Analisis Peningkatan Kinerja Soft Handoff Tiga BTS Dengan Menggunakan Model Propagasi Okumura

BAB II
PEMODELAN PROPAGASI

2.1

Umum
Kondisi komuni
komunikasi seluler sulit diprediksi, karena berger
gerak dari satu sel

ke sel yang lain.
n. Secara umum terdapat 3 komponenn pr
propagasi yang
menggambarkan kondi
kondisi dari komunikasi seluler yaitu pathloss,
oss, shadowing dan
multipath fading. Kondi
ondisi propagasi diilustrasikan seperti Gambar
bar 2.1 [[2].

Gambar 2.1 Komponen propagasi

Free space loss, diasumsikan bahwa propagasi hanya te
terjadi pada satu
lintasan dan tidak terj
terjadi refleksi serta lintasan harus bebas halanga
angan. Free space
loss terjadi akibatt aadanya penyebaran daya yang diradiasika
sikan oleh antena
pemancar. Faktor ya
yang mempengaruhi adalah frekuensi dan jarak lintasan
gelombang.

Pathh

loss

merupakan

komponen

determinist

nistik

dari

RSS
6

Universitas Sumatera Utara

(received signal strength), yang dapat dievaluasi oleh model rugi-rugi lintasan
propagasi. Shadowing disebabkan karena halangan terhadap jalur garis pandang
(LOS) antara pemancar dan penerima oleh bangunan, bukit, pohon dan lain-lain.
Multipath fading timbul karena pantulan multipath dari gelombang yang
dipancarkan oleh benda-benda seperti rumah, bangunan, struktur-struktur lain
buatan manusia, juga kondisi alam seperti hutan yang berada di sekitar UE
(user equipment) [3,4,5].
Sistem seluler diharapkan memiliki efisiensi spektral yang tinggi dan
memberikan cakupan layanan yang luas. Agar dapat mengurangi dampak dari
lingkungan propagasi dan mentoleransi noise dan interferensi yang tinggi,
sistem ini akan membutuhkan :

1. arsitektur seluler yang efektif
2. pengukuran kualitas link yang cepat dan akurat
3. kontrol yang terus-menerus pada semua tipe lingkungan
4. instalasi BS untuk menyediakan cakupan radio yang luas
5. perencanaan air interface dengan daya dan bandwidth yang efisien
Sistem radio mobile seluler yang menggunakan TDMA (Time Division
Multiple Access) dan FDMA (Frequency Division Multiple Access) mengandalkan
reuse frekuensi, dimana user dalam sel yang terpisah secara geografis
menggunakan frekuensi carier yang sama secara bersamaan. Susunan sel dari
sistem komunikasi seluler seringkali dideskripsikan sebagai susunan sel atau
daerah cakupan radio berbentuk hexagonal yang seragam. Pada kenyataannya,
sel tidak benar-benar berbentuk hexagonal, tetapi merupakan area yang tumpang
tindih dan berubah-ubah. Bentuk hexagonal adalah pilihan yang ideal untuk

7
Universitas Sumatera Utara

mewakili area cakupan makro seluler, karena dianggap mendekati bentuk sebuah
lingkaran dan menawarkan jarak yang luas untuk ukuran reuse cluster. Persamaan
(2.1) menunjukkan konstruksi reuse cluster berukuran N.

=
dimana

dan

+

+

(2.1)

adalah bilangan bulat bukan negatif, dan

ukuran cluster yang diizinkan,

= 1, 3, 4, 7, 9, 12,

. Ini mengikuti

. Sebagai contoh reuse


cluster 3-sel, 4-sel, dan 7-sel ditunjukkan oleh Gambar 2.2. Rancangan reuse
frekuensi 7-sel yang sederhana ditunjukkan pada Gambar 2.3, dimana sel yang
bertanda sama menggunakan frekuensi carier yang sama.

Gambar 2.2 Reuse cluster yang sering digunakan pada sistem seluler

8
Universitas Sumatera Utara

Gambar 2.3 Sistem makroseluler menggunakan pola reuse cluster 7-sel
Faktor reuse co-channel (Q), didefinisikan sebagai perbandingan jarak
reuse co-channel (D) antara sel yang menggunakan frekuensi carier yang sama
dan jari-jari sel (R) seperti ditunjukkan oleh Persamaan (2.2) [10,11] ditunjukkan
pada Gambar 2.4.
=

=

3


(2.2)

di mana N adalah ukuran reuse cluster.

Gambar 2.4 Dua sel dengan frekuensi carier yang sama

9
Universitas Sumatera Utara

Rugi-rugi Lintasan Bebas (free space path loss)

2.2

Propagasi lintasan bebas antara dua titik dapat terjadi ketika kedua antena
pemancar dan penerima yang cukup tinggi, sehingga tidak ada penghalang sinyal
untuk mencapai antena penerima.
Dimana gain antena pemancar adalah Gt dan daya transmisi adalah Wt ,
daya kerapatan Pr pada jarak d dapat dinyatakan dengan persamaan berikut:
=


(2.3)

daya terima Wr pada jarak d dengan gain antenna penerima Gr karena itu
=

.

(2.4)

atau
=

=

(2.5)

Sinyal yang ditransmisikan melalui propagasi lintasan bebas ke sebuah antena
penerima (receiver) dimana tidak ada penghalang yang akan mengalami rugi-rugi.
Rugi-rugi ini disebut dengan rugi-rugi lintasan bebas dan ketika kedua antena

pemancar dan penerima yang isotropic (Gr = Gt = 1) dapat dinyatakan dengan
persamaan berikut[6]:
L0(dB)= 32 + 20 log fMHz+ 20 log dKm

(2.6)

Dimana:
L0 = rugi-rugi lintasan bebas (dB)
f = frekuensi (MHz)
d = panjang lintasan propagasi (Km)
c = kecepatan propagasi (3 x 108 [m/s])

10
Universitas Sumatera Utara

2.3

Model Propagasi
Model


propagasi

menjelaskan

perambatan

rata-rata

sinyal

pada

suatu daerah. Model propagasi juga memungkinkan untuk mengkonversikan
besarnya rugi-rugi perambatan maksimum yang diperbolehkan menjadi besarnya
cell range maksimum. Besarnya rugi-rugi propagasi tersebut bervariasi sesuai
dengan spektrum dan kondisi alam serta lingkungan disekitarnya[8].
Model-model propagasi umumnya cenderung menyederhanakan kondisi
propagasi yang sebenarnya dan biasanya sangat tidak akurat di dalam lingkungan
daerah metropolitan yang kompleks. Model-model propagasi empiris hanya
memberikan petunjuk umum dan terlalu sederhana untuk disain jaringan

yang akurat. Oleh karena itu, pengukuran lapangan yang akurat harus dilakukan
untuk

memberikan

informasi

mengenai

cakupan

gelombang

radio

di

daerah perkotaan.
Mekanisme perambatan gelombang elektromagnetik secara umum sangat
dipengaruhi oleh efek pantulan (reflection), difraksi dan hamburan (scattering).

Model propagasi merupakan cara untuk memprediksi daya rata-rata pada sistem
transmisi radio komunikasi bergerak pada suatu daerah. Model propagasi juga
memungkinkan

untuk

mengkonversikan

besarnya

rugi-rugi

perambatan

maksimum yang diperbolehkan menjadi besarnya cell range maksimum.
Besarnya rugi-rugi propagasi tersebut bervariasi sesuai dengan spektrum dan
kondisi alam serta lingkungan disekitarnya. Karena itu diperlukan perhitungan
yang cukup rumit untuk memperkirakan redaman lintasannya[8].
Model propagasi juga digunakan dalam aspek-aspek performansi sistem
yang

lain,

seperti:

Optimasi

Handoff,

pengaturan

level

daya

dan

11
Universitas Sumatera Utara

penempatan antena. Meskipun tidak ada model propagasi yang dapat menghitung
semua gangguan dalam kondisi nyata, penggunaan satu atau beberapa model,
penting untuk menentukan path loss dalam jaringan.
Beberapa model propagasi yang biasa digunakan untuk memperkirakan
redaman lintasan sepanjang daerah yang tidak teratur kebanyakan model-model
didapatkan dari data hasil pengukuran yang dilakukan dalam jumlah besar dan
cukup lama. Model-model propagasi yang biasa digunakan adalah model
Okumura, model Hatta dan model Lee.

2.4

Analisa Path Loss dengan Menggunakan Model Propagasi
Karena PL(d) adalah sebuah variabel acak dengan distribusi normal

dalam dB, maka begitu juga dengan Pr(d). Fungsi Q dapat digunakan untuk
menentukan probabilitas level sinyal yang diterima melewati atau berada di
bawah level tertentu. Peluang bahwa level sinyal yang diterima akan berada di
atas atau melebihi nilai tertentu

dapat ditentukan melalui fungsi kerapatan

kumulatif dengan persamaan berikut[8]:
[ ( )> ]=

( )

(2.7)

Dimana:
= threshold
= standard deviasi

Dengan cara yang sama, peluang bahwa level sinyal yang diterima berada
di bawah nilai

yang diberikan oleh:

[ ( )< ]=

( )

(2.8)

12
Universitas Sumatera Utara

Nilai

merepresentasikan keadaan kepadatan dari lingkungan propagasi

yang dilalui oleh sinyal. Semakin besar nilai

maka nilai keacakan dan besar dari

fading akan semakin besar.

2.5

Kuat Sinyal Terima (received signal strenght)
UE mengukur RSS dari masing-masing BS. Nilai RSS (dB) yang terukur

merupakan besar selisih antara daya yang ditransmisikan oleh BS dengan redaman
dari model propagasi empirik. Persamaan yang akan dijelaskan berikut ini adalah
sama dengan yang dijelaskan pada sub bab sebelumnya, hanya saja dilakukan
beberapa perubahan notasi dengan tujuan penyederhanaan dan sesuai dengan
sistem yang akan disimulasikan. Perubahan notasi tidak mengubah arti dari nilai
yang sebenarnya[3,4,5].
Misalkan di menunjukkan jarak antara UE dengan BSi. Jika daya yang
ditransmisikan oleh BS adalah Pt, maka kuat sinyal dari BSi, dinotasikan dengan
Si(d), dan dapat ditulis,
Si(d) = Pt– PL

(2.9)

Dimana:
Si(d)

= kuat sinyal dari BSi (dBm), dimana i = 1,2,…2000

Pt

= daya yang ditransmisikan BS (dBm)

PL

= path loss model empirik (dB)

13
Universitas Sumatera Utara

2.6

Model Okumura
Model Okumura merupakan model propagasi yang umum digunakan dan

lebih

optimal

dalam

memodelkan

probabilitas

outage

sistem

CDMA.

Model Okumura adalah model propagasi yang cocok untuk range frekuensi antara
150-1920 MHz dan pada jarak antara 1-100 km dengan ketinggian antena
base station (BS) berkisar 30 meter sampai 100 meter [7,8].
Untuk menentukan redaman lintasan dengan model Okumura, pertama
kita harus menghitung rugi-rugi lintasan bebas (free space path loss), kemudian
nilai Amu (f,d) dari kurva Okumura ditambahkan kedalam faktor koreksi untuk
menentukan tipe daerah. Model Okumura dapat ditulis dengan persamaan
berikut[6,8]:
L50(dB) = LF + Amu(f,d) – G(hte) – G(hre) - GAREA

(2.10)

Dimana:
L50(dB) = nilai redaman lintasan propagasi (dB)
LF

= redaman lintasan ruang bebas (dB)

Amu

= rata-rata redaman relatif terhadap rugi-rugi lintasan bebas (dB)

G(hte)

= gain antena BS (dB)

G(hre)

= gain antena MS (dB)

GAREA = gain tipe daerah (dB)
Untuk menentukan nilai rata-rata redaman relatif terhadap ruang bebas
model Okumura menyediakan kurva. Kurva Amu(f,d) untuk range frekuensi
100-3000 MHz ditunjukkan pada Gambar 2.5 [8,9].

14
Universitas Sumatera Utara

Gambar 2.5 Kurva Amu(f,d) untuk range frekuensi 100-3000 MHz
Untuk menentukan nilai gain berdasarkan lingkungan, model Okumura
juga menyediakan kurva. Kurva GAREA untuk berbagai tipe daerah dan frekuensi
ditunjukkan pada Gambar 2.6[8].

Gambar 2.6 Nilai GAREA untuk berbagai tipe daerah dan frekuensi
15
Universitas Sumatera Utara

Nilai gain untuk antena pengirim dan penerima ditunjukkan persamaan[7]:
G(hte) = 20log(hte/200)
G(hre) = 20log(hre/3)
G(hre) = 10 log(hre/3)

100 m > hte> 10 m

(2.11)

10 m > hre> 3 m

(2.12)

hre 3 m

(2.13)

Dimana:
hte

= tinggi antena BS (m)

hre

= tinggi antena MS (m)

G(hte)

= gain antena BS (dB)

G(hre) = gain antena MS (dB)
Model Okumura sepenuhnya berdasar pada hasil pengukuran, sehingga
tidak memiliki penjelasan analitis. Meskipun demikian, model ini sering dianggap
salah satu model perambatan yang paling sederhana dan terbukti memiliki
keakuratan yang sangat baik. Besar perbedaan antara path loss yang diprediksi
dengan model Okumura dan path loss yang diukur sebenarnya dilapangan hanya
berkisar 10 dB hingga 14 dB.
Kelemahan model Okumura adalah bahwa model ini tidak dapat mengikuti
cepatnya perkembangan kondisi area, sehingga bagus digunakan di daerah
perkotaan yang perubahannya sudah relatif melambat tetapi kurang bagus di
daerah pedesaan yang perubahannya masih sangat cepat [8].

16
Universitas Sumatera Utara