PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

8

BAB II
TINJAUAN PUSTAKA
2.1

Tinjauan Umum
Sebagai upaya pengawasan dan pengamanan prasarana dan sarana lalu

lintas dan angkutan jalan, digunakan alat penimbangan yang dapat menimbang
kendaraan bermotor sehingga dapat diketahui berat kendaraan beserta muatannya
(PP Nomor 43 Tahun 1993).
Alat penimbangan tersebut berupa jembatan timbang yang keberadaannya
merupakan salah satu kebijakan untuk melindungi kerusakan jalan akibat muatan
lebih serta untuk keselamatan lalu lintas. Alat penimbangan yang dipasang secara
tetap tersebut dilengkapi dengan fasilitas penunjang dan dioperasikan oleh
pelaksana penimbangan. Fasilitas penunjang yang dimaksud antara lain :
1. gedung operasional;
2. lapangan parkir kendaraan;
3. fasilitas jalan keluar masuk kendaraan;
4. gudang penyimpanan barang;

5. lapangan penumpukan barang;
6. bangunan gedung untuk generator set;
7. pagar;
8. perambuan untuk maksud pengoperasian.
Penyelenggaraan penimbangan terhadap alat berat kendaraan beserta
muatannya (PP No. 43 Tahun 1993) meliputi :
1. penentuan lokasi;
2. pengadaan, pemasangan, dan atau penimbangan;
3. pengoperasian;
4. pemeliharaan.
Penentuan lokasi jembatan timbang umumnya berada pada jalan nasional
sebagai prasarana pergerakan kendaraan angkutan barang dengan beban muatan
yang relatif besar. Berdasarkan Keputusan Menteri Perhubungan Nomor 5 Tahun

9

1995, penentuan lokasi alat penimbangan yang dipasang secara tetap harus
memperhatikan :
1. rencana umum tata ruang;
2. jaringan transportasi jalan;

3. volume lalu lintas harian rata-rata untuk angkutan barang (>150 kend/hr);
4. kelancaran arus lalu lintas;
5. kelas jalan;
6. kondisi topografi lokasi;
7. tersedia lahan sekurang-kurangnya 4000 m2;
8. efektivitas pengawasan berat kendaraaan beserta muatannya.
Pada jembatan timbang Klepu lalu lintas yang dilayani adalah arus dari Solo,
Yogyakarta, Magelang, Temanggung, Boyolali dan kota-kota lainnya dari wilayah
Selatan menuju wilayah Utara.
Operasi jembatan timbang sebagai fungsi kontrol angkutan barang
berlangsung selama 24 jam setiap hari sehingga memungkinkan semua arus
angkutan barang dapat dipantau. Pelaksanaan operasi jembatan timbang dibagi
dalam 3 shift yaitu :
1. Shift 1 : pukul 07.00 WIB - 14.00 WIB;
2. Shift 2 : pukul 14.00 WIB - 22.00 WIB;
3. Shift 3 : pukul 22.00 WIB - 07.00 WIB.
Sedangkan kegiatan yang dilakukan di jembatang timbang meliputi :
1. Penimbangan kendaraan berat beserta muatannya;
2. Pemeriksaan dimensi kendaraan;
3. Pemeriksaan surat uji kendaraan;

4. Pemeriksaan muatan, di mana yang muatan meliputi :
a. Barang umum : sayuran, ikan kering, dll.
b. Barang strategis : baja, semen, dll.
c. Sembako : beras, gula, dll.
Sejak otonomi daerah penanganan jembatan timbang dilakukan oleh Dinas
Lalu Lintas Angkutan Jalan Raya (DLLAJR) setempat.

10

2.2

Fungsi dan Kewenangan Jembatan Timbang
Berdasarkan

PP Nomor 25 Tahun 2000 tentang Program Pembangunan

Nasional, segala ketentuan mengenai jembatan timbang yang meliputi penetapan lokasi
dan pengelolaan jembatan timbang serta penetapan standar batas maksimum muatan dan
berat kendaraan pengangkutan barang merupakan kewenangan propinsi sebagai daerah
otonom. Penyelenggaraan penimbangan pada jembatan timbang menjadi tanggung jawab

Dinas Lalu Lintas dan Angkutan Jalan yang pengoperasiaannya dilaksanakan oleh Unit
Pelaksana Teknis Dinas, (Perda Jateng Nomor 4 Tahun 2001) tentang Tarif Ijin Dispensasi
Kelebihan Muatan. Sedangkan fungsi dan misi jembatan timbang meliputi :
1. Menjaga jalan dari kerusakan akibat beban muatan;
2. Memantau kendaraan angkutan barang dan penempatan muatan;
3. Sebagai sarana pengumpulan data lalu lintas untuk proses perencanaan dan
pengendalian transportasi.

2.2.1

Evaluasi, Monitoring dan Kinerja Jembatan Timbang
Sebagai suatu proses, manajemen jembatan timbang mengenal suatu

urutan pelaksanaan yang logis yang menggambarkan bahwa ada tindakantindakan manajemen untuk mencapai sasaran-sasaran yang telah ditetapkan.
Secara umum proses tersebut meliputi :
1. Planning
Merupakan pemikiran atau gagasan awal tentang suatu rencana sebelum
kegiatan dilaksanakan. Manfaat dari fungsi perencanaan di atas adalah
sebagai alat pengawasan maupun


pengendalian kegiatan atau pedoman

pelaksanaan kegiatan, serta sarana untuk memilih dan menetapkan kegiatan
yang diperlukan.
2. Organizing
Berupa tindakan-tindakan guna mempersatukan kumpulan kegiatan manusia
yang mempunyai pekerjaan masing-masing sehingga berhubungan satu sama
lain dengan tata cara tertentu dan berinteraksi dengan lingkungannya dalam

11

rangka mendukung tercapainya tujuan / sasaran secara efisien.
Manfaat dari fungsi organisasi adalah merupakan pedoman pelaksanaan
fungsi dimana pembagian tugas serta hubungan tanggung jawab dan
kewenangan terlihat jelas.
3. Actuating
Berupa tindakan untuk menyelaraskan seluruh anggota organisasi dalam
kegiatan pelaksanaan, serta agar seluruh anggota organisasi dapat
bekerjasama dalam pencapaian tujuan bersama.
Manfaat dari fungsi pelaksanaan ini adalah terciptanya keseimbangan

tugas, hak dan kewajiban masing-masing bagian dalam organisasi.
4. Controlling
Dalam arti menuntun atau memantau, mengkaji dan bila perlu mengadakan
koreksi agar hasil kegiatan sesuai dengan yang telah ditentukan. Jadi
dalam fungsi ini, hasil-hasil pelaksanaan kegiatan selalu diukur dan
dibandingkan dengan rencana.
Fungsi dari pengawasan tersebut meliputi :
a. Penetapan standar pelaksanaan;
b. Penentuan ukuran-ukuran pelaksanaan;
c. Pengukuran

pelaksanaan

nyata

dan

membandingkan

dengan


standar yang telah ditetapkan;
d. Evaluasi penyimpangan yang terjadi;
e. Pengambilan

tindakan

koreksi

yang

diperki rakan

bila

pelaksanaan menyimpang dari standar.
2.2.2

Pemeriksaan Kendaraan Bermotor
Pemeriksaan kendaraan bermotor merupakan serangkaian tindakan


yang dilakukan oleh pemeriksa terhadap pengemudi dan kendaraan bermotor
mengenai pemenuhan persyaratan teknis dan laik jalan serta pemenuhan
kelengkapan administratif (PP Nomor 42 Tahun 1993 pasal 1 ayat 2).
Pemeriksaan

tersebut dilakukan dengan tujuan untuk keselamatan,

keamanan, dan ketertiban lalu lintas dan angkutan jalan. Pemeriksaan yang

12

dilakukan terhadap kendaraan bermotor meliputi (UU Nomor 14 Tahun 1992 tentang
LLAJ pasal 16) :
1. Pemeriksaan persyaratan teknis dan laik jalan;
2. Pemeriksaan tanda bukti lulus uji, surat tanda bukti pembayaran/surat tanda
coba kendaraan bermotor dan Surat Ijin Mengemudi (SIM).
Selain memenuhi persyaratan teknis dan laik jalan, setiap kendaraan
bermotor, kereta gandengan, kereta tempelan dan kendaraan khusus yang dibuat
dan atau dirakit di dalam negeri serta diimpor, harus sesuai dengan peruntukan

dan kelas jalan yang akan dilaluinya (PP Nomor 43 Tahun 1993 pasal 12).
Pemeriksaan fisik kendaraan bermotor yang dilakukan di jembatan
timbang dilakukan oleh Pegawai Negeri Sipil yang memiliki kualifikasi tertentu di
bidang lalu lintas dan angkutan jalan menggunakan alat timbang berat
kendaraan

beserta

muatannya

(PP

Nomor

42

Tahun

1993


tentang

Pemeriksaan Kendaraan Bermotor).
2.2.3

Jenis-Jenis Kendaraan Wajib Timbang
Seiring dengan perkembangan model transportasi saat ini, maka terjadi

pula perkembangan pada Jenis Berat diizinkan (JBI) kendaraan angkutan barang
menyesuaikan dengan kebutuhan masyarakat. Penambahan besarnya angka JBI ini
diikuti

juga

oleh

bertambahnya

konfigurasi


sumbu

kendaraan

sehingga

pendistribusian beban pada sumbu kendaraan tetap sesuai dengan kondisi jalan
yang ada.
Untuk mempermudah petugas pencatat arus kendaraan dalam mendata dan
mengelompokkan angkutan barang yang melanggar kelebihan muatan, maka
operator jembatan timbang melakukan penggolongan terhadap jenis angkutan
barang

yang

masuk

ke

jembatan

timbang

menjadi

tujuh

golongan.

Penggolongan ini disesuaikan dengan besarnya JBI yang dimiliki oleh
kendaraan tersebut. Adapun besar JBI dilihat dari Buku Uji Kendaraan atau
melihat di plat samping kendaraan.
Berikut ini adalah Tabel 2.1 yang mengelompokkan 7 golongan kendaraan
wajib ditimbang di jembatan timbang yang digolongkan sesuai dengan besarnya JBI.

13

Tabel 2.1. Jenis-Jenis Kendaraan Wajib Timbang
Golongan

Jenis

I

Konfigurasi Sumbu

JBI

1.1

Maksimal 3 Ton

1.1

Maksimal 5,5 Ton

1.2

Maksimal 8,5 Ton

1.22

Maksimal 23 Ton

1.22

Maksimal 25 Ton

Pick Up

II

Mobil Box

III

Truk

IV

Truk

V

Truk

14

Lanjutan Tabel 2.1
Golongan

Jenis

Konfigurasi Sumbu

JBI

1.2 + 2.2

Maksimal 28 Ton

1.2 – 2.2.2

Maksimal 51 Ton

VI

Truk Gandeng

VII

Trailer
Sumber : DLLAJ Propinsi Jateng (2008)

2.2 .4 Mu a ta n Ke nda raan Be r mo to r
Muatan kendaraan bermotor menurut Peraturan Pelaksanaan UndangUndang Lalu Lintas dan Angkutan Jalan Nomor 43 Tahun 1993 tentang Ukuran
dan Muatan Kendaraan Bermotor pasal 117 ayat 1 dan 2 dan pasal 118 ayat 1 dan
2 menerangkan bahwa :
1. Jumlah berat yang diperbolehkan dan atau jumlah berat kombinasi yang
diperbolehkan

untuk

kendaraan

bermotor,

atau

rangkaian

kendaraan

bermotor dengan kereta gandengan atau kereta tempelan ditentukan oleh
pembuatnya berdasarkan :
a. perhitungan kekuatan konstruksi;
b. besamya daya motor;
c. kapasitas pengereman;
d. kemampuan ban;
e. kekuatan sumbu-sumbu;
f.

ketinggian tanjakan jalan;

2. Jumlah Berat yang Diperbolehkan (JBB) sebagaimana dimaksud di atas

15

harus lebih kecil atau sama dengan hasil penjumlahan dari kekuatan masingmasing.
3. Jumlah Berat yang Diijinkan (JBI) atau jumlah berat kombinasi yang diijinkan
pada setiap kendaraan bermotor, kereta gandengan atau kereta tempelan,
ditentukan berdasarkan :
a. berat kosong kendaraan;
b. jumlah berat yang diperbolehkan dan atau jumlah berat kombinasi yang
diperbolehkan;
c. dimensi kendaraan dan bak muatan;
d. titik berat muatan dan pengemudi;
e. kelas jalan;
f.

jumlah tempat duduk yang tersedia, bagi mobil atau bus.

4. Jumlah berat kendaraan yang diijinkan maksimum sama dengan jumlah
berat kendaraan yang diperbolehkan bagi kendaraan yang bersangkutan, dan
jumlah berat kombinasi kendaraan yang diijinkan maksimum sama dengan
jumlah berat kombinasi kendaraan yang diperbolehkan.

2.2.5

Tata Cara Penimbangan dan Perhitungan Berat Muatan
Menurut Keputusan Menteri Perhubungan Nomor 5 Tahun 1995 Tentang

Penyelenggaraan Penimbangan Kendaraan Bermotor di Jalan, penimbangan
kendaraan beserta muatannya dilakukan dengan tata cara sebagai berikut :
1. Penimbangan kendaraan beserta muatannya dan penimbangan terhadap
masing-masing sumbu.
2. Perhitungan

berat

muatan

dilakukan

dengan

cara

mengurangi

hasil

penimbangan kendaraan beserta muatannya dengan berat kendaraan yang
telah ditetapkan dalam buku uji.
3. Kelebihan berat muatan dapat diketahui dengan cara membandingkan berat
muatan yang ditimbang dengan daya angkut yang diijinkan dalam buku uji
atau plat samping kendaraan bermotor.
4. Kelebihan muatan pada tiap-tiap sumbu dapat diketahui dengan cara

16

membandingkan hasil penimbangan setiap sumbu dengan muatan terberat
pada kelas jalan yang dilalui.
5. Kelebihan berat muatan atau muatan pada tiap-tiap sumbu sebesar 5% dari
yang ditetapkan dalam buku uji tidak dinyatakan sebagai pelanggaran.
6. Kelebihan muatan untuk masing-masing jenis mobil barang ditetapkan
berdasarkan konfigurasi sumbu yang dapat diberikan Ijin Dispensasi
Kelebihan Muatan Mobil Barang setinggi-tingginya sebesar 30% dari
daya angkut yang ditetapkan dalam Buku Uji Berkala.

2.2.6

Kerugian Kelebihan Muatan
Dari hasil studi Dinas Lalu Lintas dan Angkutan Jalan, kelebihan

muatan pada kendaraan dapat mengakibatkan dampak kerugian antara lain :
1. Kerusakan jalan, misalnya menyangkut biaya pemeliharaan jalan dan umur
layanan jalan.
2. Kerusakan kendaraan, misalnya menyangkut umur operasi kendaraan.
3. Keselamatan dan kelancaran lalu lintas, misalnya untuk keselamatan lalu lintas
terdapat batasan dimensi kendaraan yaitu lebar maksimum 2,5 m. Tinggi
maksimum 4,2 m atau lebih kecil dari 1,7 × lebar kendaraan, panjang
maksimum kendaraan tunggal 12 m. Sedangkan untuk kendaraan rangkaian
gandeng 18 m.
4. Polusi udara dan suara, misalnya kecepatan kendaraan turut mempengaruhi
adanya polusi udara

2.2.7

Sanksi Kelebihan Muatan
Menurut Perda Jateng Nomor 4 Tahun 2001, kelebihan muatan untuk

masing-masing jenis mobil barang ditetapkan berdasarkan konfigurasi sumbu yang
dapat diberikan Ijin Dispensasi Kelebihan Mobil Barang setinggi-tingginya sebesar
30% dari daya angkut yang ditetapkan dalam Buku Uji Berkala. Pemberian ijin
dispensasi kelebihan muatan mobil barang tersebut dikenakan retribusi sebagai
berikut :

17

1. Angkutan barang umum dengan kelebihan muatan di atas 5 % sampai
dengan 15 % dikenakan retribusi sebesar Rp. 15,00 per kilogram.
2. Angkutan barang umum dengan kelebihan muatan di atas 15% sampai dengan
30% dikenakan retribusi sebesar Rp.20,00 per kilogram.
Pemberian Ijin Dispensasi Khusus diberlakukan bagi angkutan barang
umum yang muatannya tidak dapat dipotong-potong, angkutan barang bahan
berbahaya, angkutan barang khusus, angkutan peti kemas, angkutan alas berat
dengan ketentuan sebagai berikut :
1. Kelebihan muatan 5% - 15% dikenakan retribusi Rp. 15,00 per kilogram.
2. Kelebihan muatan di atas 15% - 30% dikenakan retribusi sebesar Rp. 20,00
per kilogram.
Selain jenis kendaraan yang tersebut di atas, Ijin Dispensasi Khusus juga
diberikan bagi kendaraan-kendaraan dengan kelebihan muatan di atas 30% sampai
dengan 50% dengan ketentuan retribusi sebesar Rp. 150.000, 00. Sanksi
terhadap pelanggaran dikenakan satu kali dalam satu kali perjalanan (dari asal ke
tujuan).
Retribusi tersebut dipungut oleh Wajib Pungut pada alat penimbangan
berada yaitu petugas DLLAJ. Semua hasil penerimaan retribusi harus disetor ke
Kas Daerah selambat-lambatnya 1 kali 24 jam atau dalam waktu yang ditentukan
Gubernur. Untuk menunjang penyelenggaraan otonomi Kabupaten dan Kota
diberikan sebesar 30% dari hasil penerimaan bersih retribusi.
2.3

Klasifikasi dan Peruntukan Jalan
Berdasarkan Undang-Undang Nomor 38 Tahun 2004 tentang Jalan, maka

jalan dapat didefinisikan sebagai prasarana perhubungan darat, termasuk bangunan
pelengkap dan perlengkapannya yang diperuntukkan bagi lalu lintas. Peranan
penting jalan meliputi :
1. Mendorong pengembangan satuan wilayah pengembangan semakin merata;
2. Merupakan suatu kesatuan sistem jaringan jalan yang menghubungkan pusatpusat pertumbuhan.

18

2.3.1

Sistem Jaringan dan Klasifikasi Jalan

2.3.1.1 Klasifikasi Menurut Fungsi Jalan
Klasifikasi fungsi jalan yang dijabarkan dalam Peraturan Pemerintah No.26
Tahun 1985 pasal 4 dan pasal 5 dibagi dalam dua sistem jaringan jalan, yaitu :
a. Sistem Jaringan Jalan Primer
Sistem jaringan jalan primer disusun berdasarkan ketentuan pengaturan tata
ruang

dan

struktur

pengembangan

wilayah

tingkat

nasional

yang

menghubungkan antara simpul-simpul jasa distribusi. Dalam sistem ini
dibedakan sebagai berikut :
i.

Jalan Arteri Primer
Yaitu jalan yang menghubungkan kota jenjang kesatu dengan kota
jenjang kesatu yang berdampingan atau menghubungkan kota jenjang
kesatu dengan kota jenjang kedua.

ii. Jalan Kolektor Primer
Yaitu jalan yang menghubungkan kota jenjang kedua dengan kota
jenjang kedua yang berdampingan atau menghubungkan kota jenjang
kedua dengan kota jenjang ketiga.
iii. Jalan Lokal Primer
Yaitu jalan yang menghubungkan kota jenjang ketiga atau kota jenjang
ketiga dengan jenjang dibawahnya atau menghubungkan persil dengan
kota jenjang diatasnya.
b. Sistem Jaringan Jalan Sekunder
Sistem jaringan jalan sekunder disusun mengikuti ketentuan tata ruang kota
yang menghubungkan kawasan yang mempunyai fungsi primer, fungsi sekunder
kesatu, fungsi sekunder kedua dan seterusnya sampai perumahan. Dalam
sistem ini dibedakan sebagai berikut :

19

i.

Jalan Arteri Sekunder
Yaitu jalan yang menghubungkan kawasan primer dengan kawasan
sekunder kesatu atau antar kawasan sekunder kesatu atau kawasan
sekunder kesatu dengan kawasan sekunder kedua.

ii. Jalan Kolektor Sekunder
Yaitu jalan yang menghubungkan kawasan sekunder kedua atau
kawasan sekunder kedua dengan kawasan sekunder ketiga.
iii. Jalan Lokal Sekunder
Yaitu jalan yang menghubungkan perumahan dengan kawasan sekunder
diatasnya.
2.3.1.2 Klasifikasi Menurut Kelas Jalan
Klasifikasi menurut kelas jalan berkaitan dengan kemampuan jalan untuk
menerima beban lalu lintas, dinyatakan dalam Muatan Sumbu Terberat (MST) dapat
dilihat pada Tabel 2.2. berikut ini :
Tabel 2.2. Klasifikasi Menurut Kelas Jalan
Fungsi

Kelas

Muatan Sumbu Terberat
(MST)
(ton)
>10
10
8

I
Arteri
II
III A
III A
Kolektor
8
III B
Sumber : Perencanaan Geometrik Jalan Antar Kota, 1997

2.3.1.3

Klasifikasi Menurut Wewenang Pembinaan Jalan
Klasifikasi jalan menurut wewenang pembinaannya sesuai dengan PP. No.

26/1985

yaitu

terbagi

menjadi

jalan

Nasional,

jalan

Propinsi,

jalan

Kabupaten/Kotamadya, jalan Desa dan jalan Khusus. Sedangkan pengelompokan
jalan berdasarkan status dan wewenang pembinaannya adalah sebagai berikut :

20

a. Jalan Nasional
Status jalan nasional ditetapkan oleh Menteri Dalam Negeri, jalan nasional
meliputi:
i.

Jalan Arteri Primer

ii. Jalan Kolektor Primer (antar ibukota propinsi)
b. Jalan Propinsi
Penetapan status jalan propinsi dilakukan oleh Menteri Dalam Negeri
berdasarkan usulan dari Gubernur, Jalan Propinsi meliputi :
i.

Jalan

kolektor

primer

antar

ibukota

propinsi

dengan

ibukota

kabupaten/kotamadya
ii. Jalan kolektor primer antar ibukota kabupaten/kotamadya
c. Jalan Kabupaten
Penetapan status jalan kabupaten dilakukan oleh Gubernur berdasarkan usulan
dari Bupati. Jalan Kabupaten meliputi :
i.

Jalan Kolektor Primer yang tidak termasuk jalan kolektor primernya jalan
Propinsi dan Nasional

ii. Jalan lokal primer yang menghubungkan ibukota kabupaten dengan
ibukota kecamatan, ibukota kabupaten dengan pusat desa antar ibukota
kecamatan dengan desa dan antar desa.
d. Jalan Kotamadya
Penetapan status dengan peraturan daerah kota yang bersangkutan dengan
memperhatikan pedoman yang ditetapkan oleh Menteri. Yang termasuk dalm
jalan Kotamadya adalah semua ruas jalan yang masuk dalam sistem jaringan
jalan sekunder.
e. Jalan Desa
Penetapan status dengan peraturan daerah kabupaten yang bersangkutan
dengan memperhatikan pedoman yang ditetapkan oleh Menteri. Yang termasuk
jalan desa yaitu jalan lingkungan primer dan jalan lokal primer selain jalan
kabupaten yang berada di kawasan pedesaan.

21

f.

Jalan Khusus
Merupakan

jalan

yang dibangun

dan

dipelihara

oleh

instansi untuk

kepentingan sendiri.
2.3.1.4 Klasifikasi Menurut Peraturan Daerah
Menurut Perda Jateng Nomor 4 Tahun 2001, setiap mobil barang dilarang
menggunakan jalan yang kelasnya di bawah yang ditetapkan dalam buku Uji
Kendaraan Bermotor, kelas jalan yang dimaksud adalah :
a. Jalan Kelas II, merupakan jalan arteri yang dapat dilalui kendaraan bermotor
termasuk muatannya dengan ukuran lebar yang tidak melebihi 2,5 m. Ukuran
panjang tidak melebihi 18 m dan muatan sumbu terberat 10 ton.
b. Jalan Kelas III A, merupakan jalan arteri atau kolektor yang dapat dilalui
kendaraan bermotor termasuk muatannya dengan ukuran lebar tidak melebihi
2,5 m. Ukuran panjang tidak melebihi 18 m dan muatan sumbu terberat 8ton.
c. Jalan Kelas III B, merupakan jalan kolektor yang dapat dilalui kendaraan
bermotor termasuk muatannya dengan ukuran lebar tidak melebihi 2,5 m.
Ukuran panjang tidak melebihi 12 m dan muatan sumbu terberat 8 ton.

2.3.2

Kerusakan Jalan

2.3.2.1 Tipe dan Jenis Kerusakan Jalan
Kerusakan yang terjadi pada jalan biasanya tidak diinginkan, hal ini
disebabkan karena mempengaruhi kualitas kenyamanan kendaraan. Untuk itu
diperlukan suatu penggolongan tipe-tipe dan jenis kerusakan yang umumnya
terjadi pada perkerasan tertentu.
a. Tipe Kerusakan Jalan
Tipe kerusakan diantaranya :
i.

Kerusakan Fungsional, di mana struktur tidak dapat lagi melayani lalu
lintas sesuai dengan fungsi yang diharapkan yaitu aman dan nyaman.

22

Kerusakan ini dapat dilihat dari tingkat ketidakrataan permukaan
(roughness) serta sifat kerusakan tidak progresif.
ii. Kerusakan Struktural, kerusakan terjadi pada satu atau lebih lapis
perkerasan. Kerusakan ini bersifat progresif, jika tidak segera ditangani
akan berkembang dengan cepat menjadi kerusakan yang lebih
besar yang pada akhirnya menyebabkan ketidakrataan permukaan.
b. Jenis-Jenis Kerusakan Jalan
Jenis kerusakan jalan umumnya berbeda – beda. Untuk itu pada Tabel 2.3
disebutkan jenis – jenis kerusakan jalan baik ditinjau dari bentuk, sifat ,
maupun tingkat kerusakan jalannya.
Tabel 2.3. Jenis-Jenis Kerusakan Jalan
A. RETAK (CRACK)
No

Jenis Kerusakan
Retak

halus

(hair

crack)
1

Bentuk / Sifat / Tingkat

Penyebab Kerusakan
a. Bahan perkerasan
kurang baik

a. Lebar celah ≤ 3 mm
b. Penyebaran setempat/luas
c. Meresapkan air
d. Akan berkembang menjadi
retak buaya

b. Pelapukan
permukaan
c. Bagian

bawah

permukaan
lapisan

kurang

stabil
Retak
Kulit
Buaya
(Aligator Crack)

a. Lebar celah ≥ 3 mm
b. Saling

berangkai

membentuk
kotak-kotak

2

serangkaian
kecil

yang

menyerupai kulit buaya
c. Meresapkan
berkembang
lubang

akibat

butir-butir

air

akan
menjadi

pelepasan

a. Bahan perkerasan
kurang baik
b. Pelapukan
permukaan
c. Bagian

bawah

permukaan
lapisan
stabil

kurang

23

Lanjutan Tabel 2.3
No

Jenis Kerusakan
Retak Selip
Crack)

Bentuk / Sifat / Tingkat

Penyebab Kerusakan
a. Lapis
pengikat

(Slipage
a. Bentuk menyerupai bulan sabit
b. Meresapkan

3

air

dan

akan

berkembang menjadi lubang

kurang berfungsi
b. Agregat halus lebih
banyak
c. Lapis

permukaan

kurang padat
a. Memanjang

dengan

Retak Pinggir (Edge

tanpa

Crack)

mengarah ke bahu

4

cabang

atau
yang

di

bawah

retak pinggir kurang

c. Akan berkembang menjadi

baik

yang

diikuti

oleh

c. Penyusutan Tanah
d. Drainase

kurang

baik

retak
a. Memanjang
Jalan

samping kurang
b. Bahan

pelepasan butir pada tepi

Sambungan

dari

b. Meresapkan air
besar

Retak

a. Sokongan

dan

terletak

pada sambungan 2 lajur lalu
lintas

5

b. Meresapkan air
c. Diikuti lepasnya butir pada

Ikatan sambungan
kurang baik

tepi retak dan retak akan
bertambah lebar
a. Memanjang
Retak
Pelebaran
6

Crack)

Sambungan
(Widenig

pada

dan

sambungan

perkerasan

lama

terletak
antara
dengan

pelebaran

a. Ikatan sambungan
kurang baik
b. Perbedaan

b. Meresapkan air

kekuatan

c. Diikuti lepasnya butir pada

pelebaran

tepi retak dan retak akan

jalan lama

bertambah lebar

jalan
dengan

24

Lanjutan Tabel 2.3
No

Jenis Kerusakan

Bentuk / Sifat / Tingkat

Penyebab Kerusakan

a. Memanjang/diagonal/melin
Retak Refleksi

tang

(Reflection Crack)

b. Terjadi

pada

tambahan

yang

menggambarkan

pola

retakan

7

lapisan

perkerasan

dibawahnya
d. Diikuti lepasnya butir pada
retak

horizontal

di

bawah

lapis

tambahan

sebagai

akibat

perubahan kadar air

c. Meresapkan air
tepi

Pergerakan vertikal /

sehingga

pada

tanah

dasar

yang ekspansif

kerusakan akan bertambah
parah
Retak

Susut

(Shrinkage Crack)

a. Saling

bersambungan

membentuk

kotak

besar

dengan sudut tajam

8

Perubahan

volume

perkerasan

yang

mengandung

terlalu

b. Meresapkan air

banyak aspal dengan

c. Diikuti lepasnya butir pada

penetrasi rendah

tepi retak sehingga timbul
lubang

B. PERUBAHAN BENTUK (DISTORTION)
No

Jenis Kerusakan

Bentuk / Sifat / Tingkat

Penyebab Kerusakan

a. Berbentuk alur/parit yang
Alur (Ruts)

sejajar as jalan dan terjadi

Perkerasan

kurang padat

pada lintasan
1

a. Lapis

b. Menampung air

b. Stabilitas

rendah

c. Mengurangi kenyamanan

sehingga

terjadi

d. Membahayakan

deformasi plastis

pemakai

jalan
e. Akan diikuti retak-retak

25

Lanjutan Tabel 2.3
No

Jenis Kerusakan

Bentuk / Sifat / Tingkat

Penyebab Kerusakan
a. Stabilitas rendah

Keriting (Corrugation)

b. Lalu lintas dibuka
sebelum

2

a. Terjadi melintang jalan

perkerasan mantap

b. Mengurangi kenyamanan

(untuk

perkerasan

yang menggunakan
aspal cair
a. Setempat ditempat kendaraan
Sungkur (Shoving)

3

sering

berhenti,kelandaian

curam, tikungan tajam, dengan

a. Stabilitas rendah

atau tanpa retakan.

b. Lalu lintas dibuka

b. Menampung

air

dan

sebelum
perkerasan mantap

meresapkannya
c. Membahayakan pemakai jalan
d. Mengurangi kenyamanan
Jembul (Upheavel)

a. Setempat dengan atau tanpa a. Pengembangan
retak
b. Menghambat

4

tanah dasar dan atau
pengaliran

air

dan meresapkannya

perkerasan
b. Tanah

c. Membahayakan pemakai jalan

dasar

yang

ekspansif

d. Mengurangi kenyamanan
Amblas
Depression)

(Grade

a. Setempat dengan atau tanpa a. Beban

5

yang berlebihan

retak
b. Kedalaman

kendaraan

umumnya

lebih b. Pelaksanaan kurang

dari 2 cm

baik

c. Menampung dan meresapkan c. Penurunan
air
d. Membahayakan pemakai jalan

perkerasan
tanah dasar

karea

26

Lanjutan Tabel 2.3
C. CACAT PERMUKAAN (DISINTEGRATION)
No

Jenis Kerusakan
Pelepasan

Butir

(Raveling)

Bentuk / Sifat / Tingkat

Penyebab Kerusakan

a. Luas
b. Menampung

a. Pemadatan kurang
air

dan

meresapkannya
1

b. Agregat

kotor

lunak

c. Membahayakan pemakai jalan

c. Aspal kurang

d. Berkembang menjadi lubang

d. Pemanasan

e. Permukaan kasar

atau

campuran

terlalu

tinggi
Lubang (Potholes)

a. Seperti mangkok

a. Aspal kurang

b. Menampung dan meresapkan b. Butir
air

2

c. Membahayakan pemakai jalan
d. Berkembang menjadi lubang
yang semakin dalam
Penglupasan

Lapis

Permukaan

a. Merata / luas
b. Berkembang menjadi lubang

3

halus

terlalu

banyak
c. Agregat

pengunci

kurang
d. Lapis permukaan tipis
a. Ikatan antara lapis
permukaan dan lapis
di bawahnya kurang
b. Lapis
permukaaanterlalu
tipis

Penurunan Pada bekas
Penanaman Utilitas

D

Sepanjang bekas utilitas

Pemadatan

tidak

memenuhi persyaratan

27

Lanjutan Tabel 2.3
No

Jenis Kerusakan
Kegemukan (Bleeding /
Flushing)

E

Bentuk / Sifat / Tingkat

a. Luas

campuran

c. Pada temperatur tinggi akan

banyak

F

pada
terlalu

b. Lapis pengikat/lapis

d. Membahayakan kendaraan

resap

e. Akan diikuti penglupasan

terlalu banyak

(Pholished

Aggregate)

a. Aspal

b. Permukaan licin
terjadi jejak roda

Pengausan

Penyebab Kerusakan

pengikat

a. Agregat tidak tahan
a. Permukaan licin

aus terhadap roda

b. Luas

kendaraan

c. Membahayakan pemakai jalan

b. Bentuk

agregat

bulat dan licin

Sumber : Silvia Sukirman (1999)

2.3.2.2 Faktor Penyebab Kerusakan Jalan
Menurut Murwono (2002), laju penurunan kinerja jalan dipengaruhi oleh
beberapa faktor, antara lain :
a. Faktor beban lalu lintas yang dilayani, meliputi :
i.

Jumlah dan komposisi kendaraan,
Laju penurunan kinerja jalan dipengaruhi oleh jumlah dan komposisii
kendaraan karena tebal lapisan perkerasan ditentukan dari beban yang dipikul,
berarti dari arus lalu lintas yang hendak melewati jalan.

28

ii. Kecepatan kendaraan
Kecepatan kendaraan dapat mempengaruhi besarnya gesekan akibat adanya
kontak antara ban dan permukaan jalan, yang langsung menderita gesekan
akibat rem kendaraan yang dapat mengakibatkan lapisan perkerasan menjadi
cepat aus.
iii. Muatan / beban sumbu dari kendaraan.
Muatan / beban sumbu yang berlebih akan mengakibatkan penurunan fungsi
pelayanan dari suatu jalan dikarenakan kerusakan kondisi fisik jalan seperti
adanya retak – retak, amblas, alur, gelombang,sehingga kenyamanan
berkendara menjadi terganggu
b. Kualitas bahan konstruksi, meliputi :
i.

Agregat,
Sifat dan kualitas agregat menentukan kemampuannya dalam memikul beban lalu
lintas. Agregat dengan kualitas dan sifat yang baik dibutuhkan untuk lapisan
permukaan yang langsung memikul beban lalu lintas dan menyebarkannya ke
lapisan permukaan dibawahnya.

ii.

Bahan pengikat
Bahan pengikat disini adalah aspal, dimana mempunyai sifat mengikat agregat.
Dengan kata lain apabila mempergunakan aspal dengan mutu yang baik dapat
memberikan lapisan kedap air dan tahan terhadap pengaruh cuaca dan reaksi
kimia yang mempengaruhi kerusakan lapisan perkerasan.

iii. Jenis tanah.
Tingkat kerusakan konstruksi perkerasan selama masa pelayanan tidak saja
ditentukan oleh kekuatan dari lapisan perkerasan tetapi juga oleh tanah dasar.
Tanah dengan tingkat kepadatan tinggi mengalami perubahan volume yang
kecil jika terjadi perubahan kadar air dan mempunyai daya dukung yang lebih
besar jika dibandingkan dengan tanh sejenis yang tingkat kepadatannya lebih
rendah.

29

c. Perancangan campuran, meliputi :
i.

Prosedur pencampuran dan temperatur.
Ada hubungannya antara temperatur dan pencampuran. Apabila dalam
proses pekerjaan lapis perkerasan menggunakan aspal yang kurang peka
terhadap temperatur maka pelaksanaan pencampurannya akan memakan
waktu yang cukup lama.

d. Kualitas drainase yang didasarkan pada :
i.

Jenis penampang (kemampuan daya tampung),
Besar kecilnya bangunan drainase yang akan dibuat tergantung dari
intensitas hujan, semakin tinggi intensitas hujan didaerah tersebut
semakin banyak pula air yang harus dialirkan, dan semakin besar juga
penampang drainase yang harus dibuat agar memiliki daya tampung
yang besar sesuai dengan intensitas hujan tadi.

e. Kualitas pelaksanaan konstruksi yang antara lain meliputi :
i.

Jenis dan kondisi peralatan,
Kualitas peralatan baik dari jenis maupun kondisi peralatan konstruksi
juga sangat mempengaruhi laju penurunan kinerja jalan. Sebagai contoh
dalam proses pemadatan tanah dasar peralatan yang akan digunakan
semestinya berkualitas baik karena dapat mempengaruhi energi yang
dihasilkan untuk memadatkan tanah dasar tersebut, dimana kepadatan
tanah dasar dapat mempengaruhi lapisan perkerasan.

f.

Cuaca, dimana faktor yang mempengaruhi meliputi :
i.

Permeabilitas lapis permukaan,
Permeabilitas lapis perkerasan yang berlebihan dan lepasnya butiran
biasanya akibat dari suatu campuran yang kurang ketebalan film
aspalnya, dan atau perkerasan yang tidak dipadatkan dengan baik saat
pelaksanaan. Keduanya dapat mempengaruhi kekuatan perkerasan, tapi
tidak selalu mengakibatkan berkembangnya kerusakan. (pemeliharaan
jalan raya, Hary Christady Hardiyatmo)

30

2.4

Kinerja Perkerasan Jalan
Menurut AAHSTO Kinerja perkerasan jalan dinyatakan dengan:

1. Indeks Permukaan ( IP / Serviceability Index)
Indeks Permukaan (IP) diperkenalkan oleh AASHTO melalui pengamatan
terhadap kondisi jalan meliputi kerusakan-kerusakan yang ada (retak, alur,
lubang, lendutan pada jalur roda, kekasaran permukaan, dan lain-lain).
Indeks Permukaan menyatakan nilai kerataan / kehalusan serta kekokohan
permukaan yang bertalian dengan tingkat pelayanan bagi lalu lintas yang
lewat. Adapun beberapa nilai IP beserta artinya adalah sebagai berikut :
a. IP = 1,0

menyatakan permukaan jalan dalam keadaan rusak berat
sehingga sangat mengganggu lalu lintas kendaraan

b. IP = 1,5

adalah tingkat pelayanan terendah yang masih mungkin
(jalan tidak terputus)

c. IP = 2,0

adalah tingkat pelayanan terendah untuk jalan yang masih
mantap

d. IP = 2,5

menyatakan permukaan jalan masih cukup stabil dan baik.

2. Indeks Kondisi Jalan (Road Condition Index / RCI)
RCI adalah skala dari tingkat kenyamanan atau kinerja jalan yang
ditunjukkan dari kondisi permukaan jalan. RCI diperoleh dari pengukuran
secara visual. Skala angka bervariasi dari 2-10 dengan kriteria seperti yang
terlihat pada Tabel 2.4 berikut ini :
Tabel 2.4. Ketentuan Nilai RCI Terhadap Perkerasan Jalan Secara Visual
RCI

KONDISI VISUAL

8 s/d 10

sangat rata dan halus

7 s/d 8

sangat baik, rata

6 s/d 7

Baik

5 s/d 6

cukup, sedikit/tidak ada lubang, permukaan tidak rata

4 s/d 5

jelek, kadang-kadang berlubang tidak rata

31

Lanjutan Tabel 2.4
RCI

KONDISI VISUAL

3 s/d 4

rusak, bergelombang, banyak lubang

2 s/d 3

rusak berat, banyak lubang, seluruh permukaan hancur

1 s/d 2

tidak dapat dilalui kecuali menggunakan Jeep 4WD

Sumber : AASHTO dalam Silvia Sukirman (1999)

Jika pemeriksaan atau pengukuran dilakukan dengan menggunakan alat
roughometer akan diperoleh nilai IRI (International Roughness Index), maka
untuk Indonesia dipergunakan korelasi antara RCI dan IRI sebagai berikut :
RCI = 10 × Exp (- 0,0501 × IRI 1,220920)
Nilai kesetaraan antara RCI dan IRI dapat ditunjukkan pada Tabel 2.5 di bawah
ini :
Tabel 2.5. Nilai Kesetaraan Antara RCI dan IRI
IRI (mm/km)

RCI

4

7,6

6

6,4

8

5,3

12

3,5

16
2,3
Sumber : AASHTO dalam Silvia Sukirman (1999)

32

2.5

Volume Lalu Lintas

2.5.1

Lalu Lintas Harian Rata-Rata (LHR)
Lalu lintas harian rata-rata adalah jumlah rata-rata lalu lintas kendaraan

bermotor yang dicatat selama 24 jam sehari untuk kedua jurusan. Ada dua jenis
LHR yaitu LHR tahunan (LHRT) dan LHR.

2.5.2

LHRT =

jumlah lalu lintas dalam 1 tahun
365

LHR =

jumlah lalu lintas selama pengamatan
lamanya pengamatan

Pertumbuhan LHR
Volume lalu lintas adalah banyaknya kendaraan yang melintas atau melewati

suatu titik disuatu ruas jalan pada interval waktu tertentu yang dinyatakan dalam
satuan kendaraan atau satuan mobil penumpang (smp). Sedangkan volume lalu
lintas rencana (LHR) adalah perkiraan volume lalu lintas harian pada akhir tahun
rencana lalu lintas dan dinyatakan dalam smp/hari. Hasil perhitungan besarnya LHR
digunakan

sebagai

dasar

perencanaan

jalan,

observasi

tentang

segala

kecenderungan-kecenderungan dengan evaluasi volume pada masa yang akan
datang.
Untuk menghitung perkembangan lalu lintas tiap tahun dapat dihitung
berdasarkan LHRn, LHRo. Rumus umum yang digunakan adalah :
LHRn = LHRo + (1 + i )T1-T0

di mana :

LHRn =

LHR pada tahun pembukaan lalu lintas

LHR0 =

LHR pada tahun pencacahan lalu lintas

T1

=

Tahun pembukaan lalu lintas

T0

=

Tahun pencacahan lalu lintas

33

2.6

Desain Pelapisan Tambahan (Overlay)
Konstruksi jalan yang telah habis masa pelayannannya, telah mencapai

indeks permukaan akhir yang diharapkan perlu diberikan lapis tambahan untuk
dapat kembali mempunyai nilai kekuatan, tingkat kenyamanan, tingkat keamanan,
tingkat kekedapan terhadap air, dan tingkat kecepataanya mengalirkan air.
Pelapisan tambahan (overlay) akan lebih efektif dan ekonomis diberikan jika kondisi
struktur perkerasan yang ada belum terlalu kritis (nilai IP masi terlalu tinggi). Adapun
fungsi dari overlay antara lain :
1. Meningkatkan nilai struktural struktur perkerasan (ITP)
2. Meningkatkan nilai fungsional jalan (IP)
Kelayakan struktural konstruksi perkerasan dapat ditentukan dua cara yaitu
secara destruktif dan secara non-destruktif. Pemeriksaan destruktif yaitu dengan
cara membuat test pit pada perkerasan jalan lama, mengambil sampel ataupun
mengadakan pemeriksaan langsung di lokasi tersebut.
Sedangkan pemeriksaan non-destruktif yaitu cara pemeriksaan dengan
mempergunakan alat yang diletakkan di atas permukaan jalan sehingga tidak
berakibat rusaknya konstruksi perkerasan jalan. Alat tersebut sering disebut Alat
Benkleman Beam.
Untuk membuktikan bahwa kelebihan beban berpengaruh pada lapis
perkerasan, digunakan cara perbandingan antara tebal lapis tambahan beban
standar dengan beban berlebih. Langkah-langkah perhitungannya adalah sebagai
berikut :
1. Menetukan nilai DDT (Daya Dukung Tanah)
2. Menentukan Faktor Regional (FR)
3. Menentukan IPo dan IPt
4. Mencari ITP eksisting dengan rumus :
ITP eksisting = ITP perlu - ITP overlay
5. Dari ITP eksisting dicari ITP overlay yang baru untuk beban standar dan beban
berlebih. Setelah itu dihitung tebal overlay dengan rumus :

34

ITP overlay = a1 × D1
di mana : a1 = koefisien kekuatan relatif lapis permukaan
D1 = tebal lapis permukaan

Hubungan antara Indeks Permukaan dengan beban lalu lintas dapat ditunjukkan
dengan Gambar 2.1 di bawah ini :

Sumber : Materi Kuliah Perencanaan Perkerasan Jalan

Gambar 2.1. Grafik Hubungan IP – Beban Lalu lintas

2.7

Analisa Kepekaan Jalan
Indeks Permukaan akan berkurang dengan bertambahnya repetisi beban

yang akan terjadi dari tahun ke tahun. Selama masa pelayanan jalan tersebut,
AASHTO melakukan penelitian untuk hubungan antara Indeks Permukaan (IP) dan
lalu lintas dengan menentukan IP dan beban lalu lintas tiap dua minggu sekali. Dan
analisa data tersebut diperoleh (Silvia Sukirman, 1999) :

35

(1). Gt = log (IPo - IPt) / (IPo - 1,5) = β (log W - log ρ)
di mana :
Gt

=

Fungsi

logaritma

dan

perbandingan

antara

kehilangan tingkat

pelayanan dari IP = IPo sampai IP = IPt dengan kehilangan tingkat
pelayanan IPo sampai IP = 1,5
IPo =

Indek permukaan pada awal umur rencana yang besarnya tergantung pada
jenis dan mutu lapis permukaan.
Untuk jalan dengan lapis permukaan dari aspal laston IPo = 3,9 - 3,5

IPt

=

Indeks Permukaan pada akhir umur rencana

β

=

Fungsi dari desain dan variasi beban sumbu yang berpengaruh pada
bentuk grafik IP terhadap W

W

=

Beban lalu lintas

ρ

=

Fungsi dari desain dan variasi beban sumbu yang menyatakan jumlah
perkiraan banyaknya lintasan sumbu yang diperlukan sehingga perkerasan
mencapai tingkat pelayanan IP = 1,5

(2). Log (β - 0,40) = Log 0,081 + 3,23 Log (L1 + L2) - 5,19 log (ITP + 1)
di mana :
L1

=

Beban sumbu tunggal atau ganda dalam 1000 pon, karena dipergunakan
beban sumbu tunggal 18000 pon, maka L 1 = 18.

L2

=

Kode sumbu (untuk sumbu tunggal L2 =1, untuk sumbu ganda L2 = 2,
karena digunakan beban sumbu tunggal 18000 pon, maka L2 selalu =1).

36

ITP =

Indeks Tebal Perkerasan dalam kelipatan 2,54 cm (1 inch), untuk
perkerasan sesuai kondisi penelitian.
(3)

log ρ = 5,93 + 9,36 log (ITP + 1) – 4,79 log (L1 + L2) + 4,33 log L2
(4)

Wt 18 = log Nt 18 (FR)

di mana :
Wt 18 =

Beban lalu lintas selama umur rencana atas dasar beban sumbu tunggal
18000 pon yang telah diperhitungkan terhadap faktor regional.

Nt 18 =

Jumlah lintas sumbu 18000 pon.

FR

Faktor Regional

=

Dari keempat persamaan tersebut di atas diperoleh rumus dasar sebagai berikut :

LogWt




18  9 , 36  log( ITP  1 )  0 , 20  




Gt

1094
 0 , 40 
( ITP  1 ) 5 , 19














Rumus dasar ini hanya berlaku untuk kondisi lingkungan dan keadaan tanah
dasar seperti pada jalan yang diamati. Guna dapat digunakan secara umum, maka
harusl dimasukkan Faktor Regional (FR) sehubungan dengan kondisi lingkungan
dan faktor Daya Dukung Tanah Dasar (DDT) sehubungan dengan kondisi
perbedaan tanah dasar. Dengan demikian rumus umum menjadi :






Gt
LogWt18  9,36  log( ITP  1)  0,20  
  log( FR )  0,372  ( DDT  3,0)


1094
  0,40 



( ITP  1)5,19  


di mana :
ITP =

Indeks Tebal Perkerasan untuk keadaan lingkungan dengan daya dukung
sesuai lokasi jalan dan Indeks Permukaan akhir umur rencana yang dipilih
(dalam inch).

37

DDT =

Daya Dukung Tanah dasar yang besarnya merupakan nilai korelasi dengan
nilai CBR.

FR

=

Faktor Regional yang besarnya dipengaruhi oleh kondisi lingkungan
dimana jalan tersebut berada.
Pemakaian rumus-rumus di atas telah disederhanakan dalam bentuk

nomogram 1 sampai dengan 9 untuk variasi IPo serta pengaruh dari Faktor
Regional.
Dalam nomogram tersebut, beban lalu lintas (N) dinyatakan dalam Lintas Ekivalen
Rencana (LER) untuk 10 tahun, yaitu :
N = LER × 365 × 10

Umur rencana yang lain dari 10 tahun LER dicari dengan memberikan faktor
penyesuaian (FP) terhadap Lintas Ekuivalen Tengah (LET).
2.7.1

Prosentase Kendaraan Pada Jalur Rencana
Menurut Bina Marga jika ruas jalan tidak memiliki tanda batas lajur, maka

jumlah lajur ditentukan dari lebar perkerasan. Adapun penentuan jumlah lajur dapat
ditentukan dengan berpedoman pada Tabel 2.6 di bawah untuk menentukan jumlah
lajur sesuai dengan lebar perkerasan.
Tabel 2.6. Pedoman Penentuan Jumlah Lajur
Lebar Perkerasan (L)

Jumlah Lajur (n)

L ≤ 5,50 m

1 lajur

5,50 m ≤ L < 8,25 m

2 lajur

8,25 m ≤ L < 11,25 m

3 lajur

11,25 m ≤ L < 15,0 m

4 lajur

15,00 m ≤ L < 18,75 m

5 lajur

18,75 m ≤ L < 22,00 m

6 lajur

Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya
Dengan Metode Analisis Komponen (SKBI-2.3.26. 1987)

38

Prosentase kendaraan pada lajur rencana dapat ditentukan dengan
menggunakan koefisien distribusi kendaraan (C) yang diberikan oleh Bina Marga
seperti terlihat pada Tabel 2.7 di mana menunjukkan nilai koefisien distribusi
kendaraan yang ditentukan berdasarkan jumlah lajur, jenis kendaraan dan jumlah
arah :
Tabel 2.7. Koefisien Distribusi Kendaraan (C) Ke Lajur Rencana
Jumlah Lajur

Kendaraan Ringan *

Kendaraan Berat **

1 arah

2 arah

1 arah

2 arah

1 lajur

1,00

1,00

1,00

1,00

2 lajur

0,60

0,50

0,70

0,50

3 lajur

0,40

0,40

0,50

0,475

4 lajur

0,30

0,45

5 lajur

0,25

0,425

6 lajur

0,20

0,40

* berat total < 5 ton, misalnya mobil penumpang, pick up, mobil hantaran
** berat total ≥ 5 ton misalnya bus, truk, traktor, semi trailler, trailler
Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya Dengan
Metode Analisis Komponen (SKBI-2.3.26. 1987)

2.7.2

Angka Ekivalen
Untuk keamanan dan kenyamanan pengendara angkutan barang, maka

ditetapkan JBI (Jumlah Berat yang diijinkan) untuk setiap kendaraan angkutan
barang. Kendaraan dengan muatan melebihi ketentuan JBI selain membahayakan
keselamatan juga dapat memperburuk kondisi prasarana yang ada.
Konstruksi perkerasan jalan menerima beban lalu lintas yang dilimpahkan
melalui roda-roda kendaraan. Oleh karena itu, beban gandar atau as roda
menentukan kerusakan yang diakibatkan perilaku kendaraan terhadap permukaan
jalan. Beban sumbu kendaraan yang melalui suatu ruas jalan hendaknya besarnya
lebih kecil atau sama dengan MST (Muatan Sumbu Terberat) yang telah ditetapkan
pada ruas jalan tersebut. Untuk ruas Jalan Semarang - Bawen yang termasuk dalam
jalan kelas II ditetapkan MST 10 ton.

39

Besarnya beban lalu lintas yang dilimpahkan melalui roda-roda kendaraan
tergantung dari berat total kendaraan, konfigurasi sumbu, bidang kontak antara roda
dan perkerasan, dan kecepatan kendaraan. Dengan demikian efek dari masingmasing kendaraan terhadap kerusakan yang ditimbulkan tidak sama, sehingga perlu
adanya beban standar di mana semua beban lainnya dapat diekivalensikan ke
dalam beban standar dengan menggunakan angka ekivalen (E).
Angka ekivalen kendaraan adalah angka yang menunjukkan jumlah lintasan
dari sumbu tunggal seberat 8,16 ton yang akan menyebabkan kerusakan jalan atau
penurunan kinerja perkerasan berupa penurunan Indeks Permukaan yang sama
apabila kendaraan tersebut lewat satu kali. (Silvia Sukirman, 1999).
Gambar 2.2 di bawah ini menunjukkan besarnya beban standar yaitu beban
sumbu tunggal beroda ganda seberat 18000 Pon (8,16 Ton) dengan tekanan roda
satu ban ± 0,55 MPa = 5,5 Kg / cm2, jari – jari bidang kontak 110 mm atau 11 cm,
dan jarak antara masing – masing sumbu roda ganda = 33 cm.

Sumber : Bina Marga dalam Silvia Sukirman (1999)

Gambar 2.2. Sumbu Standar 8,16 ton
Angka ekivalen (E) masing-masing golongan beban sumbu (setiap
kendaraan) ditentukan menurut rumus di bawah ini :
Angka Ekivalen (E) sumbu tunggal =

 beban satu sumbu tunggal dalam kg 


8160



4

40

 beban satu sumbu ganda dalam kg 
Angka Ekivalen (E) sumbu ganda = 0,086 × 

8160



4

Berikut ini adalah Tabel 2.8 yang menunjukkan besarnya angka ekivalen
baik sumbu ganda maupun sumbu tunggal yang ditentukan dari besarnya beban
sumbu kendaraan tersebut.
Tabel 2.8. Angka Ekivalen (E)
Beban sumbu

Angka Ekivalen

Kg

Lbs

Sumbu Tunggal

Sumbu Ganda

1000

2205

0,0002

2000

4409

0,0036

0,0003

3000

6614

0,0183

0,0016

4000

8818

0,0577

0,0050

5000

11023

0,1410

0,0121

6000

13228

0,2923

0,0251

7000

15432

0,5415

0,0466

8000

17637

0,9238

0,0794

9000

18000

1,000

0,0860

10000

22046

2,2555

0,1940

11000

24251

3,3022

0,2840

12000

26455

4,6770

0,4022

13000

28660

6,4419

0,5440

14000

30864

8,6647

0,7452

15000

33069

11,4184

0,9820

16000
35276
14,7815
1,2712
Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya Dengan
Metode Analisis Komponen (SKBI-2.3.26. 1987)

Pada Tabel 2.9 berikut ini kita dapat melihat beberapa jenis kendaraan dan
konfigurasi sumbunya serta distribusi kendaraan ke masing-masing sumbu sesuai
yang diberikan oleh Bina Marga. Pada tabel tersebut juga diberikan angka ekivalen
untuk keadaan beban kosong dan beban maksimum.

41

Tabel 2.9. Distribusi Beban Sumbu Dari Berbagai Jenis Kendaraan
Beban Berat
Konfigurasi Berat
UE 18 UE 18
Muatan Total
Sumbu & Kosong
KSAL KSAL
Maks Maks
Tire
(Ton)
kosong muatan
(Ton) (Ton)

1,1
MP

1,5

0,5

2

0,0001 0,00045

1.2
BUS

3

6

9

0,0037 0,30057

1.2L
TRUK

2,3

6

8,3 0,0013 0,21741

1,2H
TRUK

4,2

14

18,2 0,0143 5,0264

1.22
TRUK

5

20

25 0,0044 2,74157

1,2+2,2
TRAILER

6,4

25

31,4 0,0085 4,99440

1,2-2
TRAILER

6,2

20

26,2 0,0192 6,91715

1,2-22
TRAILER

10

32

42 0,0327 10,183

Keterangan

Sumber : Bina Marga dalam Silvia Sukirman (1999)

2.7.3

Lalu Lintas

a. Lalu lintas harian rata-rata (LHR) setiap jenis kendaraan ditentukan pada
awal umur rencana, yang dihitung untuk dua arah pada jalan tanpa median
atau masing-masing arah pada jalan dengan median.
b. Lintas Ekivalen Permulaan (LEP) dihitung dengan rumus :
LEP = Σ LHR × C × E
c. Lintas Ekivalen Akhir (LEA) dihitung dengan rumus :
LEA = Σ LHR (1 + i)UR × C × E

42

d. Lintas Ekivalen Tengah (LET) dihitung dengan rumus :
LET = ½ (LEP + LEA)
e. Lintas Ekivalen Rencana (LER) dihitung dengan rumus :
LER = LET × FP
Faktor penyesuaian (FP) tersebut ditentukan dengan rumus
FP = UR / 10
Salah satu penyebab kerusakan perkerasan jalan adalah disebabkan oleh
repetisi dari lintasan kendaran. Oleh karena itu perlu ditentukan berapa jumlah
repetisi beban yang akan memakai jalan tersebut. Repetisi beban dinyatakan dalam
lintasan sumbu standar, atau dikenal dengan nama lain lintas ekivalen. Lintas
ekivalen atau lintas sumbu standar menyatakan jumlah repetisi beban yang akan
memakai jalan (Silvia Sukirman, 1999).
2.7.4

Faktor Regional
Faktor Regional berguna untuk memperhatikan kondisi jalan yang berbeda

antara jalan yang satu dengan jalan yang lain. Bina Marga memberikan angka yang
bervariasi seperti pada Tabel 2.10 di bawah ini yang menunjukkan nilai Faktor
Regional yang ditentukan dari besarnya curah hujan, dan kelandaian jalan di mana
kelandaian jalan dibagi kembali yaitu untuk kendaraan berat.
Tabel 2.10 Faktor Regional (FR)
Curah
Hujan

Kelandaian I (< 60%)
% Kendaraan Berat
≤ 30 %
> 30 %

Kelandaian II ( 6-10%)
% Kendaraan Berat
≤ 30 %
> 30 %

Kelandaian III (> 10%)
% Kendaraan Berat
≤ 30 %
> 30 %

Iklim I
0,5
1,0 – 1,5
1,0
1,5 – 2,0
1,5
2,0 -2,5
< 900 mm/th
Iklim II
1,5
2,0 – 2,5
2,0
2,5 – 3,0
2,5
3,0 – 3,5
> 900 mm/th
Catatan : pada bagian-bagian jalan tertentu, seperti persimpangan, pemberhentian atau
tikungan tajam (jari-jari 30 m) FR ditambah dengan 0,5. Pada daerah rawa-rawa
FR ditambah dengan 1,0.
Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya Dengan Metode
Analisis Komponen (SKBI-2.3.26. 1987)

43

2.7.5

Indeks Permukaan
Dalam menentukan Indeks Permukaan pada awal umur rencana (IPo), perlu

diperhatikan jenis lapis permukaan jalan (kerataan/kehalusan serta kekokohan)
pada awal umur rencana. Nilai Indeks Permukaan awal korelasinya dengan bahan
lapis perkerasan yang digunakan seperti yang ditunjukkan pada Tabel 2.11 berikut
ini :
Tabel 2.11. Indeks Permukaan Awal Umur Rencana (IPo)
Jenis Lapis

IPo

Roughness (mm/Km)

≥4

≤ 1000

3,9 – 3,5

> 1000

3,9 – 3,5

≤ 2000

3,4 – 3,0

> 2000

BURDA

3,9 – 3,5

≤ 2000

BURTU

3,4 – 3,0

> 2000

3,4 – 3,0

≤ 3000

2,9 – 2,5

> 3000

Perkerasan
LASTON

Asbuton / HRA

LAPEN
Lapis Pelindung

2,9 – 2,5

Jalan Tanah

≤ 2,4

Jalan Kerikil

≤ 2,4

Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya
Dengan Metode Analisis Komponen (SKBI-2.3.26. 1987)

Dalam menentukan Indeks Permukaan pada akhir umur rencana (IPt), perlu
dipertimbangkan faktor-faktor klasifikasi fungsional jalan dan jumlah Lintas Ekivalen
Rencana (LER). Sedangkan nilai Indeks Permukaan akhir dengan bahan lapis
perkerasan yang digunakan seperti yang ditampilkan pada Tabel 2.12 berikut ini.

44

Tabel 2.12. Indeks Permukaan Akhir Umur Rencana (IPt)
LER = Lintas
Ekivalen Rencana*)
≤ 10
10 - 100
100 - 1000
≥ 1000

Klasifikasi jalan
Lokal

Kolektor

Arteri

Tol

1,0 - 1,5
1,5
1,5 - 2,0
-

1,5
1.5 - 2,0
2,0
2,0 - 2,5

1,5 - 2,0
2,0
2,0 - 2,5
2,5

2,5

*) LER dalam satuan angka ekivalen 8,16 ton beban sumbu tunggal
Catatan :

Pada proyek-proyek penunjang jalan, JAPAT/jalan murah, atau jalan darurat
maka IP dapat diambil 1,0

Sumber : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya Dengan Metode
Analisis komponen (SKBI-2.3.26. 1987)

2.7.6

Daya Dukung Tanah Dasar
Daya dukung tanah dasar (DDT) ditetapkan berdasarkan grafik korelasi

antara DDT dan CBR yang ditampilkan pada Gambar 2.3. Yang dimaksud dengan
harga CBR disini adalah harga CBR lapangan atau CBR laboratorium. Jalan dalam
arah memanjang cukup panjang dibandingkan dengan jalan dalam arah melintang.
Jalan tersebut dapat saja melintasi jenis tanah, dan keadaan medan yang berbeda –
beda. Kekuatan tanah dasar dapat bervariasi antara nilai yang baik dan jelek.
Dengan demikian sebaiknya panjang jalan tersebut dibagi atas segmen – segmen
jalan, dimana setiap segmen mempunyai satu nilai CBR yang mewakili daya dukung
tanah dasar. Nilai CBR segmen dapat ditentukan dengan mempergunakan cara
analitis maupun cara grafis.
2.7.6.1

Cara Analitis
Adapun nilai CBR yang ditentukan dengan cara analitis yaitu menggunakan

rumus berikut ini :
CBRsegmen = CBRrata-rata – (CBRmaks – CBRmin) / R

45

Dimana nilai R tergantung dari jumlah data yang terdapat dalam satu
segmen. Besarnya nilai R dapat dilihat pada Tabel 2.13 yang menunjukkan
besarnya nilai R yang ditentukan berdasarkan jumlah titik pengamatan.
Tabel 2.13 Nilai R Untuk Perhitungan CBR Segmen
Jumlah Titik
Pengamatan

Nilai R

2

1,41

3

1,91

4

2,24

5

2,48

6

2,67

7

2,83

8

2,96

9

3,08

> 10

3,18

Sumber : Silvia Sukirman (1999)

2.7.6.2 Cara Grafis
Ada beberapa langkah yang harus dilakukan untuk menentukan nilai CBR
dengan cara grafis yaitu antara lain:
a. Menentukan besarnya nilai CBR lapangan
b. Dengan memperhatikan nilai CBR yang diperoleh, keadaan lingkungan, jenis
dan kondisi tanah dasar disepanjang jalan, tentukanlah CBR segmen
c. Dari nila

Dokumen yang terkait

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 13

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 1 7

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 11

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 5

PENGARUH KINERJA JEMBATAN TIMBANG KLEPU TERHADAP KONDISI RUAS JALAN SEMARANG – BAWEN (KM 17 – KM 25) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 2

PENGARUH KINERJA JEMBATAN TIMBANG KATONSARI TERHADAP KONDISI RUAS JALAN DEMAK – KUDUS (Km 29 – Km 36) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PENGARUH KINERJA JEMBATAN TIMBANG KATONSARI TERHADAP KONDISI RUAS JALAN DEMAK – KUDUS (Km 29 – Km 36) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PENGARUH KINERJA JEMBATAN TIMBANG KATONSARI TERHADAP KONDISI RUAS JALAN DEMAK – KUDUS (Km 29 – Km 36) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 10

PENGARUH KINERJA JEMBATAN TIMBANG KATONSARI TERHADAP KONDISI RUAS JALAN DEMAK – KUDUS (Km 29 – Km 36) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 4