Perbedaan Kadar TGF-2 Cairan Sulkus Gingiva Saat Retraksi Kaninus pada Kelompok Usia 10-15 dan 30-35 Tahun

DAFTAR PUSTAKA
Al-salihi MA, Herhaus L, Sapkota GP. Regulation of the transforming growth factor β
pathway by reversible ubiquitylation. rsob.royalsocietypublishing.org. 15 oktober 2012.
Barbieri G, Solano P, Alarcón JA, Vernal R, Rios-Lugo J, Sanz M, dkk., 2013.
Biochemical markers of bone metabolism in gingival crevicular fluid during early
orthodontic tooth movement. Angle orthod;83(1):63-69
Bhalajhi. SI, 2004. Orthodontics The Art and Science. 3rd ed. New Delhi:Arya
Publishing;7-9
Bishara, SE., 2001. Textbook of orthodontics. Philadelphia:WB Saunders;31-42
Blobe GC, Schiemann WP, Lodish HF., 2000. Role of transforming growth factor β in
human disease. NEJM;342(18):1350-1358
Buss A, Pech K, Kakulas BA, Martin D, Schienen J, Noth J, Brook GA., 2008. TGF-β1
and TGF-β2 expression after traumatic human spinal cord injury. Spinal cord;46:364371
Carranza FA, Newman MG, Takei HH.,2002. Carranzza’s clinical periodontology. 9th
ed. Philadephia:WB Saunders
Crowther JR., 2001. The ELISA Guidebook. Vol 149., Humana Press Inc: New
Jersey:1-83
Davidson ENB, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB., 2005.
Reduced transforming growth factor-beta signaling in cartilage of old mice : role in
impaired repair capacity. Arthritis research & therapy;7(6):r1338-1347
Djaja F., 2009. Kadar matriks metaloproteinase-8 cairan celah gusi kaninus selama

pergerakan ortodontik. Tesis Jakarta: Universitas Trisakti:1-3,30-31.
Dong XN, Yeni YN, Zhang B, Gibson G, Fyhrie DP., 2003. Bone mass, strength, and
stiffness are reduced in human tibial cancellous bone tissue with high TGF-β2 content.
Summer bioengineering conference
Dowsing P, Sandler PJ., 2004. How to effectively use a 2x4 appliance. J of
Orthod;(31):248-258
Dudic A, Giannopoulou C, Kiliardis S., 2013. Factors related to the rate of
orthodontically induced tooth movement. Am J Orthod Dentofacial Orthop;143:616-21

Universitas Sumatera Utara

Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, dkk., 2010. TGF-β1 as
possible link between loss of bone mineral density and chronic inflammation. Journal
pone;5(11):1-9
Erlebacher A, Derynck R., 1996. Increased expression of TGF-β2 in osteoblast result in
an osteoporosis-like phenotype. J Cell Biol; 132:195-210
Erlebacher A, Filvaroff EH, Jian-Qin Y, Derynck R., 1989. Osteoblastic response to
TGF-β during bone remodeling. Mol Biol Cel;9:1903-1918
Faulkner MG.,2011. Gingival Crevicular Fluid (GCF) Levels of Interleukin-6 (IL-6),
Soluble Glycoprotein 130 (SGP), and Soluble Interleukin-6 R During Orthodontic

Tooth Movement. Tesis Las Vegas: University of Nevada.
Filvaroff EH, Erlebacher A, Jian-Qin Y, Gitelman SE, Lotz J, Heillman M, dkk., 1999.
Inhibition of TGFβ receptor signaling in osteoblast leads to decrease bone remodeling
and increased trabecular bone mass. Development;126:4267-4279
Garlet TP, Coelho U, Silva JS, Garlet GP., 2007. Cytokine expression pattern in
compression and tension sides of the periodontal ligament during orthodontic tooth
movement in humans. Eur J Oral Sci; 115: 355–362
Garrant PR., 2003. Oral cells and tissues. Chicago:Quintessence Publishing: 25-26
Gastel van J, Teughels W, Quirynen M, Struyf S, Damme van J, Coucke W, dkk., 2011.
Longitudinal changes in gingival crevicular fluid after placement of fixed orthodontic
appliances. Am J Orthod Dentofacial Orthop;139:735-44
Hassel B, Farman AG., 1995. Skeletal maturation evaluation using cervical vertebrae.
Am J Orthod Dentofacial Orthop;107:58-66
Hill PA., 1998. Bone remodeling. Br J Orthod;25:101-107
Huang JC, King G, Kapila S., 2005. Biologic mechanism in orthodontic tooth
movement. In: Nanda R Ed. Biomechanics and esthetic strategies in clinical
orthodontics. St. Louis: Elsevier saunders:17-19
Jacobson A, Jacobson RL., 2006. Radiographic cephalometric from basics to 3D
imaging. 2nd ed. Chicago:Quintessence Publishing;7-12
Juhasz-Böss, Fehm T, Ney JT, Solomayer EF., 2012. Pathophysiology of bone

remodelling and current therapeutic approach. GebFra Science; 72: 502–506

Universitas Sumatera Utara

Junior JC, Kantarci A, Haffajee A, Teles RP, Fidel R., 2011. Matrix metalloproteinases
and chemokines in the gingival crevicular fluid during orthodontic tooth movement.
Eur J Orthod
Kanaan RA, Kanaan LA., 2006. Transforming growth factor β1, bone connection. Med
Sci Monit; 12(8): RA164-169
Kapetanakis S, Drygiannakis I, Kazakos K, Papanas N, Kolios G, Kouroumalis E, dkk.,
2010. Serum TGF-β2 and TGF-β3 are increased and positively correlated to pain,
functionality, and radiographic staging in osteoarthritis. Orthopedics;33(8)
Kaya FA, Hamamci N, Basaran G, Dogru M, Yildirim TT., 2010. TNF-α, IL-1β and
IL-8 levels in tooth early levelling movement in orthodontic treatment. J Int Dent Med
Res; 3:(3):116-121
Khrisnan V, Davidovitch Z. 2009. On path to unfolding the biological mechanism of
orthodontic tooth movement. J Dent Res.88:597-608
Khrisnan V, Davidovitch Z., 2006. Cellular, mollecular, and tissue-level reaction to
orthodontic force. Am J Orthod Dentofacial Orthop;129:469e.1-460e.32
Li JY, Hu B, Wang XJ, Wang SL., 2008. Temporal and spatial expression of TGF-β2

in tooth crown development in mouse first lower molar. Eur J Histochem;52(4):243250
Meeran NA., 2011. The role of gingival crevicular fluid in orthodontic tooth
movement. Streamdent;2(2);129-133
Melsen B., 2001. Tissue reaction to orthodontic tooth movement-a new paradigm. Eur J
Orthod;23:671-681
Mulyani, 1994. Biomekanik pergerakan gigi. Jakarta: Widya Medika
Nanda R. 2005. Biomechanical and esthetics strategies in clinical orthodontics. St.
Louis:Elseviers Saunders; 17-37.
Nishimura R., 2009. A novel role for TGF-β1 in bone remodeling. IBMS
BoneKey;6(11):434-438
Ong CKL, Joseph BK, Waters MJ, Symon AL., 2001. Growth hormone receptor and
IGF-I receptor immunoreactivity during tooth movement in the prednisolone-treated
rat. Angle Orthod;71:486-493

Universitas Sumatera Utara

Padua D, Massague J., 2009. Roles of TGFβ in metastasis. Cell Res;19:89-102
Paula de DF, Santos NCM, da Silva ET, Nunes MF, Leles, CR., 2009. Psychosocial
impact of dental esthetics on quality of life : association with malocclusion, self-image
and oral health-related issues. Angle Orthod;79:1188-1193

Phan TCA, Xu J, Zheng M., 2004. Interaction between osteoblast and osteoclast:
impact in bone disease. Histol Histopathol;19:1325-1344
Proffit WR., 2007. Contemporary Orthodontics. 4th ed. St. Louis:Mosby Inc, 296-304
Quinn JMW, Itoh K, Udagawa N, Hausler K, Yusada H, Shima N, dkk., 2001.
Transforming Growth Factor β affects osteoclast differentiation via direct and indirect
actions. J Bone Miner Res;16:1787-1794
Ren Y. 2002. Cytokine changes in gingival crevicular fluid during tooth movement. J
Clin Perio;29:757-762
Ruimerman R. 2005. Modeling and remodeling in bone tissue. Tesis Eindhoven:
Technische Universiteit Eindhoven,:1-5
Singh G. Ed. Textbook of orthodontics. 2nd ed. New Delhi:Jaypee Brothers Medical
Publisher Ltd., 216-220
Soesilowati, 2011. Dinamika ekspresi gen matriks metaloproteinase-8 dan tissue
inhibitor of metaoproteinase-1 dalam cairan krevikuler gingiva dari pasien yang dirawat
dengan piranti ortodontik lepasan dan cekat. Disertasi Makassar:Universitas
Hasanuddin.
Sony S., 1990. Hubungan antara tingkat keparahan maloklusi dengan tuntutan peawatan
ortodonti. Tesis Jakarta. Ladokgi RE Martadinata.
Surlin P, Rauten AM, Silosi I, Pirici D, Oprea B, Mogoanta L., 2012. MMP8, MMP9
and TIMP1 levels in gcf and gingival tissue of patient with gingival overgrowth during

orthodontic treatment. Int J Med Dent;2(1):57-62
Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, dkk., 2009. TGF-β1-induced migration
of bone mesenchymal stem cells couples bone resorption and formation. Nat
Med;15(7):757-765
Ueland T., 2005. GH/IGF-1 and bone resorption in vivo and in vitro. Eur J
Endocrinol;153(3):327-332

Universitas Sumatera Utara

Uematsu S, Mogi M, Deguchi T. 1996. Increase of Transforming growth factor-β1 in
gingival crevicular fluid during human orthodontic tooth movement. Arch Oral
Biol;41:1091-95
Uribe F, Nanda R., 2003. Treatment of Class II, division 2 malocclusion in adults:
biomechanical consideration. JCO;37(11):599-606
Varble ZL., 2009. The effect of growth hormon on tooth movement in rats. Thesis
St.Louis. Saint Louis University:93
Waddington RJ, Embery G., 2001. Proteoglycans and orthodontic tooth movement. J of
Orthod;28:281-290
Wilson JL., 2010. Analysis of biological pathways, associated with orthodontic force,
using multiplex arrays. Tesis Birmingham: University of Birmingham:40-42

Yamaguchi M, Yoshii M, Kasai K., 2006. Relationship between substance P and
interleukin 1B in gingival crevicular fluid during orthodontic tooth movement in adults.
Eur J Orthod;25:241-246
Yee JA. 2007. The rate of tooth movement and dentoalveolar stress under heavy and
light continuous orthodontic forces studied with a three dimensional finite element
model. Thesis Sydney. University of Sydney:46.

Universitas Sumatera Utara