Index of /intel-research/silicon

(1)

Si

Si

and Non

and Non

-

-

Si

Si

Nanotechnologies

Nanotechnologies

and their Benchmarking

and their Benchmarking

Robert Chau

Robert Chau

I ntel Fellow

I ntel Fellow

Director of Transistor Research and Nanotechnology

Director of Transistor Research and Nanotechnology

Technology & Manufacturing Group

Technology & Manufacturing Group

I ntel Corporation

I ntel Corporation

April 25, 2005

April 25, 2005


(2)

Content

Content

„

I ntroduction

„

Benchmarking metrics

„

Benchmarking methodology

„

Benchmarking results


(3)

Transistor Scaling

Transistor Scaling

Technology

Node

0.5µm

0.35µm

0.25µm

0.18µm

0.13µm 90nm 65nm 45nm 30nm

Transistor

Physical Gate

Length

130nm 70nm 50nm 30nm 20nm 15nm

1995

2005

1990

2000

2010

0.01

0.10

1.00

M

icromete

r

Nanotechnology

10

100

1000

Na

nome

te

r

Technology

Node

0.5µm

0.35µm

0.25µm

0.18µm

0.13µm 90nm 65nm 45nm 30nm

Transistor

Physical Gate

Length

130nm 70nm 50nm 30nm 20nm 15nm

1995

2005

1990

1995

2000

2005

2010

1990

2000

2010

0.01

0.10

1.00

M

icromete

r

0.01

0.10

1.00

M

icromete

r

Nanotechnology

10

100

1000

Na

nome

te

r

10

100

1000

Na

nome

te

r

Transistor physical gate length will reach ~ 15 nm before

end of this decade, and ~ 10 nm early next decade


(4)

Emerging Nanoelectronic Devices

Emerging Nanoelectronic Devices

5 n m 5 n m

2.0 nm High-K Gate

5.0 nm Si Nanowire

5 n m 5 n m

2.0 nm High-K Gate

5.0 nm Si Nanowire (e)

10nm

( a) 10nm LG Si MOSFET ( b) Non- planar Si Tri- gate ( c) I I I - V QWFET

( d) CNT FET


(5)

Benchmarking Metrics

Benchmarking Metrics

„

Benchmark emerging nanoelectronic devices

against state-of-the-art Si devices

„

Separate reality from hype

„

I dentify device strengths and shortcomings

„

Gauge research progress

„

4 key device metrics

„

CV/ I vs L

G

-- I ntrinsic speed

„

Energy-Delay product vs L

G

-- Switching energy

„

Subthreshold slope vs L

G

-- Scalability

„

CV/ I vs I

ON

/ I

OFF

-- I

OFF

vs speed tradeoff


(6)

Benchmarking Methodology

Benchmarking Methodology

„

I

ON

= I

DS

at | V

DS

| = V

CC

and | V

G

–V

T

| = 2 V

CC

/ 3

„

I

OFF

= I

DS

at | V

DS

| = V

CC

and | V

G

–V

T

| = V

CC

/ 3

„

Measure or estimate capacitance C


(7)

I ntrinsic Gate Delay CV/ I for PMOS

I ntrinsic Gate Delay CV/ I for PMOS

D = 1 to 2.5 nm D = 4 to 35 nm

„

CNT shows significant p-channel CV/ I improvement over Si

„ CNT has > 20x higher effective p-channel mobility than Si


(8)

Energy

Energy

-

-

Delay Product for PMOS

Delay Product for PMOS

„

CNT shows significant p-channel energy-delay product

improvement over Si due to higher effective p-channel

mobility than Si


(9)

Subthreshold Slope vs L

Subthreshold Slope vs L

G

G

for PMOS

for PMOS

Si Planar (VCC = 1.0-1.5V)

Si Tri-gate (VCC = 1.1V) CNTFETs

(VCC = 0.3-0.5V)


(10)

PMOS CV/ I versus I

PMOS CV/ I versus I

ON

ON

/ I

/ I

OFF

OFF

Ratio

Ratio

(Metal-CNT

source/drain contacts)

„ For ION/ IOFF < 100, CNT shows improvement over Si due to higher


(11)

Ambipolar Conduction: Parasitic Leakage in CNTs

Ambipolar Conduction: Parasitic Leakage in CNTs

„ CNTs use metal-CNT Schottky contacts to form source and drain,

which leads to ambipolar conduction


(12)

I ntrinsic Gate Delay CV/ I for NMOS

I ntrinsic Gate Delay CV/ I for NMOS

„ n-channel CNT not as well established as p-channel CNT

„ I I I -V (e.g. I nSb) devices show significant CV/ I improvement over Si


(13)

Energy

Energy

-

-

Delay Product for NMOS

Delay Product for NMOS

„ I I I -V (e.g. I nSb) devices show significant energy-delay product

improvement over Si due to > 50X higher effective mobility and


(14)

Subthreshold Slope vs L

Subthreshold Slope vs L

G

G

for NMOS

for NMOS

Si Planar (VCC = 1.0-1.5V)

Si Tri-gate (VCC = 1.1V) CNTFETs

(VCC = 0.3-0.5V)

Tri-gate


(15)

NMOS CV/ I versus I

NMOS CV/ I versus I

ON

ON

/ I

/ I

OFF

OFF

Ratio

Ratio

Chemically-doped junction delays ambipolar conduction Due to Schottky

gate leakage

„ Use of chemically-doped junctions delays the ambipolar conduction in

the CNTFET despite poor gate delay performance at present


(16)

Summary

Summary

„

Need to diligently benchmark emerging

nanoelectronic devices against state-of-the-art

Si data to

„

identify potential device strengths and shortcomings,

and

„

to gauge research progress

„

Emerging non-Si nanoelectronic devices show

both challenges and opportunities for future

logic transistor applications


(17)

References

References

„ R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A.

Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications”, I EEE Transactions on Nanotechnology, vol. 4, pp. 153-158, 2005.

„ R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J.

Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic, “Emerging Silicon and Non-Silicon Nanoelectronic Devices:

Opportunities and Challenges for Future High-Performance and Low-Power Computational Applications”, Proceedings of Technical Papers, 2005 I EEE VLSI -TSA I nternational Symposium on VLSI Technology, Hsinchu, Taiwan, pp. 13-16, April 25-27, 2005.


(1)

I ntrinsic Gate Delay CV/ I for NMOS

I ntrinsic Gate Delay CV/ I for NMOS

„ n-channel CNT not as well established as p-channel CNT

„ I I I -V (e.g. I nSb) devices show significant CV/ I improvement over Si

„ I I I -V devices have > 50X higher effective n-ch mobility than Si „ I I I -V devices operated at low VCC = 0.5V


(2)

Energy


(3)

Subthreshold Slope vs L

Subthreshold Slope vs L

G

G

for NMOS

for NMOS

Si Planar (VCC = 1.0-1.5V) Si Tri-gate (VCC = 1.1V) CNTFETs

(VCC = 0.3-0.5V)

Tri-gate


(4)

NMOS CV/ I versus I

NMOS CV/ I versus I

ON

ON

/ I

/ I

OFF

OFF

Ratio

Ratio

Chemically-doped junction delays ambipolar conduction Due to Schottky


(5)

Summary

Summary

„

Need to diligently benchmark emerging

nanoelectronic devices against state-of-the-art

Si data to

„

identify potential device strengths and shortcomings,

and

„

to gauge research progress

„

Emerging non-Si nanoelectronic devices show

both challenges and opportunities for future

logic transistor applications


(6)

References

References

„ R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A.

Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications”, I EEE Transactions on Nanotechnology, vol. 4, pp. 153-158, 2005.

„ R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J.

Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic, “Emerging Silicon and Non-Silicon Nanoelectronic Devices:

Opportunities and Challenges for Future High-Performance and Low-Power Computational Applications”, Proceedings of Technical Papers, 2005 I EEE VLSI -TSA I nternational Symposium on VLSI Technology, Hsinchu, Taiwan, pp. 13-16, April 25-27, 2005.