pertumbuhan

Agroindustri Produk Fermentasi

Kompetensi yang Diharapkan




Menguasai kinetika pertumbuhan
mikroorganisme sehingga tepat penerapannya
untuk operasi industri fermentasi secara batch,
kontinyu dan fed-batch.
Menguasai kinetika pertumbuhan
mikroorganisme sehingga tepat penerapannya
untuk operasi industri fermentasi produk
metabolit primer, metabolit sekunder, biomassa
sel, dan produk biotransformasi.

1


Microbial Growth

Microbial Cell Growth


Mode of Growth


Selective assimilation of nutrients and
convert into and also include Chemical
rearrangement of protoplasmic material
characteristic of the particular organism
 Production of an increased amount of
nuclear substance and cell division

2

Growth Phase

Growth Phase







Induction Phase (Lag Phase)
Transient Phase (Acceleration Phase)
Exponential Phase
Stationary Phase (Declining Phase)
Death Phase

3

Question Sheet






Why microbial growth have an lag phase?
Why death phase could be occurred in microbial
growth?
What is essential nutrient for growth of organism
especially prokaryotes?
What is important factor for cell division?

Growth Approximation

4

Growth Constants
Exponential – Stationary Growth Phase
G  (Xm  Xi )

Total Biomass Production(G)

Incident growth rate, Incident mean division rate ()
 ln XX2  1 dX
1 

  
 
 t  t  X dt
 2 1
Specific growth rate, Beginning mean division rate ()

  lim
t 0

1 dX

X dt

Doubling time of population (D); exponential growth phase

D 

ln 2



Classical Growth Kinetics
Empirical Approximation


Monod Growth Kinetic



Tessier Growth Kinetic



Moser Growth Kinetic



Contois Growth Kinetic

μ  μ 


s
Κs  s

    1  e  s / K



    1  Ks  s  

   

s

1

s
B X  s

5


Empirical Growth Kinetics
Medium constituent Inhibition



Aiba Growth Kinetic

s
   
Ks  s 
   

i

Andrews Growth Kinetic

K
2
s




s Kp

K s  s  K p  p

Growth Kinetics
Multiple essential nutrient


Bailey Growth Kinetic

s1
s2
s3
   


 ...
K s1  s1 K s 2  s2 K s 3  s3


6

Home Work


Which kinetic approximation do you choose in case of
microbial growth of Hepatotoxin produced Oscilatoria
Agardhii NIVA CYA 97 in low temperature?
Which empirical equation that you choose of inoculation
of microorganism in case of multiple content limitation of
nutrients, such as Mg2+, phosphate, Nitrate and organic
compound?
Which kinetic approximation do you choose of
cultivation photosynthetic microorganism that did not
grew up in pH above 7.8?






Simple Bio-Production Kinetic


Cellular growth rate




Monod approximation
s
μ  μ 
Κs  s
Yield factor

YX / s 



X    dXdt 

s  dsdt 

dX
 μ   X
dt

YP / X 

Substrate Utilization

Product Formation
(Beginning of Stationary Phase)

dX
s X
 μ
dt
Ks  s

P    dPdt 
X   dXdt 


ds
μ
s X


dt Y X / s K s  s

dP
s X
 YP / X   
dt
Ks  s

7

Environmental
Alteration Studies

Microbial Growth Kinetic
Enviromental Condition




Direct Effects
 Light Illumination (Energy Source)
 Temperature
 Essential nutrients content
Indirect Effects
 Gas inlet volumetric rate
 Gas inlet content
 Liquid circulation rate
 Non essential nutrients content

8

Light Illumination Effect


Oscillatoria agardhi Gomont


(Post AF, R de Witt, LC Mur, J. Plank. Res., 7 (1985) 487-495)

Temperature effect


Modified Arhenius Model

  Ae

 Ea / RT



  
1 e
T

T

Sd
R

H d
R

9

Temperature Effect
Classification of Microorganism

Question Sheet







What is happen if microorganism is at 90oC? Why?
In case of decreasing of temperature about 20oC from
optimum temperature, what is happen in case of microbial
growth rate?
In case of ethanol production that was S. sake have
ethanol tolerance around 10%, what do you do to make an
whisky industry?
Why a shade microbe does not grew well in high light
illumination and commonly have not high temperature
resistance?

10

Temperature Effect
Cellular Consideration


Psychrophile

Obligate







Facultative







Anabena cylindrica Lemmerman
Oscillatoria Agardhi Gomont
Nostoc commune Antartica

Mesophile





Protococcus Agardh SS 100-3
Oscillatoria redekei Van Goor
Oscillatoria sp. SS 100-5



Synechococcus leopoliensis
Anabaena variabilis IAM M3
Microcystis Aeruginosa IAM M228

Thermophile




Mastigocladus laminosus HTF
Synechococcus lividus OH75S
Synechcocus elongatus It 7S

Home Work





Why optimum specific growth rate values of
psychrophile factually, lower than thermophile?
Why GC content of microbial DNA is important
for classification of organism in terms of growth
rate dependence on temperature?
What is DBI?

11

Microbial Kinetic Studies

Non Elementer Reaction




ds
 k  sn
dt
N = integer

Common reaction rate




N = non integer
Non Elementer Example :

Elementer
Non Elementer

CH 3CHO  CH 4  CO

H 2  Br2  2HBr



3
d CH 3CHO 
 k  CH 3CHO  2
dt



d Br2  k1 'Br2  2  H 2 

dt
[ HBr ]  k 2 'Br2 
3

12

Reaction Mechanism
2 NO  2 H 2  N 2  2 H 2O

2 NO  N 2O2
k1

N 2 O 2  H 2  N 2  H 2 O2
k1

k2

H 2  H 2 O2  2 H 2 O
k3

d H 2O2 
0
dt

d N 2O2 
0
dt

N 2O2 / H 2O2

k 2   N 2 O 2   H 2   k 3  H 2 O 2   H 2   0

k1  NO  k1  N 2O2   k2  N 2O2  H2   0
2

H 2 O 2   k 2  N 2 O 2 
k3
2
N 2O2   k1  NO 
k 1  k 2 1  H 2 

 k1
d N 2 
NO 2   H   k1  k2  NO 2  H 2 
 k 2  N 2O2  H 2   k 2  
2

dt
k 1  k 2
1  H 2 
 k 1  k 2 1  H 2  

Question Sheet




What is mechanism path?
What definition of intermediate species?
What was become determining factor of reaction
rate?

13

Microbial Growth
Enzymatic Reaction/Kinetic consideration




E  S  ES



Reaction mechanism



Kinetic equation

 s
Km  s

k1

 

Substrate Actvation and Inhibition


k2

k1

E  S  ES

ES  S  ES 2

E  S  ES

ES  P  E

Reaction mechanism

k1



ES  P  E

Michaelis-Menten Kinetics

k2

 s
 
K m  s  s 2 / Ki
Product Activation and Inhibition


Kinetic equation



Reaction mechanism

k 1

k2

k1



Kinetic equation

k 1

   

k 2

sKp

K s  s  K p  p 

ES  P  E
k3

ES  P  ESP
k3

k 3

Michaelis-Menten Kinetics


E  S  ES

Reaction mechanism

k1



k 1

E0  E  ES 

Kinetic derivation

ES  P  E
k2

ES 0  0

d
dt

ES   0
ES   k1  S  E  k 1  k 2   ES 

d
dt

P  k 2  ES  

d
dt

ES  

k1
k1
S E 
 S E0  ES 
k 1  k 2
k 1  k 2
ES   Ek0  S k
S  1 2
k1

k2  E0  S

k k 
S   1 2 
 k1 



dtd P max  S
S  Km

14