BANGUNAN PENGOLAHAN AIR BUANGAN INDUSTRI PENYAMAKAN KULIT.

TUGAS PERENCANAAN

BANGUNAN PENGOLAHAN AIR BUANGAN
INDUSTRI PENYAMAKAN KULIT
]]]]

Oleh:

ARY ANDRIYANI
0852010041

PROGRAM STUDI TEKNIK LINGKUNGAN
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
UNIVERSITAS PEMBANGUNAN NASIONAL “ VETERAN” JATIM
SURABAYA
2012

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

TUGAS PERENCANAAN


BANGUNAN PENGOLAHAN AIR BUANGAN
INDUSTRI PENYAMAKAN KULIT
Oleh :

ARY ANDRIYANI
0852010041
Telah diperiksa dan disetujui
Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan
Universitas Pembangunan Nasional”Veteran” Jawa Timur.
Mengetahui
Ketua Program Studi

Menyetujui
Pembimbing

Dr.Ir.Munawar,MT
NIP : 19600401 198803 1 001

Okik Hendriyanto C., ST ,MT

NIP : 3 7507 99 0172 1

Laporan Tugas Perencanaan ini telah diterima sebagai salah satu persyaratan
untuk memperoleh gelar sarjana (S-1), tanggal...........................................

Dekan Fakultas Teknik Sipil dan Perencanaan

Ir. Naniek Ratni JAR., M,Kes
NIP . 19590729 1966 03 2 001

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

TUGAS PERENCANAAN

BANGUNAN PENGOLAHAN AIR BUANGAN
INDUSTRI PENYAMAKAN KULIT

Untuk Memenuhi Salah Satu Persyaratan Dalam Memperoleh
Gelar Sarjana Teknik ( S-1)


PROGRAM STUDI TEKNIK LINGKUNGAN

Oleh :

ARY ANDRIYANI
0852010041

FAKULTAS TEKNIK SIPIL & PERENCANAAN
UNIVERSITAS PEMBANGUNAN NASIONAL “ VETERAN” JATIM
SURABAYA
2012

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

KATA PENGANTAR

Puji syukur kepada Allah SWT yang telah memberikan rahmat dan
hidayah-Nya sehingga penyusun dapat menyelesaikan tugas Perencanaan

Bangunan Pengolahan Air Buangan (PBPAB) Industri Penyamakan Kulit ini
dengan baik.
Tugas perencanaan ini merupakan salah satu persyaratan bagi setiap
mahasiswa Jurusan Teknik Lingkungan , Fakultas Teknik Sipil Dan Perencanaan,
Universitas Pembangunan Nasional “Veteran” Jawa Timur untuk mendapatkan
gelar sarjana.
Selama menyelesaikan tugas ini, kami telah banyak memperoleh
bimbingan dan bantuan dari berbagai pihak, untuk itu pada kesempatan ini
penyusun ingin mengucapkan terima kasih yang sebesar-besarnya kepada :
1. Tuhan Yang Maha Esa, karena berkat rahmatnya tugas ini dapat
terselesaikan dengan lancar.
2. Ir.Naniek Ratni JAR.,Mkes selaku Dekan Fakultas Teknik Sipil Dan
Perencanaan Universitas Pembangunan Nasional “Veteran” Jawa Timur.
3. DR.IR.Munawar,MT selaku Ketua Jurusan Teknik Lingkungan Fakultas
Teknik Sipil Dan Perencanaan Universitas Pembangunan Nasional
“Veteran” Jawa Timur
4. Okik HC.,ST,MT selaku Dosen Pembimbing tugas PBPAB yang telah
membantu, mengarahkan dan membimbing hingga tugas perencanaan ini
sehingga dapat selesai dengan baik.


i
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

5. Firra Rossariawari, ST dan Ir. Yayok Suryo P, MS selaku dosen mata
kuliah PBPAB.
6. Kedua orang tuaku, keluargaku, yang telah membantu material, doa, serta
support yang tidak pernah habis buat saya.
7. Erwin Wijaya Kusuma, terima kasih untuk gambarnya dan selalu
menemani kemana-mana, cari Literatur, dll.
8. Semua rekan-rekan di Teknik Lingkungan angkatan 2008 yang secara
langsung maupun tidak langsung telah membantu hingga terselesainya
tugas ini.
9. Semua pihak yang telah membantu dan yang tidak dapat saya sebutkan
satu per satu.

Penyusun menyadari bahwa masih banyak kekurangan dalam penyusunan
tugas perencanaan ini, untuk itu saran dan kritik yang membangun akan penyusun
terima dengan senang hati. Akhir kata penyusun mengucapkan terima kasih dan
mohon maaf yang sebesar-besarnya apabila didalam penyusunan laporan ini

terdapat kata-kata yang kurang berkenan atau kurang dipahami.

Surabaya, Maret 2012

Penyusun

ii
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

DAFTAR ISI
KATA PENGANTAR ................................................................................... i
DAFTAR ISI ................................................................................................. iii
DAFTAR TABEL ......................................................................................... vi
DAFTAR GAMBAR ..................................................................................... vii
BAB I

PENDAHULUAN
1.1 Latar Belakang ............................................................................. 1
1.2 Maksud dan Tujuan ...................................................................... 2

1.3 Ruang Lingkup .............................................................................. 3

BAB II

TINJ AUAN PUSTAKA

2.1 Karakteristik Limbah Industri ........................................................ 4
2.2 Bangunan Pengolahan Air Buangan ............................................... 6
2.2.1. Pengolahan Pendahuluan (Pre Treatment) ............................ 6
2.2.2. Pengolahan Pertama (Primary Treatment)............................ 13
2.2.2.1. Proses Fisik...............................................................13
2.2.2.2. Proses Kimia..............................................................19
2.2.3. Pengolahan Sekunder (Secondary Tretment)..........................24
2.2.4. Pengolahan Tersier (Tertiary Treatment).............................. 30
2.2.5. Pengolahan Lumpur (Sludge Treatment) .............................. 31
2.3 Persen Removal.................................................................................32
2.4 Profil Hidrolis………………………………………………………34
BAB III

DATA PERENCANAAN


3.1 Data Karakteristik Limbah ............................................................ 36

iii
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

iv

3.2 Standar Baku Mutu ....................................................................... 37
3.3 Diagram Alir ................................................................................ 38
BAB IV

NERACA MASSA DAN SPESIFIKASI BANGUNAN

4.1 Neraca Masa ................................................................................. 39
4.1.1. Screen............................................................................39
4.1.2. Bak Penampung.............................................................40
4.1.3. Flotasi............................................................................40
4.1.4. Bak Koagulas - Flokulasi..............................................41

4.1.5. Bak Pengendap I...........................................................41
4.1.6. Activated Sludge...........................................................42
4.1.7. Bak Pengendap II ( clarifier )........................................43
4.2 Spesifikasi Bangunan.......................................................................42
4.2.1. Saluran Pembawa Menuju Screen................................44
4.2.2. Screen............................................................................44
4.2.3. Bak Penampung.............................................................44
4.2.4. Flotasi............................................................................45
4.2.5.Bak Koagulasi.................................................................45
4.2.6.Bak Flokulasi..................................................................46
4.2.7. Bak Pengendap I...........................................................46
4.2.8. Activated Sludge.. ........................................................47
4.2.9. Bak Pengendap II ( clarifier )............... .......................49
4.2.10.Sludge Drying Bed......................................................49

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

v


BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan .................................................................................. 51
5.2 Saran ............................................................................................ 51
DAFTAR PUSTAKA .................................................................................... ix
LAMPIRAN A
LAMPIRAN B
GAMBAR
LEMBAR ASISTENSI

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

ABSTRAK
Tujuan penelitian ini untuk mengetahui kadar Phosphat, Amonia, Nitrat,
Nitrit dan Oksigen Terlarut pada tambak air payau akibat rembesan lumpur
lapindo di Sidoarjo. Penentuan lokasi penelitian di lakukan pada tambak air payau
yang tercemar lumpur lapindo pada tambak Banjar Panji dan tambak tidak

tercemar Kalanganyar. Metode analisa yang digunakan mengacu pada SNI
(Standart Nasional Indonesia) dengan menggunakan Spectrofotometer. Kadar
amonia pada tambak tercemar 12,32 ppm dan untuk tambak tidak tercemar 1,35
ppm. Kadar nitrit pada tambak tercemar lumpur lapindo 9,31 ppm dan untuk
tambak tidak tercemar 2,34 ppm. Kadar nitrat pada tambak tercemar lumpur
lapindo 38,24 ppm dan untuk tambak tidak tercemar 22,56 ppm. Kadar phospat
pada tambak tercemar lumpur lapindo 0,11 ppm dan pada tambak tidak tercemar
0,13 ppm. Sedangkan untuk analisa Oksigen Terlarut (DO) adanya penambahan
pada air sample yaitu MnSO4 , Alkali Iodida Acida, Na2S2O3, H2SO4 pekat,
Indikator Amilum. Sehingga diketahui DO pada tambak tercemar lumpur lapindo
6,10 ppm dan untuk tambak tidak tercemar ppm.
Kata kunci : tambak tercemar, tambak tidak tercemar, phospat, ammonia, nitrat,
nitrit, oksigen terlarut

iii
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

ABSTRACT
The goals of this research were to know the effect of lapindo hot mud
permeating through brackish waterpond on phosphate, ammonia, nitrate, nitrite
and dissolved oxygen contents in Sidoarjo. The location were was at brackish
waterponds permeated in Banjar Panji and unpermeated in Kalanganyar. The
analysis method used was related to SNI (Indonesia National Standart) with using
spektrofotometer. The result shoed amonia content of hot mud permeated pond
12,32 ppm and unper meated pond 1,35 ppm. Nitrite contents of permeated pond
9,31 ppm and unpermeated pond 2,34 ppm. Nitrate contents of permeated pond
38,24 ppm and unpermeated pond 22,56 ppm. Phosfate contents of permeated
pond 0,11 ppm and unpermeated pond 0,13 ppm. As for the analysis of Dissolved
Oxygen (DO) to the addition of the water sample is MnSO4, Alkali Iodides Acida,
Na2S2O3, concentrated H2SO4, starch indicator. So that the unknown DO
concents of permeated pond 1,38 ppm and unpermeated pond 3,66 ppm.

Key words: permetead pond, unpermeated pond, phosphate, ammonia, nitrate,
nitrite, dissolved oxygen

iv
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

BAB I
PENDAHULUAN

1.1 Latar Belakang
Setiap melakukan aktivitas kehidupan, manusia selalu menghasilkan produk,
baik yang bisa dimanfaatkan maupun yang tidak dapat dimanfaatkan (dibuang).
Bahan buangan ini dapat berupa padatan, gas, atau cairan. Bahan-bahan tersebut
tidak dapat dibuang begitu saja tanpa melalui proses pengolahan karena hal ini
dapat mengakibatkan terjadinya ketidakseimbangan pada lingkungan yang dihuni
oleh manusia, sehingga dapat menimbulkan gangguan, baik terhadap jaringan atau
organ tubuh bagi manusia yang membuang bahan buangan, maupun terhadap
makhluk hidup lainnya, seperti hewan dan tumbuh-tumbuhan yang ada
disekitarnya.
Pada tugas Perencanaan Bangunan Pengolahan Air Buangan ini, dikhususkan
pada air buangan yang berasal dari pabrik kulit dengan kandungan BOD dan COD
yang tinggi sehingga dapat menimbulkan berbagai gangguan baik bagi makhluk
hidup maupun bagi lingkungan sekitarnya. Dengan adanya pengolahan air
buangan ini diharapkan limbah yang telah diolah dapat dimanfaatkan sesuai
dengan standart pengolahan air baik yang telah ditetapkan oleh pemerintah
maupun SK. GUB. KDH Tingkat I Jatim No. 45 Tahun 2002, tentang Baku Mutu
Limbah Cair bagi Industri Penyamakan Kulit.

1
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

2

1.2 Maksud dan Tujuan
Maksud dari tugas perencanaan bangunan pengolahan air buangan ini
yaitu agar mahasiswa mengetahui serta memahami bagaimana cara penentuan
bangunan pengolahan air buangan yang sebenarnya dan penerapannya di
lapangan.
Sedangkan tujuan perencanaan bangunan pengolahan air buangan ini adalah :
1. Menentukan unit dan proses pengolahan air buangan yang sesuai dengan
kandungan air buangan yag dihasilkan oleh pabrik kulit tersebut.
2. Merencanakan bangunan pengolahan air buangan dan hal-hal yang terkait
di dalamnya termasuk lay out serta pengoerasiannya
3. Merencanakan diagram alir dari tiap-tiap instalasi pengolahan air buangan
yang saling berkaitan sehingga dapat diperoleh kualitas air yang
dikehendaki.
4. Menentukan alternatif pengolahan yang sesuai berdasarkan pertimbangan
karakteristik air buangan pabrik kulit dan aspek perencanaan lingkungan.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

3

1.3 Ruang Lingkup
Ruang lingkup tugas Perencanaan Banguna Pengolahan Air Buangan ini
meliputi :
1. Bangunan Pengolahan Limbah
1.1.

Pre Treatment

1.1.1. Saluran Pembawa
1.1.2. Screen
1.1.3. Bak Penampung
1.2.

Primary Treatment

1.2.1. Koagulasi-flokulasi
1.2.2. Bak Pengendap I
1.3.

Secondary Treatment

1.3.1. Activated Sludge
1.4.

Tertiary Treatment

1.4.1. Bak Pengendap 2 (Clarifier)
1.4.2. Bak Umpan
1.5.

Sludge Driying Bed.

2. Data karakteristik dan standart baku mutu air limbah industri.
3. Perhitungan dan dimensi bangunan pengolahan air limbah.
4. Gambar pengolahan air limbah.
5. Profil Hidrolis.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

BAB II
TINJ AUAN PUSTAKA

2.1

Karakter istik Limbah
Setiap industri mempunyai karakteristik yang berbeda, sesuai dengan

produk yang dihasilkan. Demikian pula dengan Pabrik Penyamakan Kulit yang
mempunyai karakteristik limbah yang berbeda, menurut Keputusan Gubernur
Jawa Timur No. 45 Tahun 2002 limbah cair Pabrik Penyamakan Kulit mempunyai
karakteristik sebagai berikut :
a. BOD ( Biochemical Oxygen Demand )
Kandungan BOD5 air buangan Industri Penyamakan Kulit ini adalah
2250 mg/l, sedangkan baku mutu yang mengatur besar kandungan BOD5 yang
diperbolehkan dibuang ke lingkungan adalah sebesar 100 mg/l.
BOD adalah banyaknya oksigen dalam ppm atau milligram/liter (mg/l)
yang diperlukan untuk menguraikan benda organic oleh bakteri, sehingga
limbah tersebut menjadi jernih kembali. Untuk itu semua diperlukan waktu 100
hari pada suhu 20˚ C. Akan tetapi di laboratorium dipergunakan waktu 5 hari
sehingga dikenal sebagai BOD5.

4
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

5

b. COD ( Chemical Oxygen Demand )
Kandungan COD air buangan Industri Penyamakan Kulit ini adalah 3200
mg/l, sedangkan baku mutu yang mengatur besar kandungan COD yang
diperbolehkan dibuang ke lingkungan adalah sebesar 250 mg/l.
COD adalah banyaknya oksigen dalam ppm atau milligram per liter (mg/l)
yang dibutuhkan dalam kondisi khusus untuk menguraikan benda organic secara
kimiawi. (sumber : Sugiharto, Dasar – dasar Pengelolaan Air Limbah, hal.6)
c. Minyak dan Lemak
Kandungan zat lemak dapat ditentukan dan disajikan melalui contoh air
limbah dengan Heksana. Selain heksana sebagai pelarut juga dapat
dipergunakan kerosin, pelumas. Lemak dan minyak membentuk ester dan
alcohol atau gliserol dengan asam gemuk. Lemak tergolong pada benda organic
yang tetap dan tidak mudah untuk diuraikan oleh bakteri.
d. TSS (Total Suspended Solid)
Total padatan yang tersuspensi (TSS) pada air buangan Industri
Penyamakan Kulit ini adalah 1300 mg/lt, sedangkan baku mutu yang mengatur
besar kadar padatan yang tersuspensi (TSS) yang diperbolehkan dibuang ke
lingkungan adalah sebesar 100 mg/lt.
TSS (Total Suspended Solid) merupakan suatu endapan yang dapat
disaring (filtrable residu) dan dapat membentuk suatu sludge blanket yang

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

6

terdiri-dari bahan-bahan organik. Sedangkan dissolved solid adalah suatu solid
yang tidak dapat disaring (non filtrable residu).
e. NH3-N ( Ammonia Total )
Kandungan Ammonia air buangan Industri Penyamakan Kulit ini adalah
10 mg/l, sedangkan baku mutu yang mengatur besar kandungan Ammonia yang
diperbolehkan dibuang ke lingkungan adalah sebesar 8 mg/l.
Amonia adalah senyawa kimia dengan rumus NH3. Biasanya senyawa ini
didapati berupa gas dengan bau tajam yang khas (disebut bau amonia).
Walaupun amonia memiliki sumbangan penting bagi keberadaan nutrisi di
bumi, amonia sendiri adalah senyawa kaustik dan dapat merusak kesehatan.
2.2.

Bangunan Pengolahan Air Buangan
Bangunan Pengolahan Air Buangan mempunyai kelompok
tingkat pengolahan, pengolahan air buangan dibedakan atas:

2.2.1. Pengolahan Pendahuluan (Pre Tr eatment)
Proses pengolahan yang dilakukan untuk membersihkan dan
menghilangkan sampah terapung dari pasir agar mempercepat proses
pengolahan selanjutnya. Unit pengolahannya meliputi :
a. Screening
Screening biasanya terdiri-dari batang pararel, kawat atau grating,
perforated plate dan umumnya memiliki bukaan yang berbentuk bulat atau

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

7

persegi empat. Secara umum peralatan screen terbagi menjadi dua tipe
yaitu screen kasar dan screen halus.Dan cara pembersihannya ada dua cara
yaitu secara manual dan mekanis. Perbedaan screen kasar dan halus adalah
pada jauh dekatnya jarak antar bar screen.
Prinsip yang digunakan bahan padat kasar dihilangkan dengan
sederet bahan baja yang diletakan dan dipasang melintang arah aliran.
Screen berfungsi untuk :
1. Menyaring benda padat dan kasar yang ikut terbawa atau hanyut dalam
air buangan supaya benda-benda tersebut tidak menggangu aliran
idalam saluran dan tidak mengganggu proses pengolahan air buangan.
2. Mencegah timbulnya kerusakan dan penyumbatan dalam saluran
pembawa.
3. Melindungi peralatan seperti pompa, valve dan peralatan lainnya.

Gambar 2.1. Screening (Metcalf&Eddy,317)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

8

Tabel 2.1. Pembagian Screen
Bagian-bagian

Manual

Mekanikal

Ukuran kisi
-

Lebar

05 – 15 mm

05 – 15 mm

-

Dalam

25 – 75 mm

25 – 75 mm

Jarak antar kisi

25 – 50 mm

15 – 75 mm

Sloop

300 - 400

00 - 300

Kecepatan melalui bar

0,3 – 0,6 m/det

0,6 – 1,0 m/det

Head Loss

150 mm

150 mm

(Sumber : Metcalf and Eddy, “ Waste Water Engineering Treatment Disposal Reuse” hal 316)

β

J enis Bor
- Segi empat sisi runcing

2,42

- Segi empat sisi bulat runcing

1,83

- Segi empat sisi bulat

1,67

- Bulat

1,79

Bentuk

(Sumber:Syed R. Qasim, Wastewater Treatment Plants, Planning, Design, and Operation,
1985,hal 161)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

9

Rumus yang digunakan :
1. Jumlah Batang kisi (n) :

ws = (n + 1).b + n.t
dengan :
Ws = lebar saluran, (m)
n = jumlah batang
b = jarak antar kisi, (m)
t = tebal kisi/bar, (m)
2. Lebar Bukaan Screen :

wc = ws − (n.t )
3. Tinggi kisi (γ)
γ = h + Freeboard
Dengan :
h = Kedalaman saluran
4. Panjang kisi (P)

γ
P = sinα
Dengan :
α = Kemiringan kisi
γ = Tingggi kisi (m)
a. Jarak kemiringan kisi (x)
x = P . Cos α

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

10

Dengan :
α = Kemiringan kisi
P = Panjang kisi (m)
6. Kecepatan melalui kisi (Vi) :
Vi =

Q
wc.h

7. Tekanan kecepatan air melalui screen :
hv =

Vi 2
2 .g

8. Headloss pada bar screen
h = β .(w / b )

4

3.

.hv. sin α

dengan :
hf

= Headloss (m)

β

= Faktor bentuk, direncanakan

d

= Lebar muka kisi (m)

r

= Jarak antar kisi (m)

hv

= Tekanan kecepatan air yang melalui kisi (m/dt)

α

= Sudut terhadap horizontal

( Sumber : Syed R. Qasim, Wastewater Treatment Plants, Planning, Design, and
Operation, 1985, hal 160-161 Ven Te Chow, Open Channel Hydraulics, McGrawHill,Inc, hal 100)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

11

b. Sumur Pengumpul dan Pompa
Sumur pengumpul merupakan unit penyeimbang, sehingga debit dan
kualitas limbah yang masuk ke instalasi dalam keadaan konstan. Fungsi
Pompa adalah sebagai alat pemindahan fluida melalui saluran terbuka /
tertutup di dasarkan dengan adanya peningkatkan energi mekanika fluida.
Tambahan energi ini akan meningkatkan kecepatan dan tekanan fluida.
Pemompaan digunakan untuk mengalirkan limbah ke unit pengolahan
selanjutnya.
Tabel 2.2. Macam – Macam Karakteristik Pompa
KlasifikasiUtama

Type Pompa

Kegunaan Pompa

Kinetik

Centrifugal

-

Air limbah sebelum diolah

-

Penggunaan lumpur kedua

-

Pembuangan effluent

-

Limbah logam, pasir lumpur,

Peripheral

air limbah kasar
Rotor

-

Minyak, pembuangan gas
permasalahan zat-zat kimia
pengaliran lambat untuk air
dan air buangan

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

12

Posite

Screw

-

Displacement

Pasir,

pengolahan lumpur

pertama dan kedua

Diafragma Penghisap

-

Air limbah pertama

-

Lumpur kasar

-

Permasalahan zat kimia

Limbah logam
-

Pengolahan lumpur pertama
dan

kedua

(permasalahan

kimia)
Air Lift

-

Pasir,

sirkulasi

dan

pembuangan lumpur kedua
Pneumatic Ejektor

-

Instalasi

pengolahan

air

limbah skala kecil
( Sumber : Metcalf and Eddy, "Wastewater Engineering Treatment and Reuse", 4th edition, hal :
1469-1470 )

Screw Pump
Saluran Pembaw a
Pipa inlet

Gambar 2.2. Sumur Pengumpul dengan screw pump

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

13

2.2.2. Pr imary Tr eatment (Pengolahan Pertama)
Pada proses ini terjadi proses fisik dan kimia. Pada proses ini umumnya
mampu mereduksi BOD dan antara 30 – 40 % dan mereduksi TSS 50 – 65%.
(Qasim,52).

2.2.2.1. Pr oses Fisik
Proses Fisik dengan unit pengolahan meliputi:
a.

Flotasi
Berfungsi untuk memisahkan partikel-partikel suspensi, seperti minyak,

lemak dan bahan-bahan apung lainnya yang terdapat dalam air limbah dengan
mekanisme pengapungan.
Berdasarkan mekanisme pemisahannya :
1.

Bisa berlangsung secara fisik, yaitu tanpa penggunaan bahan untuk
membantu percepatan flotasi, hal ini bisa terjadi karena partikel-partikel
suspensi yang terdapat dalam air limbah akan mengalami tekanan ke atas
sehingga mengapung di permukaan karena berat jenisnya lebih rendah
dibanding berat jenis air limbah.

2.

Bisa dilakukan dengan penambahan bahan, yaitu : Udara atau bahan
polimer yang diinjeksikan ke dalam cairan pembawanya, yang dapat
mempercepat laju partikel ringan menuju permukaan.`Untuk keperluan
flotasi, udara yang diinjeksikan jumlahnya relatif sedikit (± 0,2 m3 udara)
untuk setiap m3 air limbah. Semakin kecil ukuran gelembung udara maka
proses flotasi akan semakin sempurna.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

14

Rumus yang digunakan :
1. a. Operasi tanpa resirkulasi
A 1,3 Sa (fP − 1)
=
S
Sa

b.Operasi dengan Resirkulasi
A/S =

1,3.Sa.(fp − 1).R
Q.Xo

Dengan :
A/ S = Perbandingan udara dengan padatan, 0,005 – 0,06 (mL udara/mg
padatan)
Sa = Kelarutan udara (mL/L)
Temp.,º C

0

10

20

30

Sa, mL/L

29,2

22,8

18,7

15,7

f = Fraksi udara terlarut pada tekanan P, biasanya 0,5–0,8
P = Tekanan (atm)
Q = Debit Aliran ( m3/hr )
2. Tekanan pada atm
P=

P + 101,35
101,35

Dengan :
P = Gage pressure, lb/in2 gage, 275 – 350 (kPa)
p + 14,7
14,7

= ( U.S. customary units )

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

15

p + 101,35
= ( SI units )
101,3
( Sumber : Metcalf and Eddy, "Wastewater Engineering Treatment and Reuse", 4th , hal : 423 )

Gambar 2.3. Bak Flotasi. (a) Tanpa Resirkulasi, (b) Dengan Resirkulasi
th

( Sumber : M et calf and Eddy, " Wast ew at er Engineering Treat ment and Reuse" , 4 ,
hal : 420 )

b. Bak Pengendap I
Effisiensi removal dari bak pengendap pertama ini tergantung dari
kedalaman bak dan dipengaruhi oleh luas permukaan serta waktu detensi.
Berfungsi untuk memisahkan padatan tersuspensi dan terlarut dari cairan
dengan menggunakan sistem gravitasi dengan syarat kecepatan horizontal
partikel tidak boleh lebih besar dari kecepatan pengendapan. Skimmer yang
ada pada bak pengendap I digunakan untuk tempat pelimpah lemak dan
minyak yang mengambang.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

16

Gambar 2.4. Bak Pengendap Rektanguler
( Sumber : Metcalf and Eddy, "Wastewater Engineering Treatment and Reuse", 4th , hal : 399 )

Rumus yang digunakan :
1. Setling Zone
Untuk proses pengendapan atau pemisahan partikel dari buangan.
a) Kecepatan pengendapan partikel, mengikuti hukum Stokes.
Vs = g

18

.

(Ss − 1) .dρ 2
v

dengan :
Vs

= Kecepatan pengendapan partikel (cm/det)

g

= Percepatan gravitasi (cm/det2)

Ss

= Spesifik gravity

v

= Viskositas kinematik (cm2/det)

dp

= Diameter partikel (cm)

b) Check terjadinya penggerusan

Vsc = [8. β α .(Ss − 1).g.dρ ] 2
1

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

17

dengan :
β = Faktor friksi porositas : 0,02 – 0,12
α = Faktor friksi hidrolis : 0,03
s = Spesifik gravity
Dimana bila Vsc > Vh maka tidak terjadi penggerusan.
c) Check terjadinya aliran pendek, ditentukan oleh Froude Number (NFr)
NFr =

Vh 2
g .R

dengan :
Vh = Kecepatan horizontal (cm/det)
R = Jari-jari hidrolis
Jika NFr > 10-5 tidak akan terjadi aliran pendek.
d) Check terjadinya aliran turbulensi ditentukan oleh Reynold Number.
Nre =

Vh.R
v

Bila Nre < 2000 untuk mencegah terjadinya aliran turbulensi.
2. Inlet Zone
Untuk memperluas aliran dari effluen ke settling zone.
Bila dipergunakan multiple openning :
Q = c.A.(2.g .H )

1

2

dengan :
Q = Debit air buangan (m3/detik)
c = Faktor kontraksi 0,6

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

18

A = Luas area total m2
H = Beda tinggi air di saluran dan di bak.
3. Outlet Zone
Zone ini dibatasi oleh beban pelimpah yang merupakan banyaknya air
yang melimpah perpanjang perperiode waktu.
a) Penentuan panjang weir :
Q .B〈5.HW
n

b) Tinggi diatas air weir :
Q = 0,342.L.H

3

2

dengan :
L = Panjang weir (m)
H = Tinggi air diatas weir (m)
4. Sludge Zone
Untuk menampung material terendap dalam bentuk lumpur.

Ruang

lumpur berbentuk limas terpancung.

{

1
V = t . A + A'+ ( A. A') 2
3

}

dengan :
A = Luas bagian atas limas (m2)
A’ = Luas bagian bawah limas (m2)
(Sumber : Huisman, L, Prof. Ir., Sedimentation and Flotation)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

19

2.2.2.2 Proses Kimia
Unit pengolahan dengan proses kimia meliputi :
a. Koagulasi – Flokulasi
Koagulasi dan Flokulasi adalah proses pembentukan flok dengan
penambahan pereaksi kimia ke dalam air baku atau air limbah supaya
menyatu dengan partikel tersuspensi sehingga terbentuk flok yang nantinya
mengendap. Koagulasi adalah proses pengadukan cepat dengan penambahan
koagulan, hasil yang didapat dari proses ini adalah destabilisasi koloid dan
suspended solid, proses ini adalah awal pembetukan partikel yang stabil.
Flokulasi adalah pengadukan lambat untuk membuat kumpulan partikel
yang sudah stabil hasil. Koagulasi berkumpul dan mengendap.
Jenis-jenis koagulan yang sering digunakan adalah:
1.

Koagulan Alumunium Sulfat - Al2(SO4)3
Alumunium

sulfat

dapat digunakan

sebagai

koagulan

dalam

pengolahan air buangan. Koagulan ini membutukkan kehadiran alkalinitas
dalam air untuk membentuk flok. Dalam reaksi koagulasi, flok alum
dituliskan sebagai Al(OH)3. Mekanisme koagulasi ditentulkan oleh Ph,
konsentrasi koagulan dan konsentrasi koloid. Koagulan dapat menurunkan
pH dan alkalinitas karbonat. Rentang pH agar koagulasi dapat berjalan
dengan baik antara 6-8.
Persamaan Reaksi sederhana terbentuknya flok
Al2(SO)3 + 14H2O + 3Ca(HCO)3 → 2Al(OH)


3+

3CaSO

4

+ 14H2O + 6CO2

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

20

Jika Koagulan bereaksi dengan Kalsium Hidroksida, persamaan reaksinya
adalah :
Al2(SO)3 + 14H2O + 3Ca(OH)2 → 2Al(OH)

3 ↓+

3CaSO

4

+ 14H2O
(Reynold,174)

1.

Koagulan Ferro Sulfat
Persamaan Reaksinya adalah
2FeSO4 + 7H2O + 2Ca(OH)2 + ½O2 → 2Fe(OH)


3+

2CaSO

4

+ 13H2

(Reynold,175)

2. Koagulan Ferri Sulfat
Perbedaannya dengan Ferro Sulfat adalah nilai ekivalensinya. Kalau
Ferro adalah Fe2+ sedangkan Ferri adalah Fe3+.
Persamaan Reaksinya adalah
Fe2(SO4)3 + 3Ca(HCO3)2 → 2Fe(OH)

3 ↓+

3CaSO

4

+ 6CO2
(Reynold,176)

3. Koagulan Ferri Clorida
Persamaan reaksi dari Ferri Clorida dengan Bikarbonat yang bersifat
alkali dari Ferri Hidroksida
2FeCl3 + 3Ca(HCO3)2 → 2Fe(OH)


3+

2FeCl3 + 3Ca(OH)2 → 2Fe(OH)

3CaCl


3+

3CaSO
2

4

+6CO2 Atau

(Reynold,176)

Pada tahap Koagulasi, pengaduk yang digunakan biasa disebut
Impellerr. Sedangkan jenis – jenis impeller ada 3, yaitu:
1. Turbine Impeller
Diameter impeller jenis ini biasanya 30-50% dari diameter atau lebar
bak koagulasi. Kecepatan putarannya 10-150 rpm.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

21

Gambar 2.5. Type – type Turbine Impeller (Reynold,184)
2. Paddle Impeller
Diameter impeller jenis ini biasanya 50-80% dari diameter atau lebar
bak koagulasi, dan lebar paddle biasanya 1/6–1/10 dari diameternya.
Kecepatan putarannya 20-150 rpm.

Gambar 2.6. Type – type Paddle Impeller (Reynold,186)
3.

Propeller Impeller
Diameter impeller jenis ini biasanya 1 atau 2 – 18 inchi. Kecepatan
putarannya 400-1750 rpm.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

22

Gambar 2.7. Type – type Propeller Impeller (Reynold,186)
Jenis-jenis flokulasi, yaitu:
1. Flokulasi mekanis
Hampir sama dengan Koagulasi menggunakan impeller sebagai
pengaduk. Hanya saja alirannya lambat atau turbulen.

Gambar 2.8. Flokulasi Mekanis. (a) Dengan Paddle, (b) Dengan Turbine, (c)
Dengan Propeller

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

23

2.

Flokulasi hidrolis
Flokulasi dengan gravitasi, ciri – ciri Flokulasi Hidrolis :
a. Tidak peka terhadap perubahan kualitas air
b. Hidrolis dan parameter menyebabkan fungsi flokulasi menjadi
lambat dan tidak bisa menyesuaikan
c. Kehilangan tekanan relative besar
d. Tidak mudah dibersihkan
Macam – macam Flokulasi Hidrolis :
1.

Baffle channel flocculator

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

24

3.

2.

Gravel bed flocculator

3.

Hidrolic jet flokulator

Flokulasi pneumatis
Flokulasi Pneumatis adalah dengan injeksi udara dari compressor
dengan tekanan kedalam air.

2.2.3. Pengolahan Sekunder ( Secondar y Tr eatment )
Pengolahan sekunder akan memisahkan koloidal dan komponen
organik terlarut dengan proses biologis. Proses pengolahan biologis ini

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

25

dilakukan secara aerobik maupun anaerobik dengan efisiensi reduksi BOD
antara 60 - 90 % serta 40 - 90 % TSS.
(sumber : Syed R.Qasim, Wastewater Treatment Plants Planning, Design, and Operation, hal.52)

Macam –macam pengolahan sekunder adalah :
1. Pengolahan lumpur aktif (aktivated sludge)
Untuk mengubah buangan organik, menjadi bentuk anorganik yang
lebih stabil dimana bahan organik yang lebih terlarut yang tersisa setelah
prasedimentasi dimetabolisme oleh mikroorganisme menjadi CO2 dan H2O,
sedang fraksi terbesar diubah menjadi bentuk anorganik yang dapat dipisahkan
dari air buangan oleh sedimentasi. Adapun proses didalam activated sludge,
yaitu :
a. Kovensional
Pada sistem konvensional terdiri dari tanki aerasi, secondary clarifier
dan recycle sludge. Selama berlangsungnya proses terjadi absorsi, flokulasi
dan oksidasi bahan organik

Raw
w at er/ primary

Secondary
Clarifier

Efl

Reakt or
Sludge Wasr
Sludge ret urn

Gambar 2.10. Activated sludge sistem konvensional

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

26

b. Nonkovensional
1) Step aerasi
-

Merupakan type plug flow dengan perbandingan F/M atau subtrat
dan mikroorganisme menurun menuju autlet.

-

Inlet air buangan masuk melalui 3 - 4 titik ditanki aerasi dengan
masuk untuk menetralkan rasio subtrat dan mikroorganisme dan
mengurangi tingginya kebutuhan oksigen ditik yang paling awal.

-

Keuntungannya mempunyai waktu detensi yang lebih pendek

Secondary clarifier

Udara
influent

Sludge ret urn

Sludge
Wast e

Gambar 2.11. Step Aerasi
(sumber : Ir.Bowo Djko Marsono,Teknik Pengolahan Air Limbah Biologis, hal.28)

2) Tapered Aerasi
Hampir sama dengan step aerasi, tetapi injeksi udara ditik awal lebih
tinggi.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

27

Udara

Secondary clarifier

influent

reakt or
Sludge

Sludge ret urn

Wast e

Gambar 2.12. Tapered Aeration
(sumber : Ir.Bowo Djko Marsono,Teknik Pengolahan Air Limbah Biologis, hal.28)

3) Contact Stabilisasi
Pada sistem ini terdapat 2 tanki yaitu :
- Contact tank yang berfungsi untuk mengabsorb bahan organik untuk
memproses lumpur aktif.
- Reaeration tank yang berfungsi untuk mengoksidasi bahan organik
yang mengasorb ( proses stabilasi ).
Secondary clarifier

cont act tank

influent

reakt or

Udara

Gambar 2.13. Contact Stabilisasi

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

28

4) Pure Oxygen
Oksigen murni diinjeksikan ke tanki aerasi dan diresirkulasi.
Keuntungannya

adalah

mempunyai

perbandingan

subtrat

dan

mikroorganisme serta volumetric loading tinggi dan td pendek.
O2 murni

resirkulasi O2
secondary
clarifier

reakt or
sludge

sludge ret urn

w ast e

Gambar 2.14. Pure Oxygen

5) High Rate Aeration
Kondisi ini tercapai dengan meninggikan harga rasio resirkulasi, atau
debit air yang dikembalikan dibesarkan 1 - 5 kali. Dengan cara ini maka
akan diperoleh jumlah mikroorganisme yang lebih besar.
Secondary clarifier
Effluent

influent

reakt or
Sludge
Sludge ret urn

w ast e

Gambar 2.15. High Rate Aeration

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

29

6) Extended Aeration
Pada sistem ini reaktor mempunyai umur lumpur dan time detention
(td) lebih lama, sehingga lumpur yang dibuang atau dihasilkan akan lebih
sedikit.
Secondary clarifier
raw w at er/ primary
Effluent

influent

reakt or
Sludge
w ast e

Sludge ret urn

Gambar 2.16. Extended Aeration
(sumber : Ir.Bowo Djko Marsono,Teknik Pengolahan Air Limbah Biologis, hal.29)

7) Oxidation Dicth
Bentuk oksidation ditch adalah oval dengan aerasi secara mekanis,
kecepatan aliran 0,25 - 0,35 m/s.
Influent
Sludge
return
Aerator

Effluent
Secondary
Clarifier

Gambar 2.17. Oxidation Dicth
(sumber : Ir.Bowo Djko Marsono,Teknik Pengolahan Air Limbah Biologis, hal.29)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

30

2.2.4. Pengolahan Ketiga ( Ter tiar y Tr eatment )
Pengolahan ini adalah kelanjutan dari pengolahan terdahulu, oleh karena
itu pengolahan jenis ini akan digunakan apabila pada pengolahan pertama dan
kedua, banyak zat tertentu yang masih berbahaya bagi masyarakat umum.
Pengolahan ketiga ini merupakan pengolahan secara khusus sesuai dengan
kandungan zat yang terbanyak dalam air limbah, biasanya dilaksanakan pada
pabrik yang menghasilkan air limbah khusus diantaranya yang mengandung
fenol, nitrogen, fosfat, bakteri patogen dan lainnya. Unit pengolahan tersier ini
terdiri dari :
a. Secondary Clarifier
Fungsinya sama dengan Bak pengendap, tetapi clarifier biasanya di
tempatkan setelah pengolahan kedua (pengolahan Biologis).

Gambar 2.18. Clarifier. (a) Denah, (b) Tampak Samping
(Metcalf and eddy,hal403)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

31

2.2.5. Pengolahan Lumpur ( Sludge Tr eatment )
Dari pengolahan air limbah maka hasilnya adalah berupa lumpur yang
perlu diadakan pengolahan secara khusus agar lumpur tersebut tidak mencemari
lingkungan dan dapat dimanfaatkan kembali untuk keperluan kehidupan. Sludge
dalam disposal sludge memiliki masalah yang lebih kompleks. Hal ini
disebabkan karena :
a. Sludge sebagian besar dikomposisi dari bahan-bahan yang responsibel untuk
menimbulkan bau.
b. Bagian sludge yang dihasilkan dari pengolahan biologis dikomposisi dari
bahan organik.
c. Hanya sebagian kecil dari sludge yang mengandung solid (0,25% - 12%
solid).
Tujuan utama dari pengolahan lumpur adalah :
-

Mereduksi kadar lumpur

-

Memanfaatkan lumpur sebagai bahan yang berguna seperti pupuk dan
sebagai penguruk lahan yang sudah aman.

Unit pengolahan lumpur meliputi :
a. Sludge Drying Bed
Sludge drying bed merupakan suatu bak yang dipakai untuk
mengeringkan lumpur hasil pengolahan dari thickener. Bak ini berbentuk
persegi panjang yang terdiri dari lapisan pasir dan kerikil serta pipa drain

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

32

Gambar 2.19. Sludge Drying Bed
2.3.

Persen Removal
Unit Pengolahan

% Removal

Sumber

20 – 35 % SS

Syed R.Qasim, WWTP

20 -35 % BOD

Planning, Design, and

I. Pre Teatment
- Screening

Operation, hal 156
II. Primary Treatment
- Flotasi
1. Disolved Air Flotation

70 – 85 % Oil

Cavaseno, Industrial

50 – 85 % SS

Wastewater and Solid

20 – 70 % BOD

Waste Engineering,

10 – 60 % COD

hal.14

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

33

- Bak pengendap I

50 – 70 % SS

Metcalf & Eddy, WWET

25 – 40 % BOD

Disposal, and Reuse 4th
edition, hal 396

- Koagulasi - Flokulasi

58 % BOD

Eckenfelder,Jr., Industrial

63 % COD

Water Pollution Control,
2th edition, hal 96

III. Secondary Treatment
III.1. Aerob
a. Activated Sludge

80 – 90 % BOD
50 – 95 % COD
60 – 85 % SS
80 – 99 & Oil

Cavaseno,
Wastewater
Waste

Industrial
and

Solid

Engineering,

95 – 99 % Phenol
hal.15
33 – 99 % NH3
97 – 100 % H2S
-Bak Pengendap II

25 – 35 % BOD

Metcalf & Eddy, WWET

80 – 90 % TSS

Disposal, and Reuse 4th
edition, hal 415

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

34

2.4. Profil Hidrolis
Hal – hal yang perlu diperhatikanb sebelum membuat Profil Hidrolis,
antara lain:
1. Kehilangan tekanan pada bangunan pengolahan
Untuk membuat profil hidrolis perlu perhitungan kehilangan tekanan pada
bangunan. Kehilangan tekanan akan mempengaruhi ketinggian muka air di
dalam bangunan pengolahan. Kehilangan tekanan pada bangunan pengolahan
ada beberapa macam, yaitu:
a. Kehilangan tekanan pada saluran terbuka
b. Kehilangan tekanan pada bak
c. Kehilangan tekanan pada pintu
d. Kehilangan tekanan pada weir, sekat, ambang dan sebagainya harus di
hitung secara khusus.
2. Kehilangan tekanan pada perpipaan dan assesoris
a. Kehilangan tekanan pada perpipaan
b. Kehilangan tekanan pada assesoris
c. Kehilangan tekanan pada pompa
d. Kehilangan tekanan pada alat pengukur flok
3. Tinggi muka air
Kesalahan dalam perhitungan tinggi muka air dapat terjadi kesalahan
dalam menentukan elevasi ( ketinggian ) bangunan pengolahan, dalam
pelaksanaan pembangunan sehingga akan dapat mempengaruhi pada proses
pengolahan.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

35

Kehilangan tekanan bangunan (saluran terbuka dan tertutup) tinggi
terjunan yang direncanakan ( jika ada ) akan berpengaruh pada perhitungan
tinggi muka air. Perhitungan dapat dilakukan dengan cara :
1. Menentukan tinggi muka air bangunan pengolahan yang paling akhir.
2. Tambahkan kehilangan tekanan antara clear well dengan bagunan
sebelumnya pada ketinggian muka air di clear well.
3. Didapat tinggi muka air bangunan sebelum clear well demikian
seterusnya sampai bangunan yang pertama sesudah intake.
4. Jika tinggi muka air bangunan sesudah intake ini lebih tinggi dari tinggi
muka air sumber maka diperlukan pompa di intake untuk menaikkan air.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

BAB III
DATA PERENCANAAN

3.1. Data Kar akter istik Limbah Industri yang Direncanakan
Sumber air buangan dari pabrik kulit ini mempunyai debit
(Q) = 250 l/det atau 0,25 m3/detik = 21600 m3/hari.
Tabel 3.1. Parameter air buangan industri pupuk kulit yang harus diolah.
No.

Par ameter

Kadar (mg/l)

1

BOD

950

2

COD

2100

3

TSS

750

4

MINYAK DAN LEMAK

70

5

NH3-N (ammonia total)

70

Sumber : Data perencanaan
Selanjutnya air limbah tersebut diolah sesuai dengan baku mutu limbah
yang telah ditetapkan.

3.2.

Standart Baku Mutu
Air limbah yang masuk dalam unit pengolahan limbah diolah sesuai

dengan parameter-parameter yang telah ditetapkan sesuai dengan standart baku
mutu limbah cair, SK Gubenur KDH Tingkat 1 JATIM No. 45 Tahun 2002

36
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

37

STANDART BAKU MUTU INDUSTRI PABRIK KULIT
( PENYAMAKAN KULIT ) LIMBAH CAIR

Tabel 3.2. Baku mutu limbah cair sesuai dengan SK GUBENUR NO.45 TAHUN
2002
Volume limbah cair per satuan bahan baku
50 m3/ton bahan baku kulit kering proses lengkap
30 m3/ton bahan baku kulit kering sampai proses wet blue
20 m3/ton bahan baku wet blue sampai produk jadi
Parameter

Kadar Maximum (mg/l)
Proses Lengkap

Sampai Wet Blue

Bahan Baku Wet
Blue

BOD5

100

100

75

COD

250

250

200

TSS

100

100

75

Cr Total

0,5

0,5

0,3

Minyak dan Lemak

5

5

3

Amonia total (NH3-N)

10

10

5

Sulfida sebagai H2S

0,8

0,8

0,5

pH

6-9

Sumber : SK GUBENUR NO.45 TAHUN 2002

3.3. Per encanaan Unit Pengolahan yang Digunakan ( Flowchar t )
Alternatif unit pengolahan yang digunakan dalam tugas ini sesuai
parameter yang harus diolah :

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

38

Saluran Pembawa

Screen

Bak Penampung

Flotasi

Koagulasi - flokulasi

Bak pengendap I

Activated sludge

Sludge Drying Bed

Recycle
Bak pengendap II

Badan air penerima

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

BAB IV
NERACA MASSA DAN SPESIFIKASI BANGUNAN

4.1. Ner aca Massa
= 250 lt/dt = 0,25 m3/detik.

Debit (Q)
4.1.1. Scr een
% Removal

: 20 % - 35% BOD
20 % - 35% TSS
(Sumber : WWTP,Planing Desaign and Operation, Syed Qasim hal 156)

Bak Penampung

S. Pembawa
SCREEN
Input

Output

BOD
TSS
No.
1.
2.
3.
4.
5.

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
950
2100
750
70
150

% Removal
(mg/liter)
237,5 (25%)
187,5 (25%)
-

Output
(mg/liter)
712,5
2100
562,5
70
150

Baku mutu
(mg/liter)
100
250
100
5
10

39
Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

40

4.1.2. Bak Penampung

Screen

Flotasi
Bak Penampung

Input
No.
1.
2.
3.
4.
5.

Output

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
712,5
2100
562,5
70
150

% Removal
(mg/liter)
-

Output
(mg/liter)
712,5
2100
562,5
70
150

Baku mutu
(mg/liter)
100
250
100
5
10

4.1.3. Flotasi
% Removal : 70% - 95% Minyak & Lemak
(Sumber : Cavaseno,hal 14)

Minyak

B. Koagulasi Flokulasi

Bak Penampung
FLOTASI
Input

No.

Parameter

1.
2.
3.
4.
5.

BOD
COD
TSS
Minyak&lemak
NH3

Output
Input
(mg/liter)
712,5
2100
562,5
70
150

% Removal
(mg/liter)
66,5 (95%)
-

Output
(mg/liter)
712,5
2100
562,5
3,5
150

Baku mutu
(mg/liter)
100
250
100
5
10

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

41

4.1.4. Bak Koagulasi – Flokulasi
% Removal : 95% BOD
70% COD
(Sumber : Eckendfelder,hal 96)

B. Pengendap I

Flotasi
Input

B. Koagulasi Flokulasi

Output

BOD
COD

No.
1.
2.
3.
4.
5.

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
712,5
2100
562,5
3,5
150

% Removal
(mg/liter)
676,9 (95%)
1470 (70%)
-

Output
(mg/liter)
35,6
630
562,5
3,5
150

Baku mutu
(mg/liter)
100
250
100
5
10

4.1.5. Bak Pengendap I
% Removal : 50% - 70% TSS
(Sumber : WWETR, metcalf and Eddy.hal 396)

B.Koagulasi
-Flokulasi

Activated Sludge
B. Pengendap I

Input

Output

TSS
BOD

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

42

No.
1.
2.
3.
4.
5.

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
35,6
630
562,5
3,5
150

% Removal
(mg/liter)
393,8 (70%)
-

Output
(mg/liter)
35,6
630
168,7
3,5
150

Baku mutu
(mg/liter)
100
250
100
5
10

4.1.6. Activated Sludge
% Removal : 80% - 90% BOD
50% - 95% COD
33% - 99% NH3

60% - 85% TSS
(Sumber : Cavaseno,hal 15)

B. Pengendap I

Activated
Sludge

Input

B. Pengendap II
Output

BOD TSS
COD Minyak
NH3

No.
1.
2.
3.
4.
5.

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
35,6
630
168,7
3,5
150

% Removal
(mg/liter)
28,5 (80%)
598,5 (95%)
143,4 (85%)
148,5 (99%)

Output
(mg/liter)
7,1
31,5
25,3
3,5
1,5

Baku mutu
(mg/liter)
100
250
100
5
10

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

43

4.1.7. Bak Pengendap II ( Clar ifier )

Activated
Sludge

Badan Air
Clarifier

Input

Output

BOD TSS

No.
1.
2.
3.
4.
5.

Parameter
BOD
COD
TSS
Minyak&lemak
NH3

Input
(mg/liter)
7,1
31,5
25,3
3,5
1,5

% Removal
(mg/liter)
-

Output
(mg/liter)
3
15,75
11,25
0,7
1,5

Baku mutu
(mg/liter)
100
250
100
5
10

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

44

4.2.

Spesifikasi Per encanaan

1.

Salur an Pembawa
1. Saluran pembawa berbentuk saluran terbuka
2. Panjang (L) = 2 m
3. Lebar (B) = 1 m
4. Tinggi (H) = 0,7 m

2.

Screen
1. Jumlah kisi = 16 buah
2. Jarak antar kisi = 0,05 m
3. Lebar bukaan sreen = 0,84 m
4. Panjang kisi = 1,4 m
5. Jarak kemiringan kisi = 1 m

3.

Bak Penampung
1. Jumlah bak = 3 bak
2. Panjang bak (P) = 4,6 m
3. Lebar bak (L) = 4,6 m
4. Tinggi bak (H) = 4,8 m
5. Tinggi bukaan pintu air = 0,04 cm
6. Pompa yang digunakan : Merk GRUNDFOS AP130.250.250, 50 Hz
ISO 2548 Annex B diameter inlet dan outlet nya 250 mm. Satu bak
penampung menggunakan 1 pompa + 1 pompa cadangan.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

45

4.

Flotasi
1. Jumlah bak = 2 bak
2. Ø Inlet = 0,25 m
3. Tekanan (P) = 285 Kpa
4. Dimensi Bak Flotasi



P = 12,2 m
L = 6,1 m
H = 2,2 m

5. Ø Outlet = 0,25 m
6. Dimensi Bak Minyak



P = 6,1 m
L = 0,4 m
H = 0,4 m

5.

Koagulasi
1. Koagulasi dibagi menjadi 2 bak
2. Dimensi Bak Koagulasi →

D = 1,4 m
H=2m
Di = 0,57 m
L baffle = 0,14 m
Jarak impeller dari dasar = 0,3m

3. Dimensi Bak Pembubuh →

D = 1,3 m
H = 1,8 m
Di = 0,6 m
L baffle = 0,13 m
Jarak impeller dari dasar = 0,3 m

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

46

4. Kebutuhan Al2 (SO4)3 = 432 kg/hr
5. Volume Al2 (SO4)3 = 360 lt/hr
6. Total Volume larutan = 2,36 m3

6.

7.

Flokulasi
1. Vol bak flokulasi

= 225 m3

2. Waktu detensi

= 900 detik

3. Ø pipa inlet

= 0,7 m

4. Kedalaman tangki (h)

= 2,2 m

5. Lebar bak

= 7,5 m

6. Panjang bak

= 15 m

Bak Pengendap I
a. Zona inlet
1. Bentuk saluran terbuka , Lebar (L) = 0,5 m dan
Tinggi (H) = 0,7 m
2.