Institutional Repository | Satya Wacana Christian University: Penguataudio Kelas D Tanpatapis LC dengan Modulasi Tigaaras

PENGUAT AUDIO KELAS D TANPA TAPIS LC DENGAN
MODULASI TIGA ARAS
oleh
Suryo Santoso
NIM : 612007021

Skripsi
Untuk melengkapi salah satu syarat memperoleh
Gelar Sarjana Teknik
Program Studi Teknik Elektro
Fakultas Teknik Elektronika dan Komputer
Universitas Kristen Satya Wacana
November 2012

INTISARI

Penguat audio kelas D mempunyai kelebihan pada efisiensi dayanya yang sangat
besar (dapat mencapai 90%) jika dibandingkan penguat konvensional lainnya (A, B dan
AB). Penguat audio kelas D akan menghasilkan komponen frekuensi audio masukan dan
frekuensi tinggi hasil pensaklaran pada keluarannya sebagai akibat dari proses modulasi
yang terjadi pada penguat kelas D. Untuk menapis frekuensi tinggi ini digunakan tapis LC

pada bagian keluarannya (sebelum penyuara). Pada aplikasi yang sangat portable seperti
pada cell phone, USB speaker, LCD TV dan notebook PC, penguat kelas D dengan tapis
LC sulit digunakan karena tapis LC memerlukan tempat yang relatif luas (sekitar 75% dari
luas PCB yang dipakai). Oleh karena permasalahan di atas, dikembangkan suatu penguat
audio kelas D yang tidak menggunakan tapis LC pada bagian keluaran dengan teknik
modulasi dengan tiga aras keluaran.
Teknik modulasi/penyandian yang dipakai dalam perancangan penguat kelas D
tanpa tapis LC ini adalah noise-shaping coding yang dapat mengatasi permasalahan
mengenai kestabilan yang muncul pada modulasi sigma delta orde tinggi. Pada penguat
kelas D ini tiga aras keluaran diwujudkan menggunakan penguat jembatan penuh (Full -

Bridge) dengan MOSFET. Tapis LC dapat dieliminasi sehingga keluaran dari MOSFET
langsung dihubungkan ke penyuara.
Penguat kelas D yang telah dibuat mempunyai spesifikasi antara lain : daya keluaran
maksimum 7 Watt pada beban 4 Ohm, tanggapan frekuensi 20 Hz – 20 kHz dengan toleransi 0,5 dB,
SNR = 28,88 dB, THD < 0,976% pada daya keluaran maksimum penguat (7 Watt), dan besarnya
efisiensi dari penguat 65,03%.

ABSTRACT
Class D audio amplifier has an advantage in its very high power efficiency (up to 90%)

compare to other conventional amplifier (A, B and AB). Class D audio amplifier produces audio input
frequency plus high frequency switching as a result of the modulation process that occurs in the class D
amplifier. LC filter (before speaker) is needed to filter out that high frequency switching. In the portable
applications such as cell phones, USB speaker, LCD TV and notebook PCs, class D amplifier with LC
filters is hard to use because the LC filter requires a relatively large space (about 75% of the total PCB
were used). Because of these problems, there is developed a filter-free class D audio amplifier which
does not use the LC filter at the output using three level modulation output.
The Modulation/coding technique that used in the design of a class D amplifier without LC
filter is noise-shaping coding that can improve the SNR. In this class D amplifier, three level modulation
output is realized using full-bridge amplifier with a MOSFET. LC filter can be eliminated so the output
of the MOSFET can directly connect to speaker.
The Class D amplifier that has been made have a specifications such as : maximum output
power 7 Watt at 4 Ohm load, THD < 0,976% at maximum output power (7 Watt), amplifier sensitivity
0.1 V / W, SNR = 28.88 dB, frequency response 20 Hz - 20 kHz with a tolerance of 0,5 dB and the
efficiency of the amplifier is 65.03%.

KATA PENGANTAR
Segala puji syukur dan hormat serta rasa terima kasih penulis panjatkan ke hadirat Tuhan Yesus
Kristus yang Maha Pengasih dan Maha Penyayang sehingga karena penyertaan-Nya penulis dapat
menyelesaikan tugas akhir ini dengan baik.

Selain itu penulis juga ingin mengucapkan terima kasih kepada pihak-pihak yang telah
memberikan bimbingan, bantuan, dan dukungan untuk penulisan tugas akhir ini, yaitu:

1. Papah dan Mamah yang telah memberikan dukungan moral, material, doa, kasih
sayang dan kesabaran selama ini yang mungkin tidak akan terbalaskan.
2. Bapak F. Dalu Setiaji, M.T dan DR. Matias H.W. Budhiantho selaku Pembimbing
yang dengan sabar dan tekun telah membimbing, mendukung, memberi saran serta
koreksi yang berharga serta sebagai rekan diskusi agar Tugas Akhir ini dapat
diselesaikan dengan baik.
3. Semua dosen-dosen FTJE lainnya yang tidak mungkin disebutkan satu-persatu. Terima kasih atas
ilmu yang kalian berikan padaku selama kuliah di sini.
4. Cik Lani dan koh Agung terima kasih banyak atas dukungan dan perhatian yang telah kalian
berikan.

5. Susuk, Sukme dan keluarga (Ivan, Anita dan Robert) atas dukungan moral dan
materialnya.
6. Keluarga besar Cashpho Corner : Dirga, Andree, Mario, Matius, Ragiel, Yohan,
Kevin, Budi dan teman-teman lainnya yang tidak bisa disebutkan satu persatu.
Terimakasih atas bantuannya selama pembuatan skripsi ini terutama untuk aGan
Andree. “Don’t worry be Cashpho”

7. Roni atas sumbangan ide-idenya; Rere atas bantuannya mendapatkan jurnal-jurnal
pendukung skripsi ini; koh Yuzz atas bantuannya membuat box di saat-saat terakhir;
Codot, Pek2, Tepoz, Theo, Heri, Pepe; serta teman-teman 2007 lainnya yang tidak
bisa saya sebutkan satu persatu. Terimakasih telah memberikan warna kehidupan
penulis selama di elektro UKSW.
8. Rekan-rekan seperjuangan 1 Oktober: Mas Oong, Mas Widji, Mas Onne. Tidak lupa
juga untuk rekan-rekan di lab-XT lainnya: Mas Re, Pak Ko, Koh Otot, Black, Danus .
Terimakasih banyak atas dukungannya! Sukses selalu!
9. Rekan-rekan elektro 2004-2008 yang telah menjadi bagian dari kehidupan penulis
selama di elektro yang tidak bisa saya sebutkan satu persatu. Terimakasih!

10. Laboran-laboran (Pak Bambang, Pak Harto, Mas Hari dan Pak Budi) serta semua
pihak yang telah membantu selama kuliah di UKSW.
11. Mbak Tien, Mbak Rista dan Mbak Dita beserta seluruh staff TU FTJE.
12. Dan pihak-pihak yang tidak dapat disebutkan satu persatu oleh penulis.
Penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna namun penulis berharap
semoga Tugas Akhir ini dan segala kerja penulis dapat bermanfaat bagi pembaca.
Salatiga, November 2012
Penulis


DAFTAR ISI

INTISARI ................................................................................................................................ i
ABSTRACT..............................................................................................................................ii
KATA PENGANTAR .............................................................................................................. iii
DAFTAR ISI............................................................................................................................. v
DAFTAR GAMBAR................................................................................................................ viii
DAFTAR TABEL..................................................................................................................... xii
DAFTAR SIMBOL...................................................................................................................xiii
BAB I PENDAHULUAN.........................................................................................................1
1.1. Latar Belakang Masalah........................................................................................ 1
1.2. Spesifikasi Perancangan Penguat Kelas D Tanpa TapisLC................................... 5
1.3. Sistematika Penulisan............................................................................................ 5
BAB II DASAR TEORI........................................................................................................... 7
2.1. Modulator pada Penguat Kelas D.......................................................................... 8
2.1.1. Modulasi Lebar Pulsa (PWM) dan Modulasi Rapat Pulsa (PDM)............. 9
2.1.2. Sigma Delta Modulation (SDM)................................................................. 11
2.1.2.1. Pulse Code Modulation (PCM)........................................................ 12
2.1.2.2. Pemodelan Secara Linear Modulasi Sigma Delta.............................15
2.1.3. Noise-Shaping Coding................................................................................ 19

2.2. Tingkat Daya dengan MOSFET............................................................................ 22
2.2.1. Konsep MOSFET........................................................................................ 22
2.2.2. MOSFET konfigurasi Jembatan Penuh (Full Bridge).................................24

BAB III PERANCANGAN PENGUAT KELAS D TANPA TAPIS LC PADA BAGIAN
KELUARAN DENGAN MODULASI TIGA ARAS................................................. 26
3.1. Perancangan Loop Filter G(s) pada Teknik Penyandian Noise-Shaping...............28
3.2. Perancangan Bagian Pengkuantisasi......................................................................36
3.2.1. Perancangan Komparator dan DFF............................................................. 38
3.2.2. Perancangan Switching Logic dan Pre-Drive..............................................40
3.2.2.1. Switching Logic.................................................................................40
3.2.2.2. Rangkaian Pre-Drive........................................................................ 42
3.2.3. Perancangan Bagian Tingkat Daya dengan MOSFET................................ 44
3.2.4. Gambaran Perancangan Secara Keseluruhan.............................................. 46
BAB IV PENGUJIAN PENGUAT KELAS D TANPA TAPIS LC.......................................... 48
4.1. Pengujian Kinerja Modulator.................................................................................48
4.1.1. Pengujian Tanggapan Frekuensi NTF dan STF...........................................49
4.1.1.1. Pengujian Tanggapan Frekuensi NTF...............................................49
4.1.1.2. Pengujian Tanggapan Frekuensi STF............................................... 50
4.1.2. Pengujian Kestabilan Modulator................................................................. 53

4.1.3. Pengujian Pembentukan Derau (Noise-Shaping) yang Terjadi pada
Bagian Keluaran Penguat............................................................................56
4.2. Pengujian Kinerja Keseluruhan Penguat............................................................... 58
4.2.1. Pengukuran Daya Keluaran Maksimum......................................................58
4.2.2. Pengukuran THD.........................................................................................60
4.2.3. Pengukuran Tanggapan Frekuensi...............................................................62
4.2.4. Pengukuran Kepekaan Penguat................................................................... 66

4.2.5. Pengukuran Signal to Noise Ratio (SNR)................................................... 67
4.2.6. Pengukuran Efisiensi Penguat Kelas D Tanpa Tapis LC.............................68
BAB V PENUTUP....................................................................................................................71
5.1. Kesimpulan............................................................................................................ 71
5.2. Saran Pengembangan............................................................................................. 72
DAFTAR PUSTAKA ............................................................................................................... 73
LAMPIRAN .............................................................................................................................75

DAFTAR GAMBAR
Gambar 1.1

Blok Diagram Kelas D Secara Umum


2

Gambar 1.2.a

Bentuk Gelombang dengan Dua Aras Keluaran

3

Gambar 1.2.b

Bentuk Gelombang dengan TigaAras Keluaran

3

Gambar 1.3

Keluaran Modulator pada Penguat Kelas D Dua Aras Keluaran ketika

4


Tidak Diberikan Isyarat Masukan (OUT+ dan OUT- Terhubung ke
Penyuara)
Gambar 2.1.a

Blok Diagram Kelas D dengan Dua Aras Keluaran

7

Gambar 2.1.b

Blok Diagram Kelas D dengan Tiga Aras Keluaran

7

Gambar 2.2

Blok Diagram Penguat Kelas D Menggunakan Metode PWM

9


Gambar 2.3

Contoh Keluaran Isyarat PWM

10

Gambar 2.4

Blok Diagram Penguat Kelas D Menggunakan SDM

10

Gambar 2.5

Contoh Keluaran Isyarat PDM (bawah) dengan Isyarat Masukan (atas)

11

Gambar 2.6


Diagram Kotak SDM

12

Gambar 2.7

Transfer Karakteristik dari 3-bit Pengkuantisasi

13

Gambar 2.8

Model Linear dari Proses Kuantisasi

13

Gambar 2.9

FFT dari Proses N-bit Kuantisasi dengan Frekuensi Sampling Fs

14

Gambar 2.10

FFT dari Proses N-bit Kuantisasi dengan Frekuensi Sampling kFs

15

Gambar 2.11

Blok Diagram dari SDM Menggunakan Model Linear pada Bagian

15

Pengkuantisasinya
Gambar 2.12

Diagram Kotak Noise Transfer Function

16

Gambar 2.13

Diagram Kotak Signal Transfer Function

16

Spektrum Isyarat Keluaran Modulator dengan Derau yang Telah
Gambar 2.14

Dibentuk pada Frekuensi Tinggi

17

Gambar 2.15

Noise-Shaping pada SDM untuk Orde 1, 2 dan 3

18

Gambar 2.16

Diagram Kotak Noise-Shaping Coding

19

Gambar 2.17

Tapis

Gambar 2.18

Karakteristik Ideal

Gambar 2.19.a

Konfigurasi Half Bridge

24

Gambar 2.19.b Konfigurasi Full Bridge

24

pada Noise-Shaping Coding


MOSFET Saluran-n Tipe Peningkatan

20
23

Gambar 2.20.a

Kondisi MOSFET pada Full Bridge MOSFET ketika Ada Aliran Arus
pada Penyuara

25

Gambar 2.20.b Kondisi MOSFET pada Full Bridge MOSFET ketika Tidak Ada
Gambar 3.1

Aliran Arus pada Penyuara

25

Blok Diagram Penguat Kelas D Tanpa Tapis LC dengan

26

Menggunakan Modulasi Tiga Aras Keluaran
Gambar 3.2

Gambar Tanggapan Frekuensi dari

Gambar 3.3

Hasil Simulasi MATLAB Letak Kutub dan Nol tapis

31

Gambar 3.4

Blok Diagram dari Tapis Orde 5 yang Akan Dirancang dalam Bentuk

31

Hasil Simulasi MATLAB

30

Observer Canonical
Gambar 3.5

Hubungan Bentuk Observer Canonical dengan Rangkaian RC-Opamp

33

Gambar 3.6

Rangkaian dari Tapis

33

Gambar 3.7

Rangkaian untuk Mensimulasikan Tanggapan Frekuensi

Gambar 3.8

Hasil Simulasi Tanggapan

yang Dirancang

dan

dan

dengan Menggunakan

34
35

Perangkat Lunak Circuit Maker
Gambar 3.9

Diagram Kotak Tapis

Gambar 3.10

Rangkaian Keseluruhan dari Tapis

36
dengan Menggunakan RC-

36

Opamp
Gambar 3.11

Diagram Kotak Bagian Pengkuantisasi

37

Gambar 3.12

Rangkaian Komparator dan DFF yang Dirancang

38

Gambar 3.13

Rangkaian Penghasil Gelombang Kotak dengan Menggunakan

39

Komponen XR2206
Gambar 3.14

Bentuk Gelombang pada MOSFET M1 dan M2

41

Gambar 3.15

Dead-time (biru muda) pada Bagian Keluaran MOSFET

41

Gambar 3.16

Rangkaian Switching Logic

41

Gambar 3 .17

MOSFET yang Dikonfigurasikan Jembatan Penuh

42

Gambar 3.18

Rangkaian Totem Pole dengan Transistor Sebagai Rangkaian Pre-

43

Drive
Gambar 3.19

Kondisi MOSFET ketika Keluarannya adalah ’1’

45

Gambar 3.20

Diagram Kotak Perancangan Penguat Kelas D Keseluruhan

46

Gambar 4.1

Gambaran Pengujian Tanggapan Frekuensi NTF

49

Gambar 4.2

Hasil Pengujian TanggapanFrekuensi NTF

50

Gambar 4.3

Gambaran Pengujian Tanggapan Frekuensi STF

51

Gambar 4.4

Hasil Pengujian Tanggapan Frekuensi STF

53

Gambar 4.5

Ilustrasi Keterbatasan Isyarat

54

Gambar 4.6

Pengujian Isyarat

55

pada Keseluruhan Penguat Kelas D yang Telah

Dibuat
Gambar 4.7

Keterbatasan Isyarat

Gambar 4.8

Gambaran Pengujian Pembentukan Derau yang Terjadi pada Bagian

yang Diamati dengan Osiloskop

55
56

Keluaran Penguat Kelas D Tanpa Tapis LC yang Telah Dibuat
Gambar 4.9

Spektral Derau yang Terbentuk pada Keluaran Penguat Kelas D Tanpa

57

Tapis LC yang Dirancang
Gambar 4.10

Gambaran Pengukuran Daya Keluaran dari Penguat Audio

58

Gambar 4.11.a

Spektrum Keluaran Penguat Ketika Tegangan Keluaran Sebesar 5,3

59

Volt.
Gambar 4.11.b

Spektrum Keluaran Penguat Ketika Tegangan Keluaran Sebesar 5,7

59

Volt.
Gambar 4.12

Grafik THD vsfrekuensi

62

Gambar 4.13

Skema Rangkaian yang Digunakan untuk Pengujian Tanggapan

64

Frekuensi
Gambar 4.14

Gambaran Metode Pengukuran Tanggapan Frekuensi dari Penguat

64

Kelas D
Gambar 4.15

Grafik Tanggapan Frekuensi dari Penguat Kelas D Tanpa Tapis LC

66

yang Dirancang
Gambar 4.16

Gambaran Pengujian SNR dari Penguat Audio Kelas D Tanpa Tapis

67

LC
Gambar 4.17

Gambaran Pengukuran Efisiensi Penguat Kelas D TanpaTapis LC

69

Gambar A.1

Untai Active Baxandall Tone Control

75

Gambar A.2

Bagian Frekuensi Bass Untai Active Baxandall Tone Control

75

Gambar A.3

Bagian Frekuensi Treble Untai Active Baxandall Tone Control

76

Gambar A.4

Untai Tone Control Baxandall Keseluruhan

78

Gambar A.5

Tanggapan Untai Tone Control Baxandall yang Dirancang

78

Gambar B.1

Penguat Audio Kelas D TanpaTapis LC Tampak Depan

80

Gambar B.2

Penguat Audio Kelas D TanpaTapis LC Tampak Belakang

80

Gambar B.3

Rangkaian Penguat Audio Kelas D Tanpa Tapis LC yang Telah

81

Dirancang dan Dibuat
Gambar C.1

Rangkaian Tapis Lolos Rendah (LPF) Orde 4 Tanggapan Butterworth

82

Gambar C.2

Tanggapan Tapis Lolos Rendah yang Dirancang (Frekuensi Penggal

82

30 kHz)
Gambar C.3

Rangkaian Keseluruhan yang Digunakan untuk Pengukuran

82

DAFTAR TABEL
Tabel 2.1

Kondisi Tiap MOSFET pada Konfigurasi Full Bridge dan

25

Keluarannya
Tabel 3.1

Tabel Kondisi Masukan dan Keluaran Bagian Pengkuantisasi

37

Tabel 3.2

Kondisi Isyarat , dan Kondisi Tiap MOSFET Beserta

40

Keluarannya
Tabel 3.3

Tabel Logika Keluaran Switching Logic

42

DAFTAR SIMBOL
= jarak aras kuantisasi (quantization step)

N

= banyak bit keluaran pada pengkuantisasi

Q(x)

= keluaran pengkuantisasi dengan x adalah isyarat masukan

A

= amplitudo dari isyarat sinusoidal

fs

= frekuensi pencuplikan (Hz)

fb

= lebar pita frekuensi audio (20 kHz)

OSR

= oversampling ratio

Q(.)

= pengkuantisasi

k

= orde dari loop filter pada modulasi sigma delta
= periode dari frekuensi cuplik

W(s)

= loop filter pada modulasi sigma delta

G(s)

= loop filter pada noise-shaping coding

e(t)

= isyarat error yang telah ditapis oleh tapis W(s)

Ig

= arus gerbang yang dibutuhkan MOSFET pada proses
pensaklaran (Ampere)

Qg

= total muatan gerbang MOSFET

ttransition

= waktu transisi MOSFET dari kondisi ’low’ menuju ’high’ atau
sebaliknya

DAFTAR SINGKATAN
PWM

Pulse Width Modulation

PDM

Pulse Density Modulation

SDM

Sigma Delta Modulation

PCM

Pulse Code Modulation

NTF

Noise Transfer Function

STF

Signal Transfer Function