return dan risiko aktiva tunggal
RETURN DAN RISIKO AKTIVA
TUNGGAL
M.Andryzal Fajar
[email protected]
RETURN AKTIVA
TUNGGAL
Apa itu ?
Return Realisasian
Return
Return
Ekspektasian
A. Return
Return adalah hasil yang diperoleh dari investasi saham
yang kita lakukan dengan pembagian saham dalam bentuk
persentase dimana kita mengharapkan return dari investasi
itu besar sehingga sesuai dengan yang kita harapkan dari
suatu invesatasi
Penggolongan Return
A. Return Realisasian
1.
Return Total
2.
Return Relatif
3.
Return Kumulatif
4.
Retur Disesuaian
5.
Rata-rata Geomatric
B. Return Ekpektension
\\j
\\j
1.
2.
3.
Berdasarkan Nilai Ekspektansian
Masa Depan
Berdasarkan Nilai-nilai Return Historis
Berdasarkan Model Return
Ekspektensian
B. RETURN REALISASI
1. Total Return
Merupakan return keseluruhan dari suatu investasi dalam suatu
periode tertentu.
Terdiri dari capital gain (loss) dan yield
1. selisih untung (rugi) dari harga investasi sekarang relatif dengan
periode yanng lalu
2. persentase penerimaan kas periodik terhadap investasi Pperiode
tertentu dari suatu investasi
2. relatif Return
Relatif return terkadang diperlukan untuk mengukur return
dengan sedikit perbedaan dasar dibanding total return.
Relatif return menyelesaikan masalah ketika total return bernilai
negatif karena relatif return selalu positif. Meskipun relatif return
lebih kecil dari 1, tetapi tetap akan lebih besar dari 0, caranya
ialah dengan menambahkan nilai 1 terhadap nilai return total
Relatif return diperoleh dengan rumus:
Relatif Return = (Return Total
+1)
3. Kumulatif return
Indeks kemakmuran kumulatif ini menunjukkan kemakmuran akhir yang
diperoleh
dalam suatu periode tertentu.
Berbeda dengan total return yang mengukur total kemakmuran yang
diperoleh pada suatu waktu saja, kumulatif return mengukur kemakmuran
yang diperoleh sejak awal periode sampai dengan akhir dipertahankannya
investasi.
Rumus :
IKK = (1+) (1+)........(1+)
Keterangan:
IKK : Indeks kemakmuran kumulatif, mulai dari periode pertama sampai ke n
: Kekayaan awal, biasanya digunakan nilai Rp 1
: Return periode ke-t mulai dari awal periode (t=1) sampai ke akhir periode
(t=n)
4. Return disesuaikan
Semua return yang telah dibahas sebelumnya mengukur jumlah
satuan mata uang atau perubahan jumlahnya tetapi tidak
menyebutkan tentang kekuatan pembelian dari satuan mata uang
tersebut.
Untuk mempertimbangkan kekuatan pembelian satuan mata uang,
perlu mempertimbangkan real return, atau inflation-adjusted returns.
Rumus:
Keterangan:
: return sesuaian inflasi
R
: return nominal
IF
: tingkat inflasi
=
5. Return Geomatrik
• Digunakan untuk menghitung rata-rata
yang memperhatikan
tingkat pertumbuhan kumulatif dari waktu ke waktu.
• Rumus:
RG = ((1+) (1+)..........(1+) - 1
• Keterangan:
RG : rata-rata geometrik
Ri : return untuk periode ke-i
N : jumlah dari return
C. RETURN
EKSPEKTASI
Definisi
• Return ekspektasian (expected return) merupakan return
yang digunkan untuk pengambilan keputusan investasi.
Retun ini penting dibandingkan dengan return historis
karena return ekspektasian merupakan return yang
diharapkan dari investasi yang akan dilakukan.
• Return
ekspektasian
dapat
dihitung
beberapa cara sebagai berikut:
1. Nilai Ekspektansian Masa Depan
2. Nilai-nilai Return Historis
3. Ekspektensian yang ada
berdasarkan
1.
Berdasar nilai ekspektasi masa
depan
Adanya ketidakpastian tentang return yang diperoleh masa mendatang
Sehingga
perlu diantisipasi beberapa hasil masa depan dengan
probabilitas kemungkinan terjadinya.
Return ekspetasi dihitung dari rata-rata tertimbang berbagai tingkat
return dengan probabilitas keterjadian di masa depan sebagai faktor
penimbangnya
E() =-)
Rumus
Keterangan:
E()
: return ekspektasian suatu aktiva atau sekuritas ke-i
: hasil masa depan ke-j untuk sekuritas ke-i
: probabilitas hasil masa depan ke j
n : jumlah dari hasil masa depan
2. Berdasar nilai historis
Kenyataannya dalam menghitung hasil masa depan dan
probabilitasnya merupakan hal yang tidak mudah dan bersifat
subjektif. Akibat perkiraan yang subjektif ini, ketidakakuratan
akan terjadi. Untuk mengantisipasi kelemahan nilai
ekspektasi masa depan, yaitu tidak mudah diterapkan dan
subjektif, sehingga menjadi tidak akurat.
Metoda yang sering digunakan:
Metoda rata-rata (mean) : diasumsikan return ekspedisian
dapat dianggap sama dengan rata-rata nilai historisnya
Metoda tren : Jika pertumbuhan return akan diperhitungkan
Metoda jalan acak (random walk) : digunakan bila
distribusi data return bersifat acak.
3. Berdasarkan Model Return
Ekspektasian
Model-model
untuk
menghitung
hasil
ekspektasi sangat dibutuhkan. Model yang
tersedia yang populer dan banyak digunakan
adalah Single Index Model dan model CAPM.
D.RISIKO
Risiko
Risiko dari investasi sangat perlu diperhitungkan.
Risiko sering dihubungkan dengan penyimpangan
atau deviasi dari outcome yang diterima dengan
yang diekpektasi.
Risiko dapat dihitung berdasarkan beberapa cara
sebagai berikut:
1.
2.
Berdasarkan Probalitas
Berdasarkan Data Historis
1. Menghitung risiko menggunakan
data probabilitas
Penghitungan varian
Deviasi standar dapat yang dapat digunakan
untuk menghitung resiko.
Penghitungan varian
Resiko juga dapat dinyatakan dalam
bentuk
varians (variance) yaitu
kuadrat dari deviasi standar dan
disubstitusikan dengan probabilitas.
Var() = E[( - E())
S = (E[( - E()
2. Menghitung risiko menggunakan
data Historis
Resiko yang diukur dengan deviasi standar yang menggunakan data historis.
Nilai ekspektasi yang digunakan di rumus deviasi standar dapat berupa nilai
ekspektasi berdasarkan rata-rata historis atau tren atau random walk.
Rumus:
E. Koefisien Variasi
Yakni Analisis investasi yang digunakan untuk
mempertimbangkan return ekpektansi dan rasio aktiva
secara bersamaan.
F. SEMIVARIANs
•Salah satu keberatan menggunakan rumus varians adalah karena rumus ini memberi bobot yang
sama besarnya untuk nilai-nilai di bawah maupun di atas nilai ekspektasi.
•{{
•Padahal individu yang mempunyai perilaku berbeda terhadap resiko akan memberikan bobot yang
tidak sama terhadap kedua bobot nilai tersebut.
{{
•Resiko selaku dihubungkan dengan nilai, karena resiko adalah sesuatu yang menghilangkan atau
menurunkan nilai.
•Jika hanya nilai-nilai satu sisi saja yang digunakan, yaitu nilai-nilai di bawah ekspektasinya, maka
ukuran resiko semacam ini disebut semivariance.
•Rumus:
Semivariance= E[(Ri - E()] untuk < E(
G. Mean Absolute Deviation
• Merupakan Pengukuran resiko yang menghindari pengkuadaratan .
• Pengkuadratan akan memberikan bobot yang lebih besar
dibandingkan jika tidak dilakukan pengkuadratan.
Rumus:
H. Properti Return Ekspektasi Dan Varian
Nilai-nilai ekspektasi mempunyai beberapa properti yang
berhubungan dengan nilai ekspektasi.
Setidaknya ada 4 properti didalamnya.
I.
I. HUBUNGAN
HUBUNGAN ANTARA
ANTARA RETURN
RETURN EKSPEKTASI
EKSPEKTASI
DENGAN
DENGAN RESIKO
RESIKO
Retur ekspektasian dengan resiko mempunyai hubungan yang Positif.
Semakin besar resiko suatu sekuritas, semakin besar return yang diharapkan.
Sebaliknya, Semakin kecil return yang diharapkan, semakin kecil resiko yang
Thanks For
Wacth .....
TUNGGAL
M.Andryzal Fajar
[email protected]
RETURN AKTIVA
TUNGGAL
Apa itu ?
Return Realisasian
Return
Return
Ekspektasian
A. Return
Return adalah hasil yang diperoleh dari investasi saham
yang kita lakukan dengan pembagian saham dalam bentuk
persentase dimana kita mengharapkan return dari investasi
itu besar sehingga sesuai dengan yang kita harapkan dari
suatu invesatasi
Penggolongan Return
A. Return Realisasian
1.
Return Total
2.
Return Relatif
3.
Return Kumulatif
4.
Retur Disesuaian
5.
Rata-rata Geomatric
B. Return Ekpektension
\\j
\\j
1.
2.
3.
Berdasarkan Nilai Ekspektansian
Masa Depan
Berdasarkan Nilai-nilai Return Historis
Berdasarkan Model Return
Ekspektensian
B. RETURN REALISASI
1. Total Return
Merupakan return keseluruhan dari suatu investasi dalam suatu
periode tertentu.
Terdiri dari capital gain (loss) dan yield
1. selisih untung (rugi) dari harga investasi sekarang relatif dengan
periode yanng lalu
2. persentase penerimaan kas periodik terhadap investasi Pperiode
tertentu dari suatu investasi
2. relatif Return
Relatif return terkadang diperlukan untuk mengukur return
dengan sedikit perbedaan dasar dibanding total return.
Relatif return menyelesaikan masalah ketika total return bernilai
negatif karena relatif return selalu positif. Meskipun relatif return
lebih kecil dari 1, tetapi tetap akan lebih besar dari 0, caranya
ialah dengan menambahkan nilai 1 terhadap nilai return total
Relatif return diperoleh dengan rumus:
Relatif Return = (Return Total
+1)
3. Kumulatif return
Indeks kemakmuran kumulatif ini menunjukkan kemakmuran akhir yang
diperoleh
dalam suatu periode tertentu.
Berbeda dengan total return yang mengukur total kemakmuran yang
diperoleh pada suatu waktu saja, kumulatif return mengukur kemakmuran
yang diperoleh sejak awal periode sampai dengan akhir dipertahankannya
investasi.
Rumus :
IKK = (1+) (1+)........(1+)
Keterangan:
IKK : Indeks kemakmuran kumulatif, mulai dari periode pertama sampai ke n
: Kekayaan awal, biasanya digunakan nilai Rp 1
: Return periode ke-t mulai dari awal periode (t=1) sampai ke akhir periode
(t=n)
4. Return disesuaikan
Semua return yang telah dibahas sebelumnya mengukur jumlah
satuan mata uang atau perubahan jumlahnya tetapi tidak
menyebutkan tentang kekuatan pembelian dari satuan mata uang
tersebut.
Untuk mempertimbangkan kekuatan pembelian satuan mata uang,
perlu mempertimbangkan real return, atau inflation-adjusted returns.
Rumus:
Keterangan:
: return sesuaian inflasi
R
: return nominal
IF
: tingkat inflasi
=
5. Return Geomatrik
• Digunakan untuk menghitung rata-rata
yang memperhatikan
tingkat pertumbuhan kumulatif dari waktu ke waktu.
• Rumus:
RG = ((1+) (1+)..........(1+) - 1
• Keterangan:
RG : rata-rata geometrik
Ri : return untuk periode ke-i
N : jumlah dari return
C. RETURN
EKSPEKTASI
Definisi
• Return ekspektasian (expected return) merupakan return
yang digunkan untuk pengambilan keputusan investasi.
Retun ini penting dibandingkan dengan return historis
karena return ekspektasian merupakan return yang
diharapkan dari investasi yang akan dilakukan.
• Return
ekspektasian
dapat
dihitung
beberapa cara sebagai berikut:
1. Nilai Ekspektansian Masa Depan
2. Nilai-nilai Return Historis
3. Ekspektensian yang ada
berdasarkan
1.
Berdasar nilai ekspektasi masa
depan
Adanya ketidakpastian tentang return yang diperoleh masa mendatang
Sehingga
perlu diantisipasi beberapa hasil masa depan dengan
probabilitas kemungkinan terjadinya.
Return ekspetasi dihitung dari rata-rata tertimbang berbagai tingkat
return dengan probabilitas keterjadian di masa depan sebagai faktor
penimbangnya
E() =-)
Rumus
Keterangan:
E()
: return ekspektasian suatu aktiva atau sekuritas ke-i
: hasil masa depan ke-j untuk sekuritas ke-i
: probabilitas hasil masa depan ke j
n : jumlah dari hasil masa depan
2. Berdasar nilai historis
Kenyataannya dalam menghitung hasil masa depan dan
probabilitasnya merupakan hal yang tidak mudah dan bersifat
subjektif. Akibat perkiraan yang subjektif ini, ketidakakuratan
akan terjadi. Untuk mengantisipasi kelemahan nilai
ekspektasi masa depan, yaitu tidak mudah diterapkan dan
subjektif, sehingga menjadi tidak akurat.
Metoda yang sering digunakan:
Metoda rata-rata (mean) : diasumsikan return ekspedisian
dapat dianggap sama dengan rata-rata nilai historisnya
Metoda tren : Jika pertumbuhan return akan diperhitungkan
Metoda jalan acak (random walk) : digunakan bila
distribusi data return bersifat acak.
3. Berdasarkan Model Return
Ekspektasian
Model-model
untuk
menghitung
hasil
ekspektasi sangat dibutuhkan. Model yang
tersedia yang populer dan banyak digunakan
adalah Single Index Model dan model CAPM.
D.RISIKO
Risiko
Risiko dari investasi sangat perlu diperhitungkan.
Risiko sering dihubungkan dengan penyimpangan
atau deviasi dari outcome yang diterima dengan
yang diekpektasi.
Risiko dapat dihitung berdasarkan beberapa cara
sebagai berikut:
1.
2.
Berdasarkan Probalitas
Berdasarkan Data Historis
1. Menghitung risiko menggunakan
data probabilitas
Penghitungan varian
Deviasi standar dapat yang dapat digunakan
untuk menghitung resiko.
Penghitungan varian
Resiko juga dapat dinyatakan dalam
bentuk
varians (variance) yaitu
kuadrat dari deviasi standar dan
disubstitusikan dengan probabilitas.
Var() = E[( - E())
S = (E[( - E()
2. Menghitung risiko menggunakan
data Historis
Resiko yang diukur dengan deviasi standar yang menggunakan data historis.
Nilai ekspektasi yang digunakan di rumus deviasi standar dapat berupa nilai
ekspektasi berdasarkan rata-rata historis atau tren atau random walk.
Rumus:
E. Koefisien Variasi
Yakni Analisis investasi yang digunakan untuk
mempertimbangkan return ekpektansi dan rasio aktiva
secara bersamaan.
F. SEMIVARIANs
•Salah satu keberatan menggunakan rumus varians adalah karena rumus ini memberi bobot yang
sama besarnya untuk nilai-nilai di bawah maupun di atas nilai ekspektasi.
•{{
•Padahal individu yang mempunyai perilaku berbeda terhadap resiko akan memberikan bobot yang
tidak sama terhadap kedua bobot nilai tersebut.
{{
•Resiko selaku dihubungkan dengan nilai, karena resiko adalah sesuatu yang menghilangkan atau
menurunkan nilai.
•Jika hanya nilai-nilai satu sisi saja yang digunakan, yaitu nilai-nilai di bawah ekspektasinya, maka
ukuran resiko semacam ini disebut semivariance.
•Rumus:
Semivariance= E[(Ri - E()] untuk < E(
G. Mean Absolute Deviation
• Merupakan Pengukuran resiko yang menghindari pengkuadaratan .
• Pengkuadratan akan memberikan bobot yang lebih besar
dibandingkan jika tidak dilakukan pengkuadratan.
Rumus:
H. Properti Return Ekspektasi Dan Varian
Nilai-nilai ekspektasi mempunyai beberapa properti yang
berhubungan dengan nilai ekspektasi.
Setidaknya ada 4 properti didalamnya.
I.
I. HUBUNGAN
HUBUNGAN ANTARA
ANTARA RETURN
RETURN EKSPEKTASI
EKSPEKTASI
DENGAN
DENGAN RESIKO
RESIKO
Retur ekspektasian dengan resiko mempunyai hubungan yang Positif.
Semakin besar resiko suatu sekuritas, semakin besar return yang diharapkan.
Sebaliknya, Semakin kecil return yang diharapkan, semakin kecil resiko yang
Thanks For
Wacth .....