Diagram Blok Perancangan Rangkaian Power Supplay PSA

24

BAB III PERANCANGAN SISTEM

3.1. Diagram Blok

Secara garis besar rangkaian pengendali peralatan elektronik dengan menggunakan PC, memiliki 6 blok utama, yaitu personal komputer PC, Mikrokontroler AT89S51, relay, lampu beban, Pintu dan sensor arus. Diagram blok rangkaian tampak seperti gambar berikut : Gambar di atas merupakan gambar diagram blok dari rangkaian pengendali peralatan elektronik dengan menggunakan PC. Jika komputer diberi perintah tertentu melalui program yang ada pada komputer, maka akan terjadi komunikasi data antara komputer dan mikrokontroler, Selanjutnya mikrokontroler akan mengambil data dari output komputer, sehingga mikrokontroler AT89S51 mengetahui data yang dikirimkan oleh komputer tersebut dan data ini akan D ri v er s te p p er P0.0 Motor stepper P0.3 P0.2 P0.1 Universitas Sumatera Utara 25 dianggap oleh mikrokontroler sebagai perintah untuk mengerjakan sesuatu mengaktifkanmenonaktifkan relay. Langkah selanjutnya mikrokontroler akan membandingkan data yang masuk dengan data yang telah diprogramkan dalam mikrokontroler, kemudian mengerjakan perintah mengaktifkanmenonaktifkan relay tertentu sesuai dengan data yang diterima. Relay yang aktif akan menyebabkan lampu yang dihubungkan ke relay tersebut menyala. Setiap lampu dihubungkan ke sensor arus, sehingga jika lampu menyala, maka sensor arus yang terhubung ke lampu tersebut akan aktif dan mengirimkan sinyal tertentu ke mikrokontroler AT89S51. Sehingga dengan demikian mikrokontroler mengetahui lampu-lampu mana saja yang menyala. Hal yang sama juga terjadi ketika dibuka atau ditutup pintu.

3.2. Perancangan Rangkaian Power Supplay PSA

Rangkaian PSA yang dibuat terdiri dari dua keluaran, yaitu 5 volt dan 12 volt, keluaran 5 volt digunakan untuk menghidupkan seluruh rangkaian, sedangkan keluaran 12 volt digunakan untuk menghidupkan relay. Rangkaian tampak seperti gambar di bawah ini : Gambar 4.1 Rangkaian Power Supplay PSA Vreg LM7805CT IN OUT TIP32C 100  100uF 330  2200uF 1uF 220 V AC 0 V 5 Volt DC 0 Volt 12 Volt DC Universitas Sumatera Utara 26 Trafo CT merupakan trafo stepdown yang berfungsi untuk menurunkan tegangan dari 220 volt AC menjadi 12 volt AC. Kemudian 12 volt AC akan disearahkan dengan menggunakan dua buah dioda, selanjutnya 12 volt DC akan diratakan oleh kapasitor 2200 µF. Regulator tegangan 5 volt LM7805CT digunakan agar keluaran yang dihasilkan tetap 5 volt walaupun terjadi perubahan pada tegangan masukannya. LED hanya sebagai indikator apabila PSA dinyalakan. Transistor PNP TIP 32 disini berfungsi untuk mensupplay arus apabila terjadi kekurangan arus pada rangkaian, sehingga regulator tegangan LM7805CT tidak akan panas ketika rangkaian butuh arus yang cukup besar. Transistor tipe PNP ini akan aktif jika tegangan pada basis 0,7 volt dari tegangan positif. Tegangan positif yang dihubungkan ke emitor sebesar 12 volt, sehingga transistor akan aktif jika diberi tegangan yang lebih kecil dari 12 volt – 0,7 volt = 11,3 volt. Dalam kondisi biasa LM7805 tidak kekurangan arus, maka basis akan mendapatkan tegangan 12 volt, sehingga transistor tidak aktif, emitor tidak terhubung dengan kolektor, sehingga tegangan pada kolektor sama dengan tegangan pada output regulator LM7805 yaitu 5 volt. Namun jika rangkaian membutuhkan arus yang lebih banyak, maka regulator akan mengambil arus dari inputnya, sehingga tegangan pada input regulator akan turun hingga lebih kecil dari 11,3 volt, transistor akan aktif, maka arus akan mengalir dari emitor ke kolektor. Pada transistor ini jika aktif, maka yang mengalir dari emitor ke kolektor adalah arusnya, sedangkan tegangannya tidak, sehingga tegangan pada kolektor tetap 5 volt. Universitas Sumatera Utara 27 5V VCC 10uF 5V VCC 2 1 30pF 30pF XTAL 12 MHz AT89S51 P0.3 AD3 P0.0 AD0 P0.1 AD1 P0.2 AD2 Vcc P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P0.4 AD4 P0.5 AD5 P0.6 AD6 P0.7 AD7 RST EAVPP P3.0 RXD P3.1 TXD P3.2 INT0 P3.3 INT1 P3.4 T0 ALEPROG PSEN P2.7 A15 P2.6 A14 P2.5 A13 P2.4 A12 P2.3 A11 P2.2 A10 P2.1 A9 P3.6 WR P3.5 T1 P3.7 RD XTAL2 XTAL1 GND P2.0 A8 1 2 3 4 5 6 7 8 40 39 38 37 36 35 34 33 9 10 11 12 13 14 15 32 31 30 29 28 27 26 16 17 18 19 20 25 24 23 22 21 4.7k  2SA733 5V VCC LED1 Tegangan 12 volt DC langsung diambil dari keluaran 2 buah dioda. Sebenarnya tegangan 12 volt ini tidak stabil, namun karena tegangan 12 volt ini hanya digunakan untuk menghidupkan relay, jadi tidak dipermasalahkan, karena relay dapat hidup dengan tegangan 8 – 15 volt. 3. 3. Rangkaian Mikrokontroler AT89S51 Rangkaian mikrokontroler ini berfungsi sebagai pusat kendali dari seluruh rangkaian yang ada pada alat ini. Gambar rangkaian mikrokontroler AT89S51 ditunjukkan pada gambar 3.8 berikut ini : Gambar 3.8 Rangkaian Mikrokontroler AT89S51 Mikrokontroler ini memiliki 32 port IO, yaitu port 0, port 1, port 2 dan port 3. Pin 40 dihubungkan ke sumber tegangan 5 volt. Dan pin 20 dihubungkan ke ground. Rangkaian mikrokontroler ini menggunakan komponen kristal 12 MHz Universitas Sumatera Utara 28 sebagai sumber clocknya. Nilai kristal ini akan mempengaruhi kecepatan mikrokontroler dalam mengeksekusi suatu perintah tertentu. Pada pin 9 dihubungkan dengan sebuah kapasitor 10 uF yang dihubungkan ke positif dan sebuah resistor 10 Kohm yang dihubungkan ke ground. Kedua komponen ini berfungsi agar program pada mikrokontroler dijalankan beberapa saat setelah power aktif. Lamanya waktu antara aktifnya power pada IC mikrokontroler dan aktifnya program adalah sebesar perkalian antara kapasitor dan resistor tersebut. Jika dihitung maka lama waktunya adalah : 10 10 1 det t R x C K x F m ik      Jadi 1 mili detik setelah power aktif pada IC kemudian program aktif. Pin 17 yang merupakan P3.7 dihubungkan dengan transistor dan sebuah LED. Ini dilakukan hanya untuk menguji apakah rangkaian minimum mikrokontroler AT89S51 sudah bekerja atau belum. Dengan memberikan program sederhana pada mikrokontroler tersebut, dapat diketahui apakah rangkaian minimum tersebut sudah bekerja dengan baik atau tidak. Jika LED yang terhubug ke Pin 17 sudah bekerja sesuai dengan perintah yang diberikan, maka rangkaian minimum tersebut telah siap digunakan. Namun setelah seluruh rangkaian disatukan, LED yang terhubung ke in 17 ini tidak digunakan lagi. Perancangan Rangkaian Driver Motor Stepper Untuk mengendalikan perputaran motor stepper dibutuhkan sebuah driver. Driver ini berfungsi untuk memutar motor stepper searah dengan jarum jam atau berlawanan arah dengan jarum jam. Rangkaian driver motor stepper ini terdiri dari empat masukan dan empat keluaran, dimana masing-masing masukan dihubungkan dengan mikrokontroler AT89S51 dan keluarannya dihubungkan ke Universitas Sumatera Utara 29 motor stepper. Rangkaian ini akan bekerja memutar motor stepper jika diberi sinyal high 1 secara bergantian pada ke-4 masukannya. Rangkaiannya seperti gambar di bawah : Gambar Rangkaian Driver Motor Stepper Rangkaian ini terdairi dari 4 buah transistor NPN TIP 122. Masing-masing transistor dihubungkan ke P0.0, P0.1, P0.2 dan P0.3 pada mikrokontroler AT89S51. Basis dari masing-masing transistor diberi tahanan 10 Kohm untuk membatasi arus yang masuk ke transistor. Kolektor dihubungkan dengan kumparan yang terdapat pada motor stepper, kemudian kumparan dihubungkan dengan sumber tegangan 12 volt.dan emitor dihubungkan ke ground. Jika P0.0 diberi logika high 1, yang berarti basis pada transistor TIP 122 mendapat tegangan 5 volt, maka transistor akan aktif. Hal ini akan menyebabkan terhubungnya kolektor dengan emitor, sehingga kolektor mendapatkan tegangan 0 volt dari ground. Hal ini menyebabkan arus akan mengalir dari sumber tegangan 12 volt ke kumparan, sehingga kumparan akan menghasilkan medan magnet. Medan magnet ini akan menarik logam yang ada pada motor, sehingga motor mengarah pada kumparan yang memiliki medan magnet tesebut. Tip 122 Tip 122 VCC 12V MOTOR AT89S51 P0.0 AT89S51 P0.2 Stepper VCC 12V Tip 122 Tip 122 1.0k  1.0k  AT89S51 P0.1 1.0k  1.0k  AT89S51 P0.3 Universitas Sumatera Utara 30 Jika kemudian P0.0 diberi logika low 0, yang berarti transistor tidak aktif dan tidak ada arus yang mengalir pada kumparan, sehingga tidak ada medan magnet pada kumparan. Dan disisi lain P0.1 diberi logika high 1, sehingga kumparan yang terhubung ke P0.1 akan menghasilkan medan magnet. Maka motor akan beralih kearah kumparan yang terhubung ke P0.1 tersebut. Seterusnya jika logika high diberikan secara bergantian pada input dari driver motor stepper, maka motor stepper akan berputar sesuai dengan arah logika high 1 yang diberikan pada inputnya. Untuk memutar dengan arah yang berlawanan dengan arah yang sebelumnya, maka logika high 1 pada input driver motor stepper harus diberikan secara bergantian dengan arah yang berlawanan dengan sebelumnya.

3.8. Perancangan program