The Thermal Properties of Calcium Carbonate Filled Polypropylene (PP)/ Ethylene Propylene Diene Terpolymer (EPDM) Composites

Jurnal Teknologi Proses
Media Publikasi Karya Ilmiah Teknik Kimia
6(1) Januari 2007: 82 – 84 ISSN 1412-7814
The Thermal Properties of Calcium Carbonate Filled Polypropylene (PP)/ Ethylene Propylene Diene Terpolymer (EPDM) Composites

Salmah Department of Chemical Engineering, Faculty of Engineering University of Sumatera Utara, Medan 20155

Abstract The thermal and crystallization behavior of PP/EPDM/CaCO3 composites was studied by thermogravimetry analysis (TGA) and differential scanning calorimetric (DSC). The results showed that the increasing of filler loading increase the thermal stability and crystallinity of PP/EPDM/CaCO3 composites.
Keywords: paper sludge, calcium carbonate, polypropylene, ethylene propylene diene terpolymer, composites.

Introduction
Thermal analysis of polymers is an important subject as it covers a broad field, ranging from the development of thermoresistant polymers and ablation problem to the stabilization of thermolabile polymers. Thermal analysis is an important analytical method in understanding the structure-property relationship and mastering the technology for molecule design and industrial production of different polymeric materials. Moreover, it is a useful technique to determine the thermal stability of the materials. In addition, it is possible to quantify the amount of moisture and volatiles present which can cause detemoration in the composites.
Thermal analysis studies have been carried out and the effects of crystallinity, orientation and cross-linking haven reported (Daniel et al., 1994, George et al., 2000, Fangling et al., 2004, Joseph et al., 2003).
One of the accepted methods for studying the thermal properties of polymeric materials is

thermogravimetry (TG). Thermogravimetric data indicate a number of stages of thermal breakdown, weight loss of the material in each stage. Threshold temperature, etc. Both TG and derivative thermogravimetry (DTG) will provide information about the nature and extent of degradation of material. In differential scanning calorimetry (DSC), the heat flow rate associated with a thermal event can be measured as a function of time and temperature allowing us to obtain quantitative information about malting and phase transition of the composite system.
Experimental
Materials
Polypropylene homopolymer used in this study was of injection molding grade, from Titan PP polymers (M) Sdn Bhd, Johor, Malaysia (code 6331) with MFI value of 14.0 g/10 min at 2300C. Ethylene propylene diene monomer, grade Mitsui EPT 3072 E was obtained from Luxchem Trading Sdn Bhd.,

Salmah / Jurnal Teknologi Proses 6(1) Januari 2007: 82 – 84


83

Selangor, Malaysia. Calcium carbonate was obtained from Malaysia Calcium Corporation Sdn Bhd., Malaysia, with average size of 4.5µm (density, 2.7 g/cm3). The formulation of PP/EPDM/CaCO3 composites used in this study is shown in Table 1. Tables 2 show the results of semi-quantitative analysis of calcium carbonate used in this study.

Mixing Procedure

Composites were prepared in a Haake Reomix PolyDrive. Mixing was done at 180 0C and 50 rpm. EPDM was first charged to start the melt mixing. After 3 min. filler was added followed by PP at the fifth minutes. Mixing was continued for another 5 min. At the end of 10 min, the composites were taken out and sheeted through a laboratory mill at 2.0 mm nip setting. Sample of composites were compression molded in an electrically heated hydraulic press. Hot-press procedures involved preheating at 180 0C for 6 min followed by compressing for 4 min at the same temperature and subsequent cooling under pressure for 4 min.

Thermogravimetry Analysis

Thermogravimetry analysis of the composites was carried out with a Perkin Elmer Pyris 6 TGA analyzer. The samples weight of about 15 – 25 mg were scanned from 50 to 600 0C using a nitrogen air flow of 50 ml/min and a heating rate of 20 0C/min. The sample size was kept nearly the same for all tests.

Differential Scanning Calorimetry

Thermal analysis measurements of selected systems were performed using a Perkin Elmer DSC-7 analyzer. Samples of about 10 – 25 mg were heated from 20 to 220 0C using a nitrogen air flow of 50 ml/min and the heating rate of 20 0C/min. The melting and crystallization behavior of selected composites were also performed using a Perkin Elmer DSC-7. The crystallinity (Xcom) of composites were determined using the following relationship:

Xcom (%cryst) = UHf/UHof x 100

… (1)


Where UHf and UHof are enthalpy of fusion of the system and enthalpy of fusion of

perfectly (100%) crystalline PP, respectively. For UHof (PP) a value of 209 J/g was used for 100% crystalline PP homopolymer (Greco et al., 1987). Xcom, which is calculated using this equation, however, gives only the overall crystallinity of the composites based on the total weight of composites including noncrystalline fractions, and it is not the true crystallinity of the PP phase. The value of crystallinity for PP phase (Xpp) of the PP fraction was normalized using Eq. (2) as follow (Shoinake et al., 1998):

Xpp = (Xcom)/Wfpp

… (2)

Where Wf pp is the weight fraction of PP in the composites.

TABLE 1: Formulation of PP/EPDM/CaCO3 composites with different filler loading

Materials

Composites

Polypropylene (PP) (wt %)

50


EPDM (wt %)

50

Calcium carbonate (wt %)

0, 15, 30,

45, 60

Results and Discussion
Thermogravimetry analysis (TGA) curve of PP/EPDM and PP/EPDM/CaCO3 at 0,30 and 60 wt % filler loading is show in Figure 1. Table 3 show that the end degradation temperature (Te deg) and total weight loss of PP/EPDM/CaCO3 at different filler loading. The total weight loss of PP/EPDM/CaCO3 composites at 60 wt% is lower than PP/EPDM/CaCO3 at 30% and PP/EPDM, which might be due to the presence of large content of inorganic material in CaCO3 with increasing filler loading. This result indicate that PP/EPDM/CaCO3 composite have better thermal stability compared PP/EPDM.

TABLE 2: Semi quantitative analysis of Calcium

Carbonate using X- Ray Flourescene Spectrometer

Rigaku RIX 3000.


Component

Wt %

CaO 56

MgO

1

SiO2 Al2O3 Fe2O3

0.13 0.072 0.019

84 Salmah / Jurnal Teknologi Proses 6(1) Januari 2007: 82 – 84

Component
P2O5 SrO SO3 LOI

Wt %

0.016 0.015 0.011
42

TABLE 3: Percentage weight loss of

PP/EPDM/CaCO3 composites with different filler loading

Composites

Te deg (0C) Total weight

loss (%)

PP/EPDM: 50/50

587.2

100

PP/EPDM/CaCO3: 50/50/30


587.6

79.2

PP/EPDM/CaCO3: 50/50/30

587.9

69.4

Table 4 show the parameter differential

scanning

calorimetric

(DSC)

of


PP/EPDM/CaCO3 at different filler loading. The value of melting temperature (Tm), heat of fusion of composites (UHf (com)), crystallinity of composites (Xcom) and crystallinity of PP (Xpp)

also show in Table 2. The results show that the

percentage of crystallinity of composites

changed with filler loading. It can be seen that

the value of UHf(com) and Xcom decrease with increasing filler loading. This is due to the

decreasing of PP content at higher filler

loading. The addition of fillers results in an

increase in Xpp. This behavior is consistent with the results by reported by Salmah et al., (2005).

110

90


weight loss (%)

70

50

30

10
-10 50

PP/EPDM : 50/50 PP/EPDM /CaCO: 50/50/30 PP/EPDM /CaCO3: 50/50/60
250 450 Tem perature (0C)

650

FIGURE 1: Thermogravimetric analysis (TGA) curve of PP/EPDM/CaCO3 composites at 0, 30 and 60 wt % calcium carbonate.

TABLE 4: Parameter DSC of PP/EPDM/CaCO3 composites with different filler loading.


Composites

Melting temperature

Hf (com)

Xcom

Xpp

Tm (0C)

J/g

(% crystallinity)

(%)

PP/EPDM/: 50/50


167.1 40.07

19.2

38.4

PP/EPDM/

CaCO3: 50/50/30

162.5 34.85 13.9 39.4

PP/EPDM/

CaCO3: 50/50/60

162.4 28.85 12.5 40.3

References

Daniel, T. Q., Yin, M., James, A. K., Caufield, D. F. 1994. Crystallinity in the polypropylene/cellulose system. II. rystalliation kinetics. Journal of Applied Polymer Science. 52, 605-615.
George, S., Varughese, K. T., Thomas, S. 2000. Thermal and cryatallisation behavior of isotactic polypropylene/nitrile rubber blends. Polymer, 41, 5485-5503.
Gong, F., Feng, M., Zhao, C., Zhang, S., Yang, M. 2004. Thermal properties of poly (vinyl chloride)/montmorillonite nano-composites. Polymer degradation and stability. 84, 289294.
Joseph, P. V., Joseph, K., Thomas, S., Pillai, C. K. S., Prasad, V. S., Greoninckx, G. 2003. The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Composites Part A: applied science and manufacturing. 34, 253-266.
Greco R., Manacarella C., Martuscelli E., Ragosta G. 1987. Polyolefin Blends: 2. Effect of EPR composition on Structure, Morphology and Mechanical Properties of iPP/EPR Alloys, Polymer, 28: 1929- 1936.
Salmah., Ismail, H & Abu Bakar, A. 2005. A comparative study on the effects of paper sludge and kaolin on properties of polypropylene/ethylene propylene diene terpolymer composites. Iranian Polymer Journal. 14 (8), 705-713.
Shoinaike, G. O., Kiat, T. H. 1998. Studies on miscibility of uncompatibilized nylon 66santoprene blends. J. Appl. Polym. Sci., 68: 1285-1295.



Panduan Penulisan Naskah

Jurnal Teknologi Proses (TNR 14pt bold)





Penyunting Pelaksana Jurnal Teknologi Proses (TNR 11 bold)

Jurusan Teknik Kimia, Fakultas Teknik Universitas Sumatera Utara, Medan 20155

jtpkimia@usu.ac.id (TNR 10)





Abstract (TNR 10 italic bold)

Jurnal Teknologi Proses published by Dept. of Chemical Engineering, Faculty of Engineering University of

North Sumatera is a media for publishing the research papers of chemical engineering and the related fields.

The paper is peer reviewed by Dewan Redaksi before published. The paper manuscript is initiated by 150 words

of abstract and followed by 5 words of keywords. Abstract consists of objective, method, result and conclusion of

research. (TNR 10 pt italic)



Keywords: chemical engineering, related fields.





Pendahuluan (TNR 11pt bold)

nama dan daftar pustaka. Untuk kertas kerja

…(5mm)

ilmiah bukan penelitian sekurang-kurangnya

Karya ilmiah yang akan diterbitkan dapat terdiri dari abstrak, pendahuluan, pembahasan,

berupa kertas kerja ilmiah penelitian dan kertas kesimpulan, saran dan daftar pusataka.

kerja ilmiah bukan penelitian (laporan studi …

kasus atau kajian pustaka komprehensif). …

Kirimkan naskah kertas kerja kepada:

Naskah Kertas Kerja

……

Penyunting Pelaksana

Jumlah Halaman, Ukuran dan Bahasa

Jurnal Teknologi Proses



Jalan Alumni Kampus USU

Naskah berjumlah 5-10 halaman kertas A4

Medan – 20155, Indonesia

termasuk gambar dan tabel dengan ukuran huruf

… TNR 11pt (kecuali jika disebutkan ukuran yang

Naskah kertas kerja yang dikirimkan terdiri lain) dan diketik dengan spasi tunggal. Biaya

dari 2 (dua) eksemplar di mana untuk keperluan cetak bagi naskah yang akan diterbitkan adalah

evaluasi redaksi, 1 (satu) eksemplar tidak ditulisi Rp 75.000,- dan bagi naskah yang lebih dari 10

nama/institusi penulis. Naskah harus asli dan halaman akan dikenakan biaya tambahan Rp

belum pernah diterbitkan di media tulis lain. 10.000,- per halaman.

Naskah yang telah diserahkan untuk evaluasi …

agar tidak dikirimkan lagi kepada media tulis

Ukuran naskah adalah batas atas 30 mm,

lain. Naskah yang telah dievaluasi akan bawah 30 mm, kiri 25 mm, kanan 25 mm, antar

dikirimkan kepada penulis utama (sertakan kolom 8 mm dan nomor halaman 20 mm dari

amplop balasan berprangko).

tepi atas.

……

Naskah yang telah diperbaiki diminta untuk

The manuscript can be written in bahasa

dikirimkan kembali sebanyak 2 (dua) eksemplar Indonesia or English.

berikut disket 3.5” berisi file yang disiapkan …

dengan pengolahkata MS Word.



… Gambar, Tabel, dan Persamaan

Kertas kerja ilmiah penelitian dikehendaki …

terdiri dari abstrak, pendahuluan, metodologi

Gambar dan tabel terpisah dari naskah teks.

penelitian, hasil penelitian, pembahasan, Kualitas gambar hendaknya cukup baik untuk

kesimpulan, ucapan terima kasih (jika ada), tata disunting ulang. Gambar digital jpg, jpeg, gif,

wmf alebih disukai. Untuk gambar berupa tampilan grafik, disarankan memilih ketebalan garis grafik yang patut sehingga gambar dapat direduksi hingga 50% dari ukuran semula untuk diletakkan pada teks. …
Tabel yang lebih besar dari ukuran kertas A4 hendaknya dibuat bersambung. Lebih lanjut berkenaan dengan gambar dan tabel dapat merujuk pada contoh berikut: … …
100
Vf 0 l/min, 2214

Dokumen yang terkait

Pemanfaatan Cangkang Sawit Sebagai Agregat Dengan Campuran Poliuretan Dan Karet Sintetis Ethylene Propylene Diena Monomer (EPDM) Pada Aspal Dalam Pembuatan Genteng Polimer

3 80 102

Studi Pembuatan Dan Karakterisasi Termoplastik Elastromer Dari Polipropilena-Karet Ethylene Propylene Diene Monomer-Abu Ban Bekas Dengan Penambahan Dikumil Peroksida Dan Divinilbenzena

1 35 72

The Thermal Properties of Calcium Carbonate Filled Polypropylene (PP)/ Ethylene Propylene Diene Terpolymer (EPDM) Composites

0 26 5

The Effect of N, N-m- Phenylenebismaleimide (HVA-2) Addition on Properties of Polypropylene (PP)/Ethylene-Propylene Diene Terpolymer (EPDM)/Natural Rubber (NR) Vulcanized Blends

0 25 7

Effect of Montmorillonite Addition on The Thermal Resistance Properties of Polyvinyl Acetate

0 1 6

Properties of Polypropylene (PP)Ethylene- Propylene Diene Terpolymer (EPDM)Natural Rubber (NR) Vulcanized Blends: The Effect of N,N- m-Phenylenebismaleimide (HVA-2) Addition

0 0 10

Properties of Polypropylene (PP)/Ethylene-Propylene Diene Terpolymer (EPDM)/Natural Rubber (NR) Vulcanized Blends: The Effect of N,Nm-Phenylenebismaleimide (HVA-2) Addition

0 0 12

Effect of Acrylic Acid on the Mechanical Properties of Coconut Shell Filled Low Density Polyethylene (LDPE) Composites

0 0 5

BAB 2 TINJAUAN PUSTAKA 2.1 Polimer - Pengaruh Penambahan Pengisi Tandan Kosong Kelapa Sawit Pada Komposit Termoplastik Elastomer Dari Polipropilena- Karet Ethylene Propylene Diene Monomer

0 0 17

Pengaruh Penambahan Pengisi Tandan Kosong Kelapa Sawit Pada Komposit Termoplastik Elastomer Dari Polipropilena- Karet Ethylene Propylene Diene Monomer

0 0 13