Analisis kestabilan dan konsistensi (1)
ut + cux
=
0
0 < x < b,
u (x, 0)
u (0, t)
=
=
sin (x)
0
u (b, t)
=
0
t>0
Skema FTBS Eksplisit:
Misalkan
c∆t
∆x
ujn+1 − unj
unj − unj−1
+c
=0
∆t
∆x
c∆t n
un+1
− unj +
uj − unj−1 = 0
j
∆x
= s, maka
un+1
− unj + s unj − unj−1 = 0
j
un+1
= (1 − s) unj + sunj−1
j
√
Analisis Kestabilan, misalkan unj = ρn eiaj , i = −1, a ∈ R.
pemisalan pada persamaan (1)
(1)
Substitusi
ρn+1 eiaj = (1 − s) ρn eiaj + sρn eia(j−1)
(2)
ρ = (1 − s) + se−ia
ρ
=
=
=
(1 − s) + s [cos a − i sin a]
(1 − s) + s cos a − is sin a
[1 + (cos a − 1) s] + i [−s sin a]
Skema numerik (1) akan stabil jika terdapat |ρ| ≤ 1
|ρ|
|[1 + (cos a − 1) s] + i [−s sin a]|
q
2
2
[1 + (cosa − 1) s] + [−s sin a]
≤
≤
1
1
1
[1 + (cosa − 1) s] + [−s sin a]
2
≤
≤
1
2
2
2
2 2
2
2
1 + 2 (cos a − 1) s + (cos a − 1) s + s sin a
1 + 2 (cos a − 1) s + cos2 a − 2 cos a + 1 s2 + s2 sin2 a
≤
≤
1
1 + 2s (cos a − 1) − 2s2 (cos a − 1)
1 + 2s − 2s2 (cos a − 1)
≤
≤
1
1
2
1 + 2 (cos a − 1) s − 2s cos a + s + s
2s (1 − s) (cos a − 1)
(1 − s) (cos a − 1)
1
≤
≤
≤
1
1
0
0
Karena
−2 ≤ (cos a − 1) ≤ 0
−1 ≤ cos a ≤ 1
sehingga
−2 (1 − s) ≤ (1 − s) (cos a − 1) ≤ 0 (1 − s)
−2 + 2s ≤ (1 − s) (cos a − 1) ≤ 0
−2 + 2s
≤
0
2s
s
≤
≤
2
1
Jadi skema (1) stabil dengan syarat s =
c∆t
∆x
≤ 1.
ut + cux
=
0
0 < x < b,
u (x, 0)
u (0, t)
=
=
sin (x)
0
u (b, t)
=
0
t>0
FTCS Implisist,
n+1
un+1
− unj
un+1
j
j+1 − uj−1
+c
= 0
∆t
2∆x
c∆t n+1
un+1
+
= unj
uj+1 − un+1
j
j−1
2∆x
n+1
n
un+1
+ s un+1
j
j+1 − uj−1 = uj
(3)
ρn+1 eiaj + s ρn+1 eia(j+1) − ρn+1 eia(j−1)
ρ + s ρeia − ρe−ia
ρ 1 + s eia − e−ia
=
ρn eiaj
=
1
=
1
=
1
ρ [1 + i2s sin a]
=
1
ρ
=
1
1 + i2s sin a
ρ [1 + s (cos a + i sin a − [cos a − i sin a])]
2
Syarat kestabilan,
|ρ|
1
1 + i2s sin a
|1|
|1 + i2s sin a|
1
q
2
1 + (2s sin a)
1
1 + 4s2 sin2 a
≤
1
≤
1
≤
1
≤
1
≤
1
Skema numerik FTCS implisit untuk persamaan transport stabil tanpa syarat.
Konsistensi, truncation term, error estimate, accuracy metode FTBS
eksplisit untuk persamaan transport
un+1
− unj
unj − unj−1
j
+c
=0
∆t
∆x
un+1
j
=
unj−1
=
(4)
∆t2
n
utt |j + · · ·
2
∆x2
n
n
uxx |j + · · ·
unj − ∆x ux |j +
2
n
unj + ∆t ut |j +
(5)
(6)
Substitusikan (5) dan (6) pada persamaan (4) shg diperoleh
n
∆t ut |j +
n
ut | j
∆t2
2
∆t
n
n
utt |j + · · ·
∆t
n
+
utt |j + · · ·
2
+c
∆x ux |j −
+c
n
ux | j
∆x2
2
∆x
n
uxx |j + · · ·
=0
=0
∆x
n
uxx |j + · · ·
−
2
∆x
+ c ux −
uxx + · · ·
2
c∆x
∆t
utt −
uxx + · · ·
[ut + cux ] +
2
2
∆t
Error pemotongan pertama = 2 utt − c∆x
2 uxx
Orde error: O (∆t, ∆x)
ut +
∆t
utt + · · ·
2
Skema (4) dikatakan konsisten jika
∆t
c∆x
lim
utt −
uxx = 0
2
2
(∆t,∆x)→0
3
=
0
=
0
epp =
∆t
c∆x
utt −
uxx
2
2
ut + cux
=
0
ut
=
−cux
utt
=
(ut )t
=
=
(−cux )t
−cuxt
=
=
=
=
=
epp
=
=
Kita ingin
−cutx
−c (ut )x
−c (−cux )x
c2 uxx
c∆x
∆t 2
c uxx −
uxx
2
2
c2 ∆t
c∆x
uxx −
uxx
2
22
c ∆t c∆x
uxx
−
2
2
c2 ∆t c∆x
−
2
2
uxx = 0
maka
c2 ∆t c∆x
−
2
2
=
0
c2 ∆t
=
c∆x
c∆t
c∆t
∆x
=
∆x
=
1
4
(7)
=
0
0 < x < b,
u (x, 0)
u (0, t)
=
=
sin (x)
0
u (b, t)
=
0
t>0
Skema FTBS Eksplisit:
Misalkan
c∆t
∆x
ujn+1 − unj
unj − unj−1
+c
=0
∆t
∆x
c∆t n
un+1
− unj +
uj − unj−1 = 0
j
∆x
= s, maka
un+1
− unj + s unj − unj−1 = 0
j
un+1
= (1 − s) unj + sunj−1
j
√
Analisis Kestabilan, misalkan unj = ρn eiaj , i = −1, a ∈ R.
pemisalan pada persamaan (1)
(1)
Substitusi
ρn+1 eiaj = (1 − s) ρn eiaj + sρn eia(j−1)
(2)
ρ = (1 − s) + se−ia
ρ
=
=
=
(1 − s) + s [cos a − i sin a]
(1 − s) + s cos a − is sin a
[1 + (cos a − 1) s] + i [−s sin a]
Skema numerik (1) akan stabil jika terdapat |ρ| ≤ 1
|ρ|
|[1 + (cos a − 1) s] + i [−s sin a]|
q
2
2
[1 + (cosa − 1) s] + [−s sin a]
≤
≤
1
1
1
[1 + (cosa − 1) s] + [−s sin a]
2
≤
≤
1
2
2
2
2 2
2
2
1 + 2 (cos a − 1) s + (cos a − 1) s + s sin a
1 + 2 (cos a − 1) s + cos2 a − 2 cos a + 1 s2 + s2 sin2 a
≤
≤
1
1 + 2s (cos a − 1) − 2s2 (cos a − 1)
1 + 2s − 2s2 (cos a − 1)
≤
≤
1
1
2
1 + 2 (cos a − 1) s − 2s cos a + s + s
2s (1 − s) (cos a − 1)
(1 − s) (cos a − 1)
1
≤
≤
≤
1
1
0
0
Karena
−2 ≤ (cos a − 1) ≤ 0
−1 ≤ cos a ≤ 1
sehingga
−2 (1 − s) ≤ (1 − s) (cos a − 1) ≤ 0 (1 − s)
−2 + 2s ≤ (1 − s) (cos a − 1) ≤ 0
−2 + 2s
≤
0
2s
s
≤
≤
2
1
Jadi skema (1) stabil dengan syarat s =
c∆t
∆x
≤ 1.
ut + cux
=
0
0 < x < b,
u (x, 0)
u (0, t)
=
=
sin (x)
0
u (b, t)
=
0
t>0
FTCS Implisist,
n+1
un+1
− unj
un+1
j
j+1 − uj−1
+c
= 0
∆t
2∆x
c∆t n+1
un+1
+
= unj
uj+1 − un+1
j
j−1
2∆x
n+1
n
un+1
+ s un+1
j
j+1 − uj−1 = uj
(3)
ρn+1 eiaj + s ρn+1 eia(j+1) − ρn+1 eia(j−1)
ρ + s ρeia − ρe−ia
ρ 1 + s eia − e−ia
=
ρn eiaj
=
1
=
1
=
1
ρ [1 + i2s sin a]
=
1
ρ
=
1
1 + i2s sin a
ρ [1 + s (cos a + i sin a − [cos a − i sin a])]
2
Syarat kestabilan,
|ρ|
1
1 + i2s sin a
|1|
|1 + i2s sin a|
1
q
2
1 + (2s sin a)
1
1 + 4s2 sin2 a
≤
1
≤
1
≤
1
≤
1
≤
1
Skema numerik FTCS implisit untuk persamaan transport stabil tanpa syarat.
Konsistensi, truncation term, error estimate, accuracy metode FTBS
eksplisit untuk persamaan transport
un+1
− unj
unj − unj−1
j
+c
=0
∆t
∆x
un+1
j
=
unj−1
=
(4)
∆t2
n
utt |j + · · ·
2
∆x2
n
n
uxx |j + · · ·
unj − ∆x ux |j +
2
n
unj + ∆t ut |j +
(5)
(6)
Substitusikan (5) dan (6) pada persamaan (4) shg diperoleh
n
∆t ut |j +
n
ut | j
∆t2
2
∆t
n
n
utt |j + · · ·
∆t
n
+
utt |j + · · ·
2
+c
∆x ux |j −
+c
n
ux | j
∆x2
2
∆x
n
uxx |j + · · ·
=0
=0
∆x
n
uxx |j + · · ·
−
2
∆x
+ c ux −
uxx + · · ·
2
c∆x
∆t
utt −
uxx + · · ·
[ut + cux ] +
2
2
∆t
Error pemotongan pertama = 2 utt − c∆x
2 uxx
Orde error: O (∆t, ∆x)
ut +
∆t
utt + · · ·
2
Skema (4) dikatakan konsisten jika
∆t
c∆x
lim
utt −
uxx = 0
2
2
(∆t,∆x)→0
3
=
0
=
0
epp =
∆t
c∆x
utt −
uxx
2
2
ut + cux
=
0
ut
=
−cux
utt
=
(ut )t
=
=
(−cux )t
−cuxt
=
=
=
=
=
epp
=
=
Kita ingin
−cutx
−c (ut )x
−c (−cux )x
c2 uxx
c∆x
∆t 2
c uxx −
uxx
2
2
c2 ∆t
c∆x
uxx −
uxx
2
22
c ∆t c∆x
uxx
−
2
2
c2 ∆t c∆x
−
2
2
uxx = 0
maka
c2 ∆t c∆x
−
2
2
=
0
c2 ∆t
=
c∆x
c∆t
c∆t
∆x
=
∆x
=
1
4
(7)