Perencanaan Struktur dan Rencana Anggaran Biaya (RAB) Gedung Perpustakaan 2 Lantai wisnu

(1)

commit to user

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN

BIAYA (RAB) GEDUNG PERPUSTAKAAN 2 LANTAI

TUGAS AKHIR

Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Ahli Madya pada Program D-III Teknik Sipil Jurusan Teknik Sipil

Fakultas Teknik Universitas Sebelas Maret Surakarta

Dikerjakan oleh :

WISNU ANANDITA SOFYAN NIM : I 8508074

PROGRAM D-III TEKNIK SIPIL

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

2011


(2)

commit to user

LEMBAR PENGESAHAN

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN DUA LANTAI

TUGAS AKHIR

Dikerjakan Oleh:

WISNU ANANDITA SOFYAN NIM : I 8508074

Diperiksa dan disetujui Oleh : Dosen Pembimbing

AGUS SETYA BUDI, ST, MT NIP. 19700909 199802 1 001

PROGRAM D-III TEKNIK SIPIL

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

2011


(3)

commit to user

LEMBAR PENGESAHAN

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA GEDUNG PERPUSTAKAAN 2 LANTAI

TUGAS AKHIR

Dikerjakan Oleh:

WISNU ANANDITA SOFYAN NIM : I 8508074

Dipertahankan didepan tim penguji:

1. ACHMAD BASUKI, ST.,MT. : . . . NIP. 19710901 199702 1 001

2. Ir. AGUS SUPRIYADI, MT. : . . . NIP. 19600322 198803 1 001

3. Ir. A. MEDIYANTO, MT. : . . . NIP. 19570917 198601 2 001

Mengetahui, a.n. Dekan Pembantu Dekan I Fakultas Teknik UNS

KUSNO ADI SAMBOWO,ST., M.Sc., Ph.D. NIP. 19691026 199503 1 002

Mengetahui, Disahkan,

Ketua Jurusan Teknik Sipil Fakultas Teknik UNS

Ir.BAMBANG SANTOSA, MT NIP. 19590823 198601 1 001

Ketua Program D-III Teknik Sipil Jurusan Teknik Sipil FT UNS

ACHMAD BASUKI, ST., MT. NIP. 19710901 199702 1 001


(4)

commit to user

MOTTO

ü Tidak ada hal kebaikan dalam hal diam tentang suatu hukum,Sebagai mana tidak ada kebaikan dalam hal berkata dengan kebodohan. (Ali bin Abi thalib r.a)

ü Janganlah kamu bersikap lemah,dan janganlah (pula) bersedih hati,padahal kamulah orang - orang yang paling tinggi (derajatnya),jika kamu orang-orang yang beriman. (QS. Ali Imran :139)

ü Jadikanlah Sabar dan Shalat sebagai penolongmu. (QS. AL Baqarah : 45) ü Janganlah kamu lemah dan meminta damai padahal kamulah yang di atas

dan Allah (pun) beserta kamu dan Dia sekali-kali tidak akan mengurangi (pahala) amal-amalmu.Sesungguhnya kehidupan di dunia hanyalah permainan dan sendau gurau. (QS. Muhammad : 45-36)

ü Cita-cita yang tinggi tidak menjamin seseorang dapat meraih kesuksesan, tetapi seseorang yang sukses pasti memiliki cita-cita yang tinggi. (Andrey Wongso)


(5)

commit to user

Alhamdulillah puji syukur tiada terkira

kupanjatkan kehadirat Allah SWT, pencipta alam

semesta yang telah memberikan rahmat, hidayah

serta anugerah yang tak terhingga.

“ Se r a ngk a i Budi Pe n gh a r ga a n ”

D iba lik t a bir pe m bu a t a n e pisode

Tugas Akhir

J Ribuan terima kasih untuk Bapak dan Ibu yang tak henti-hentinya

mendoakan, mendidikku tak pernah jemu dan selalu menaburkan

pengorbanan dengan kasih sayang. Tanpa maaf dan restumu hidupku tak menentu.

J Bapak Agus Setya Budi, ST, MT selaku dosen pembimbing Tugas Akhir

atas arahan dan bimbingannya selama dalam penyusunan Tugas Akhir ini.

J Untuk Bapak dan Ibu dosen Fakultas Teknik Sipil Universitas Sebelas Maret

yang telah mendidik saya hingga dapat menyusun dan mengerjakan tugas akhir ini.

J Buat kakak dan adikku yang telah yang selalu menyemangatiku. J Buat Ardhiyanti Putri yang selalu ada dan mendampingiku.

J Rekan-rekan Sipil Gedung khususnya angkatan 2008 :

Amin, Benny, Fahmy, Dhestie Setyawan palupi, Yoseph, Wawan, Rixy, Mulyadi, Gatot, Yoga, Wisnu, Septian, Nicken, Pele, Dhestie, Ari Sofyan dan teman – teman yang laennya yang tidak bisa saya sebutkan satu-persatu

J Dan untuk semua pihak yang membantu saya kelancaran pengerjaan tugas


(6)

(7)

commit to user

KATA PENGANTAR

Puji syukur penyusun panjatkan kepada Tuhan YME, yang telah melimpahkan berkat, rahmat serta perlindungan-Nya sehingga penyusun dapat menyelesaikan Tugas Akhir dengan judul PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN DUA LANTAI ini dengan baik.

Dalam penyusunan Tugas Akhir ini, penyusun banyak menerima bimbingan, bantuan dan dorongan yang sangat berarti dari berbagai pihak. Dalam kesempatan ini, penyusun ingin menyampaikan rasa terima kasih yang tak terhingga kepada :

1. Achmad Basuki, ST, MT selaku Ketua Program Diploma III Jurusan Teknik Sipil Universitas Sebelas Maret Surakarta.

2. Ir. Endang Rismunarsi , selaku Dosen Pembimbing Akademik. 3. Agus Setiya Budi, ST, MT selaku Dosen Pembimbing Tugas Akhir. 4. Ir. Suyatno. K, MT selaku Dosen Penguji Tugas Akhir.

5. Endah Safitri, ST, MT, selaku Dosen Penguji Tugas Akhir.

6. Bapak dan Ibu dosen pengajar beserta karyawan di Fakultas Teknik UNS yang telah banyak membantu dalam proses perkuliahan.

7. Keluarga dan rekan-rekan D3 Teknik Sipil Gedung angkatan 2008. 8. Semua pihak yang tidak dapat penyusun sebutkan satu persatu.

Penyusun menyadari bahwa dalam penyusunan Tugas Akhir ini masih jauh dari kesempurnaan dan masih banyak terdapat kekurangan. Kritik dan saran maupun masukan yang membawa ke arah perbaikan dan bersifat membangun sangat penyusun harapkan.

Akhirnya, besar harapan penyusun semoga Tugas Akhir ini dapat memberikan manfaat bagi penyusun khususnya dan pembaca pada umumnya.

Surakarta, Februari 2012


(8)

commit to user

DAFTAR ISI

Hal

HALAMAN JUDUL... ... i

HALAMAN PENGESAHAN. ... ii

MOTTO ... iv

PERSEMBAHAN... v

PENGANTAR. ... vi

DAFTAR ISI. ... vii

DAFTAR GAMBAR ... xiii

DAFTAR TABEL ... xv

DAFTAR NOTASI DAN SIMBOL ... xvii

BAB 1 PENDAHULUAN 1.1 Latar Belakang ... 1

1.2 Maksud dan Tujuan. ... 1

1.3 Kriteria Perencanaan ... 2

1.4 Peraturan-Peraturan Yang Berlaku ... 3

BAB 2 DASAR TEORI 2.1 Dasar Perencanaan ... 4

2.1.1 Jenis Pembebanan……… 4

2.1.2 Sistem Bekerjanya Beban……… 7

2.1.3 Provisi Keamanan………... 7

2.2 Perencanaan Atap ... 10

2.3 Perencanaan Tangga ... 12

2.4 Perencanaan Plat Lantai ... 13

2.5 Perencanaan Balok ... 14

2.6 Perencanaan Portal (Balok, Kolom) ... 16


(9)

commit to user

3.1 Perencanaan Atap………... 20

3.1.1 Dasar Perencanaan ... 21

3.2 Perencanaan Gording ... 21

3.2.1 Perencanaan Pembebanan ... 21

3.2.2 Perhitungan Pembebanan ... 21

3.2.3 Kontrol Terhadap Tegangan ... 24

3.2.4 Kontrol Terhadap Lendutan ... 25

3.3 Perencanaan Jurai ... 26

3.3.1 Perhitungan Panjang Batang Jurai... 26

3.3.2 Perhitungan Luasan Jurai ... 27

3.3.3 Perhitungan Pembebanan Jurai ... 29

3.3.4 Perencanaan Profil Jurai ... 37

3.3.5 Perhitungan Alat Sambung ... 39

3.4 Perencanaan Setengah Kuda-Kuda ... 42

3.4.1 Perhitungan Panjang Batang Setengah Kuda-kuda ... 42

3.4.2 Perhitungan Luasan Setengah Kuda-kuda ... 43

3.4.3 Perhitungan Pembebanan Setengah Kuda-kuda ... 45

3.4.4 Perencanaan Profil Setengah Kuda-kuda ... 53

3.4.5 Perhitungtan Alat Sambung ... 55

3.5 Perencanaan Kuda-kuda Trapesium ... 58

3.5.1 Perhitungan Panjang Kuda-kuda Trapesium ... 58

3.5.2 Perhitungan Luasan Kuda-kuda Trapesium ... 59

3.5.3 Perhitungan Pembebanan Kuda-kuda Trapesium ... 62

3.5.4 Perencanaan Profil Kuda-kuda Trapesium ... 70

3.5.5 Perhitungan Alat Sambung ... 72

3.6 Perencanaan Kuda-kuda Utama ( KU ) ... 76

3.6.1 Perhitungan Panjang Kuda-kuda Utama ... 78

3.6.2 Perhitungan Luasan Kuda-kuda Utama ... 78

3.6.3 Perhitungan Pembebanan Kuda-kuda Utama ... 80

3.6.4 Perencanaan Profil Kuda-kuda Utama ... 89


(10)

commit to user

4.1 Uraian Umum ... 95

4.2 Data Perencanaan Tangga ... 95

4.3 Perhitungan Tebal Plat Equivalent dan Pembebanan ... 97

4.3.1 Perhitungan Tebal Plat Equivalent ... 97

4.3.2 Perhitungan Beban……….. 98

4.4 Perhitungan Tulangan Tangga dan Bordes………. 99

4.4.1 Perhitungan Tulangan ………. ... 100

4.4.2 Perencanaan Balok Bordes……… ... 103

4.4.3 Pembebanan Balok Bordes………. 103

4.4.4 Perhitungan Tulangan Lentur……… 104

4.4.5 Perhitungan Tulangan Geser ………. 105

4.5 Perhitungan Pondasi Tangga……….. .. 106

4.5.1 Perencanaan kapasitas dukung pondasi ……… 107

BAB 5 PLAT LANTAI DAN PLAT ATAP 5.1 Perencanaan Plat Lantai ... 111

5.2 Perhitungan pembebanan Plat Lantai ... 111

5.3 Perhitungan Momen ... 112

5.4 Penulangan Plat Lantai………... 119

5.5 Penulangan Lapangan Arah x………... ... 120

5.6 Penulangan Lapangan Arah y………... ... 122

5.7 Penulangan Tumpuan Arah x………... ... 123

5.8 Penulangan Tumpuan Arah y………... ... 124

5.9 Rekapitulasi Tulangan………. 125

5.10 Perencanaan Plat Atap ... 125

5.11 Perhitungan pembebanan Plat Atap ... 125

5.12 Perhitungan Momen ... 126

5.13 Penulangan Plat Atap……….. ... 127


(11)

commit to user

5.16 Penulangan Tumpuan Arah x………... ... 130

5.17 Rekapitulasi Tulangan………. 131

BAB 6 PERENCANAAN BALOK ANAK 6.1 Perencanaan Balok Anak Plat Lantai ... 133

6.1.1 Perhitungan Lebar Equivalent………. 134

6.1.2 Lebar Equivalent Balok Anak……… 134

6.2 Perhitungan Pembebanan Balok Anak As B’……… 134

6.2.1 Perhitungan Pembebanan……… ... 134

6.2.2 Perhitungan Tulangan ……… ... 136

6.3 Perencanaan Balok Anak Plat Atap ……… ... 140

6.3.1 Perhitungan Lebar Equivalent ……… ... 141

6.3.2 Lebar Equivalent Balok Anak ……… ... 141

6.4 Perhitungan Pembebanan Balok Anak As G’ ……… ... 142

6.4.1 Perhitungan Pembebanan……… ... 142

6.4.2 Perhitungan Tulangan ……… ... 143

BAB 7 PERENCANAAN PORTAL 7.1 Perencanaan Portal……… 146

7.1.1 Dasar Perencanaan……….. ... 148

7.1.2 Perencanaan Pembebanan………. . 149

7.2 Perhitungan Luas Equivalen Plat………. .. 150

7.3 Perhitungan Pembebanan Balok………. ... 152

7.3.1 Perhitungan Pembebanan Balok Portal Memanjang ... 152

7.3.2 Perhitungan Pembebanan Balok Portal Melintang ... 159

7.4 Perhitungan pembebanan Sloof ………. ... . 164

7.4.1 Perhitungan pembebanan Sloof Memanjang ... 164


(12)

commit to user

7.5.1 Perhitungan Tulangan Geser Ring Balk…… ... . 172

7.6 Penulangan Balok Portal………. ... . 173

7.6.1 Perhitungan Tulangan Lentur Balok Portal Memanjang ... . 173

7.6.2 Perhitungan Tulangan Geser Balok Portal Memanjang ... . 177

7.6.3 Perhitungan Tulangan Lentur Balok Portal Melintang ... . 178

7.6.4 Perhitungan Tulangan Geser Balok Portal Melintang ... . 181

7.7 Penulangan Kolom………... 182

7.7.1 Perhitungan Tulangan Lentur Kolom………. . 182

7.7.2 Perhitungan Tulangan Geser Kolom……… 184

7.8 Penulangan Sloof………. ... . 184

7.8.1 Perhitungan Tulangan Lentur Sloof Memanjang ... . 184

7.8.2 Perhitungan Tulangan Geser Sloof ... . 188

7.8.3 Perhitungan Tulangan Lentur Sloof Melintang ... . 189

7.8.4 Perhitungan Tulangan Geser Sloof memanjang ... . 192

BAB 8 PERENCANAAN PONDASI 8.1 Data Perencanaan Pondasi F1 ... 195

8.2 Perencanaan Kapasitas Dukung Pondasi ... 196

8.2.1 Perhitungan Kapasitas Dukung Pondasi ……….. . 196

8.2.2 Perhitungan Tulangan Lentur ……….. ... 197

8.3 Data Perencanaan Pondasi F2 ... 199

8.4 Perencanaan Kapasitas Dukung Pondasi ... 200

8.4.1 Perhitungan Kapasitas Dukung Pondasi ……….. . 200

8.4.2 Perhitungan Tulangan Lentur ……….. ... 201

BAB 9 RENCANA ANGGARAN BIAYA 9.1 Rencana Anggaran Biaya ... 203

9.2 Data Perencanaan ... ... 203


(13)

commit to user

BAB 10 REKAPITULASI

10.1 Perencanaan Atap ... 214

10.2 Perencanaan Tangga ... 219

10.2.1 Penulangan Tangga……….. ... 219

10.3 Perencanaan Plat Lantai dan Plat Atap ... 219

10.4 Perencanaan Balok Anak ... 220

10.5 Perencanaan Portal ... 220

10.6 Perencanaan Pondasi Footplat ... 221

10.7 Rencana Anggaran Biaya ... 222

PENUTUP……….. xix

DAFTAR PUSTAKA ... . xx


(14)

commit to user

Hal

Gambar 3.1 Rencana Atap. ... 20

Gambar 3.2 Beban Mati ... 22

Gambar 3.3 Beban Hidup... 23

Gambar 3.4 Beban Angin... 23

Gambar 3.5 Rangka Batang Setengah Kuda-kuda ... 26

Gambar 3.6 Luasan Atap Setengah Kuda-kuda. ... 27

Gambar 3.7 Luasan Plafon Setengah Kuda-kuda ... 28

Gambar 3.8 Pembebanan Setengah Kuda-kuda Akibat Beban Mati . ... 30

Gambar 3.9 Pembebanan Setengah Kuda-kuda Utama Akibat Beban Angin 35 Gambar 3.10 Rangka Batang Jurai . ... 42

Gambar 3.11 Luasan Atap Jurai . ... 43

Gambar 3.12 Luasan Plafon Jurai. ... 44

Gambar 3.13 Pembebanan Jurai Akibat Beban Mati . ... 46

Gambar 3.14 Pembebanan Jurai Akibat Beban Angin . ... 51

Gambar 3.15 Rangka Batang Kuda-kuda Trapesium . ... 58

Gambar 3.16 Luasan Atap Kuda-kuda Trapesium . ... 59

Gambar 3.17 Luasan Plafon Kuda-kuda Trapesium. ... 61

Gambar 3.18 Pembebanan Kuda-kuda Trapesium Akibat Beban Mati . .... 62

Gambar 3.19 Pembebanan Kuda-kuda Trapesium Akibat Beban Angin . . 68

Gambar 3.20 Rangka Batang Kuda-kuda Utama ... 76

Gambar 3.21 Luasan Atap Kuda-kuda Utama A ... 78

Gambar 3.22 Luasan Plafon Kuda-kuda Utama ... 79

Gambar 3.23 Pembebanan kuda-kuda Utama Akibat Beban Mati ... 81

Gambar 3.24 Pembebanan kuda-kuda Utama Akibat Beban Angin ... 86

Gambar 4.1 Tampak Atas. ... 95

Gambar 4.2 Detail Tangga. ... 96

Gambar 4.3 Tabel Equivalent Tangga. ... 97

Gambar 4.4 Rencana Tumpuan Tangga dan Bordes ... 99


(15)

commit to user

Gambar 5.2 Plat Tipe A ... 112

Gambar 5.3 Plat Tipe B... 113

Gambar 5.4 Plat Tipe C... 113

Gambar 5.5 Plat Tipe D ... 114

Gambar 5.6 Plat Tipe E ... 115

Gambar 5.7 Plat Tipe F ... 115

Gambar 5.8 Plat Tipe G ... 116

Gambar 5.9 Plat Tipe H ... 117

Gambar 5.10 Plat Tipe I ... 117

Gambar 5.11 Plat TipeJ ... 118

Gambar 5.12 Perencanaan Tinggi Efektif ... 120

Gambar 5.13 Denah Plat Atap ... 125

Gambar 5.14 Plat Tipe A Atap... 126

Gambar 5.15 Plat Tipe B Atap ... 127

Gambar 5.16 Perencanaan Tinggi Efektif ... 128

Gambar 6.1 Area Pembebanan Balok Anak ... 133

Gambar 6.2 Lebar Equivalen Balok Anak As (B – B’). ... 134

Gambar 6.3 Area Pembebanan Balok Anak Plat Atap ... 140

Gambar 6.4 Lebar Equivalen Balok Anak As (G – G’). ... 142

Gambar 7.1 Gambar Portal 3 Dimensi ... 146

Gambar 7.2 Gambar Denah Portal ... 147

Gambar 7.3 Gambar Denah Portal ... 148

Gambar 7.4 Gambar Denah Pembebanan ... 150

Gambar 7.5 Gambar Denah Pembebanan ... 151

Gambar 7.6 Sketsa Potongan Ringbalk ... 173

Gambar 7.7 Sketsa Potongan Balok Portal Memanjang ... 177

Gambar 7.8 Sketsa Potongan Balok Portal Melintang ... 182

Gambar 7.9 Sketsa Potongan Sloof Memanjang ... 189


(16)

commit to user

Hal

Tabel 2.1 Koefisien Reduksi Beban hidup... 6

Tabel 2.2 Faktor Pembebanan U untuk Beton ... 8

Tabel 2.3 Faktor Reduksi Kekuatan Æ ... 9

Tabel 3.1 Kombinasi Gaya Dalam Pada Gording ... 24

Tabel 3.2 Perhitungan Panjang Batang Pada Setengah Kuda-kuda ... 26

Tabel 3.3 Rekapitulasi Beban Mati ... 34

Tabel 3.4 Perhitungan Beban Angin ... 36

Tabel 3.5 Rekapitulasi Gaya Batang Setengah Kuda-kuda ... 36

Tabel 3.6 Rekapitulasi Perencanaan Profil Setengah Kuda-Kuda ... 41

Tabel 3.7 Perhitungan Panjang Batang Pada Jurai ... 42

Tabel 3.8 Rekapitulasi Pembebanan Jurai ... 50

Tabel 3.9 Perhitungan Beban Angin ... 52

Tabel 3.10 Rekapitulasi Gaya Batang Jurai ... 52

Tabel 3.11 Rekapitulasi Perencanaan Profil Jurai ... 57

Tabel 3.12 Perhitungan Panjang Batang pada Kuda-kuda Trapesium... 58

Tabel 3.13 Rekapitulasi Pembebanan Kuda-kuda Trapesium ... 67

Tabel 3.14 Perhitungan Beban Angin Kuda-kuda Trapesium ... 69

Tabel 3.15 Rekapitulasi Gaya Batang Kuda-kuda Trapesium ... 69

Tabel 3.16 Rekapitulasi Perencanaan Profil Kuda-kuda Trapesium ... 74

Tabel 3.17 Perhitungan Panjang Batang pada Kuda-kuda Utama A ... 76

Tabel 3.18 Rekapitulasi Beban Mati Kuda-kuda Utama ... 85

Tabel 3.19 Perhitungan Beban Angin Kuda-kuda Utama... 87

Tabel 3.20 Rekapitulasi Gaya Batang Kuda-kuda Utama ... 88

Tabel 3.21 Rekapitulasi Perencanaan Profil Kuda-kuda ... 93

Tabel 5.1 Perhitungan Plat Lantai ... 119

Tabel 5.2 Penulangan Plat Atap ... 132

Tabel 6.1 Perhitungan Lebar Equivalen. ... 134

Tabel 6.2 Hitungan Lebar Equivalen. ... 141


(17)

commit to user

Tabel 7.3 Hitungan Lebar Equivalen. ... 158

Tabel 7.4 Rekapitulasi Pembebaban Balok Portal Melintang... 162

Tabel 7.5 Hitungan Lebar Equivalen. ... 163

Tabel 7.6 Rekapitulasi Pembebaban Sloof Memanjang. ... 165

Tabel 7.7 Rekapitulasi Pembebaban Sloof Melintang. ... 168

Tabel 7.7.1 Perhitungan Tulangan Lentur Kolom. ... 182

Tabel 7.6 Rekapitulasi Pembebaban Sloof Memanjang. ... 165

Tabel 10.1 Rekapitulasi Perencanaan Profil Setengah Kuda - Kuda. ... 215

Tabel 10.2 Rekapitulasi Perencanaan Profil Jurai. ... 216

Tabel 10.3 Rekapitulasi Perencanaan Profil Kuda –Kuda Utama. ... 217

Tabel 10.4 Rekapitulasi Perencanaan Profil Kuda –Kuda Trapesium. ... 218

Tabel 10.4 Rekapitulasi Perencanaan Profil Kuda –Kuda Trapesium. ... 218


(18)

commit to user

DAFTAR NOTASI DAN SIMBOL

A = Luas penampang batang baja (cm2) B = Luas penampang (m2)

AS’ = Luas tulangan tekan (mm2) AS = Luas tulangan tarik (mm2)

B = Lebar penampang balok (mm) C = Baja Profil Canal

D = Diameter tulangan (mm) Def = Tinggi efektif (mm) E = Modulus elastisitas(m) e = Eksentrisitas (m)

F’c = Kuat tekan beton yang disyaratkan (Mpa) Fy = Kuat leleh yang disyaratkan (Mpa) g = Percepatan grafitasi (m/dt)

h = Tinggi total komponen struktur (cm) H = Tebal lapisan tanah (m)

I = Momen Inersia (mm2)

L = Panjang batang kuda-kuda (m) M = Harga momen (kgm)

Mu = Momen berfaktor (kgm) N = Gaya tekan normal (kg) Nu = Beban aksial berfaktor P’ = Gaya batang pada baja (kg) q = Beban merata (kg/m)

q’ = Tekanan pada pondasi ( kg/m) S = Spasi dari tulangan (mm) Vu = Gaya geser berfaktor (kg) W = Beban Angin (kg)

Z = Lendutan yang terjadi pada baja (cm)


(19)

commit to user

r = Ratio tulangan tarik (As/bd)

s = Tegangan yang terjadi (kg/cm3)


(20)

commit to user

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Pesatnya perkembangan dunia teknik sipil menuntut bangsa Indonesia untuk dapat menghadapi segala kemajuan dan tantangan. Hal itu dapat terpenuhi apabila sumber daya yang dimiliki oleh bangsa Indonesia memiliki kualitas pendidikan yang tinggi, Karena pendidikan merupakan sarana utama bagi kita untuk semakin siap menghadapi perkembangan ini.

Dalam hal ini bangsa Indonesia telah menyediakan berbagai sarana guna memenuhi sumber daya manusia yang berkualitas. Sehingga Program D III Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret sebagai salah satu lembaga pendidikan dalam merealisasikan hal tersebut memberikan Tugas Akhir sebuah perencanaan gedung bertingkat dengan maksud agar dapat menghasilkan tenaga yang bersumber daya dan mampu bersaing dalam dunia kerja.

1.2. Maksud dan Tujuan

Dalam menghadapi pesatnya perkembangan jaman yang semakin modern dan berteknologi, serta semakin derasnya arus globalisasi saat ini, sangat diperlukan seorang teknisi yang berkualitas. Khususnya dalam ini adalah teknik sipil, sangat diperlukan teknisi-teknisi yang menguasai ilmu dan keterampilan dalam bidangnya. Program D III Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta sebagai lembaga pendidikan bertujuan untuk menghasilkan ahli teknik yang berkualitas, bertanggungjawab, kreatif dalam menghadapi masa depan serta dapat mensukseskan pembangunan nasional di Indonesia.


(21)

commit to user

Program D III Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta memberikan Tugas Akhir dengan maksud dan tujuan :

1. Mahasiswa dapat merencanakan suatu konstruksi bangunan yang sederhana sampai bangunan bertingkat.

2. Mahasiswa diharapkan dapat memperoleh pengetahuan, pengertian dan pengalaman dalam merencanakan struktur gedung.

3. Mahasiswa diharapkan dapat memecahkan suatu masalah yang dihadapi dalam perencanaan suatu struktur gedung.

1.3. Kriteria Perencanaan

1. Spesifikasi Bangunan

a. Fungsi Bangunan : Perpustakaan Kota b. Luas Bangunan : 1131 m2

c. Jumlah Lantai : 2 lantai d. Tinggi Lantai : 4,0 m

e. Konstruksi Atap : Rangka kuda-kuda baja f. Penutup Atap : Genteng

g. Pondasi : Foot Plat

2. Spesifikasi Bahan

a. Mutu Baja Profil : BJ 37 (

σ

leleh = 2400 kg/cm2 ) (

σ ijin

= 1600 kg/cm2 ) b. Mutu Beton (f’c) : 30 MPa

c. Mutu Baja Tulangan (fy) : Polos : 240 MPa. Ulir : 420 Mpa.


(22)

commit to user

1.4. Peraturan-Peraturan Yang Berlaku

a. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung SNI

03-2847-2002.

b. Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung SNI

03-1729-2002

c. Peraturan Pembebanan Indonesia Untuk Gedung ( PPIUG 1983). d. Peraturan Perencanaan Bangunan Baja Indonesia (PPBBI 1984).


(23)

commit to user

BAB 2

DASAR TEORI

2.1

Dasar Perencanaan

2.1.1 Jenis Pembebanan

Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun beban khusus yang bekerja pada struktur bangunan tersebut.

Beban-beban yang bekerja pada struktur dihitung menurut Peraturan

Pembebanan Indonesia Untuk Gedung 1983, beban - beban tersebut adalah :

1. Beban Mati (qd)

Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian–penyelesaian, mesin – mesin serta peralatan tetap yang merupakan bagian tak terpisahkan dari gedung itu.Untuk merencanakan gedung ini, beban mati yang terdiri dari berat sendiri bahan bangunan dan komponen gedung adalah :

a) Bahan Bangunan :

1. Beton bertulang ... 2400 kg/m3 2. Pasir basah ... ... 1800 kg/m3 3. Pasir kering ... 1600 kg/m3 4. Beton biasa ... 2200 kg/m3 b) Komponen Gedung :

1. Dinding pasangan batu merah setengah bata ... 250 kg/m3 2. Langit – langit dan dinding (termasuk rusuk – rusuknya, tanpa penggantung

langit-langit atau pengaku),terdiri dari :

- semen asbes (eternit) dengan tebal maximum 4 mm ... 11 kg/m2 - kaca dengan tebal 3 – 4 mm ... 10 kg/m2


(24)

commit to user

3. Penutup atap genteng dengan reng dan usuk ... . 50 kg/m2 4. Penutup lantai dari tegel, keramik dan beton (tanpa adukan)

per cm tebal ... 24 kg/m2 5. Adukan semen per cm tebal ... 21 kg/m2

2. Beban Hidup (ql)

Beban hidup adalah semua beban yang terjadi akibat penghuni atau penggunaan suatu gedung, termasuk beban – beban pada lantai yang berasal dari barang – barang yang dapat berpindah, mesin – mesin serta peralatan yang merupakan bagian yang tidak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan pembebanan lantai dan atap tersebut. Khususnya pada atap, beban hidup dapat termasuk beban yang berasal dari air hujan (PPIUG 1983).

Beban hidup yang bekerja pada bangunan ini disesuaikan dengan rencana fungsi bangunan tersebut. Beban hidup untuk bangunan gedung perpustakaan ini terdiri dari :

Beban atap ... 100 kg/m2 Beban tangga dan bordes ... 300 kg/m2 Beban lantai untuk perpustakaan ... 400 kg/m2

Berhubung peluang untuk terjadi beban hidup penuh yang membebani semua bagian dan semua unsur struktur pemikul secara serempak selama unsur gedung tersebut adalah sangat kecil, maka pada perencanaan balok induk dan portal dari sistem pemikul beban dari suatu struktur gedung, beban hidupnya dikalikan dengan suatu koefisien reduksi yang nilainya tergantung pada penggunaan gedung yang ditinjau, seperti diperlihatkan pada tabel 2.1.


(25)

commit to user

Tabel 2.1 Koefisien reduksi beban hidup

Penggunaan Gedung Koefisien Beban Hidup untuk Perencanaan Balok Induk · PERUMAHAN:

Rumah sakit / Poliklinik · PENDIDIKAN:

Sekolah, Ruang kuliah · PENYIMPANAN :

Gudang, Perpustakaan · TANGGA :

Perdagangan, penyimpanan

0,75 0,90 0,80 0,90

Sumber : PPIUG 1983

3. Beban Angin (W)

Beban Angin adalah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih dalam tekanan udara (kg/m2).

Beban Angin ditentukan dengan menganggap adanya tekanan positif dan tekanan negatif (hisapan), yang bekerja tegak lurus pada bidang yang ditinjau. Besarnya tekanan positif dan negatif yang dinyatakan dalam kg/m2 ini ditentukan dengan mengalikan tekanan tiup dengan koefisien – koefisien angin. Tekan tiup harus diambil minimum 25 kg/m2, kecuali untuk daerah di laut dan di tepi laut sampai sejauh 5 km dari tepi pantai. Pada daerah tersebut tekanan hisap diambil minimum 40 kg/m2. Untuk daerah didekat laut dan didaerah lain dimana terdapat kecepatan angin lebih besar dari pada daerah tertentu,maka tekanan tiup (P) dapat dihitung dengan menggunakan rumus :

P = 16

2 V

( kg/m2 )

Di mana V adalah kecepatan angin dalam m/det, yang harus ditentukan oleh instansi yang berwenang.

Sedangkan koefisien angin ( + berarti tekanan dan – berarti isapan ), untuk gedung tertutup :

1. Dinding Vertikal


(26)

commit to user

b) Di belakang angin ... - 0,4 2. Atap segitiga dengan sudut kemiringan a

a) Di pihak angin : a < 65° ... 0,02 a - 0,4 65° < a < 90° ... + 0,9 b) Di belakang angin, untuk semua a ... - 0,4

2.1.2. Sistem Bekerjanya Beban

Bekerjanya beban untuk bangunan bertingkat berlaku sistem gravitasi, yaitu elemen struktur yang berada di atas akan membebani elemen struktur di bawahnya, atau dengan kata lain elemen struktur yang mempunyai kekuatan lebih besar akan menahan atau memikul elemen struktur yang mempunyai kekuatan lebih kecil.

Dengan demikian sistem bekerjanya beban untuk elemen – elemen struktur gedung bertingkat secara umum dapat dinyatakan sebagai berikut : beban pelat lantai didistribusikan terhadap balok anak dan balok portal, beban balok portal didistribusikan ke kolom dan beban kolom kemudian diteruskan ke tanah dasar melalui pondasi.

2.1.3. Provisi Keamanan

Dalam pedoman beton PPIUG 1983, struktur harus direncanakan untuk memiliki cadangan kekuatan untuk memikul beban yang lebih tinggi dari beban normal. Kapasitas cadangan ini mencakup faktor pembebanan (U), yaitu untuk memperhitungkan pelampauan beban dan faktor reduksi (Æ), yaitu untuk memperhitungkan kurangnya mutu bahan di lapangan. Pelampauan beban dapat terjadi akibat perubahan dari penggunaan untuk apa struktur direncanakan dan penafsiran yang kurang tepat dalam memperhitungkan pembebanan. Sedang kekurangan kekuatan dapat diakibatkan oleh variasi yang merugikan dari kekuatan bahan, pengerjaan, dimensi, pengendalian dan tingkat pengawasan.


(27)

commit to user

Tabel 2.2 Faktor Pembebanan U

No. KOMBINASI BEBAN FAKTOR U

1. D 1,4 D

2. D, L, A,R 1,2 D + 1,6 L + 0,5 (A atau R)

3. D,L,W, A, R 1,2 D + 1,0 L ± 1,6 W + 0,5 (A atau R)

4. D, W 0,9 D ± 1,6 W

5. D,L,E 1,2 D + 1,0 L ± 1,0 E

6. D,E 0,9 D ± 1,0 E

7. D,F 1,4 ( D + F )

8. D,T,L,A,R 1,2 ( D+ T ) + 1,6 L + 0,5 ( A atau R )

Sumber : SNI 03-2847-2002

Keterangan : D = Beban mati L = Beban hidup W = Beban angin A = Beban atap R = Beban air hujan E = Beban gempa

T = Pengaruh kombinasi suhu, rangkak, susut dan perbedaan penurunan

F = Beban akibat berat dan tekanan fluida yang diketahui dengan baik berat jenis dan tinggi maksimumnya yang terkontrol.


(28)

commit to user

Tabel 2.3 Faktor Reduksi Kekuatan Æ

No Kondisi gaya Faktor reduksi (Æ)

1. 2.

3. 4.

Lentur, tanpa beban aksial

Beban aksial, dan beban aksial dengan lentur :

a. Aksial tarik dan aksial tarik dengan lentur

b. Aksial tekan dan aksial tekan dengan lentur :

· Komponen struktur dengan tulangan spiral

· Komponen struktur lainnya Geser dan torsi

Tumpuan beton

0,80

0,8

0,7

0,65 0,75 0,65

Sumber : SNI 03-2847-2002

Karena kandungan agregat kasar untuk beton struktural seringkali berisi agregat kasar berukuran diameter lebih dari 2 cm, maka diperlukan adanya jarak tulangan minimum agar campuran beton basah dapat melewati tulangan baja tanpa terjadi pemisahan material sehingga timbul rongga-rongga pada beton. Sedang untuk melindungi dari karat dan kehilangan kekuatannya dalam kasus kebakaran, maka diperlukan adanya tebal selimut beton minimum.

Beberapa persyaratan utama pada SNI 03-2847-2002 adalah sebagai berikut : a. Jarak bersih antara tulangan sejajar yang selapis tidak boleh kurang dari db

atau 25 mm, dimana db adalah diameter tulangan.

b. Jika tulangan sejajar tersebut diletakkan dalam dua lapis atau lebih, tulangan pada lapisan atas harus diletakkan tepat diatas tulangan di bawahnya dengan jarak bersih tidak boleh kurang dari 25 mm.


(29)

commit to user

Tebal selimut beton minimum untuk beton yang dicor setempat adalah:

a) Untuk pelat dan dinding = 20 mm

b) Untuk balok dan kolom = 40 mm

c) Beton yang berhubungan langsung dengan tanah atau cuaca = 50 mm

2.2.

Perencanaan Atap

2.2.1. Perencanaan Kuda-Kuda

1. Pembebanan

Pada perencanaan atap ini, beban yang bekerja adalah : a. Beban mati

b. Beban hidup c. Beban angin 2. Asumsi Perletakan

a. Tumpuan sebelah kiri adalah Sendi. b. Tumpuan sebelah kanan adalah Rol..

3. Analisa struktur menggunakan program SAP 2000.

4. Perencanaan tampang menggunakan peraturan SNI 03-1729-2002. 5. Perhitungan profil kuda-kuda

1) Batang tarik Ag perlu =

F y Pmak

An perlu = 0,85.Ag An = Ag-dt

L = Panjang sambungan dalam arah gaya tarik Yp

Y x=

-L x U =1 -Ae = U.An


(30)

commit to user

Cek kekuatan nominal :

Kondisi leleh

Fy Ag Pn=0,9. . f

Kondisi fraktur

Fu Ag Pn=0,75. . f

P Pn>

f ……. ( aman )

2) Batang tekan

Periksa kelangsingan penampang :

Fy t

b w

300 =

E Fy r

l K c

p

l = .

Apabila = λc≤ 0,25 ω = 1

0,25 < λc < 1 ω

0,67λ -1,6

1,43 c

=

λc ≥ 1,2 ω =1,25.lc2

w

f fy

Ag Fcr Ag

Pn= . . =

1

<

n u

P P


(31)

commit to user

2.3.

Perencanaan Tangga

1. Pembebanan :

Ø Beban mati

Ø Beban hidup : 300 kg/m2 2. Asumsi Perletakan

Ø Tumpuan bawah adalah Jepit.

Ø Tumpuan tengah adalah Sendi.

Ø Tumpuan atas adalah Jepit.

3. Analisa struktur menggunakan program SAP 2000.

4. Perencanaan tampang menggunakan peraturan SNI 03-2847-2002. Perhitungan untuk penulangan tangga :

Mn =

F

Mu

Dimana Φ = 0.8 M c f fy ' . 85 . 0 = Rn 2 .d b Mn =

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 . 0 b

- Keterangan :

- β= 0,85, untuk beton dg fc’ ≤ 30 Mpa

- βdireduksi sebesar 0,05 untuk setiap kelebihan 7 Mpa di atas 30 Mpa, untuk beton dg fc’ > 30 Mpa


(32)

commit to user

rmax = 0.75 . rb

rmin < r < rmaks tulangan tunggal

r < rmin dipakai rmin = 0.0025

As = rada . b . d

dimana,

m =

Rn =

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 . 0 b

rmax = 0.75 . rb

rmin < r < rmaks tulangan tunggal

r < rmin dipakai rmin = 0.0025

As = rada . b .

Luas tampang tulangan As =

2.4.

Perencanaan Plat Lantai

1. Pembebanan :

Ø Beban mati

Ø Beban hidup : 400 kg/m2 f u n M M = 80 , 0 = f c y xf f ' 85 , 0 2 bxd Mn xbxd r


(33)

commit to user

2. Asumsi Perletakan : jepit penuh

3. Analisa struktur menggunakan tabel 13.3.2 PPIUG 1983. 4. Perencanaan tampang menggunakan peraturan PBI 1971.

Penulangan lentur dihitung analisa tulangan tunggal dengan langkah-langkah sebagai berikut :

Mn =

F

Mu

Dimana Φ = 0.8 M c f fy ' . 85 . 0 = Rn 2 .d b Mn =

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 . 0 b

rmax = 0.75 . rb

rmin < r < rmaks tulangan tunggal

r < rmin dipakai rmin = 0.0025

As = rada . b .

Luas tampang tulangan As =

2.5.

Perencanaan Balok

1. Pembebanan :

Ø Beban mati

Ø Beban hidup : 400 kg/m2 2. Asumsi Perletakan : sendi sendi

3. Analisa struktur menggunakan program SAP 2000. xbxd


(34)

commit to user

4. Perencanaan tampang menggunakan peraturan SNI 03-2847-2002. a. Perhitungan tulangan lentur :

dimana,

m =

Rn =

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 . 0 b

rmax = 0.75 . rb r min =

fy 4 , 1

rmin < r < rmaks tulangan tunggal r < rmin dipakai rmin =

fy 4 , 1

r > rmax tulangan rangkap b. Perhitungan tulangan geser :

Æ = 0,75

Vc = x f'cxbxd 6

1

fVc=0,75 x Vc Vu < ½fVc

( tidak perlu tulangan geser ) ½fVc < Vu <fVc

( perlu tulangan geser minimum ) f u n M M = 80 , 0 = f c y xf f ' 85 , 0 2 bxd Mn


(35)

commit to user

fVc < Vu ≤ 3fVc ( perlu tulangan geser ) 3fVc < Vu ≤ 5fVc ( perlu tulangan geser ) Vu > 5fVc

( penampang diperbesar ) Vs perlu = Vu –fVc ( pilih tulangan terpasang ) Vs ada =

s d fy Av. . ) (

( pakai Vs perlu )

2.6.

.

Perencanaan Portal

1. Pembebanan :

Ø Beban mati

Ø Beban hidup : 400 kg/m2 2. Asumsi Perletakan

Ø Jepit pada kaki portal.

Ø Bebas pada titik yang lain

3. Analisa struktur menggunakan program SAP 2000.

4. Perencanaan tampang menggunakan peraturan SNI 03-2847-2002.

a. Perhitungan tulangan lentur :

dimana,

m =

Rn =

f

u n

M

M =

80 , 0

=

f

c y xf f

' 85 , 0

2 bxd


(36)

commit to user

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 . 0 b

rmax = 0.75 . rb

r min =

fy 1,4

rmin < r < rmaks tulangan tunggal

r < rmin dipakai rmin =

fy 4 , 1 = 360 4 , 1 = 0,0038

b. Perhitungan tulangan geser : Æ = 0,75

Vc = x f'cxbxd 6

1

fVc=0,75 x Vc Vu < ½fVc

( tidak perlu tulangan geser ) ½fVc < Vu <fVc

( perlu tulangan geser minimum ) fVc < Vu ≤ 3fVc

( perlu tulangan geser ) 3fVc < Vu ≤ 5fVc ( perlu tulangan geser ) Vu > 5fVc

( penampang diperbesar ) Vs perlu = Vu –fVc ( pilih tulangan terpasang ) Vs ada =

s d fy Av. . ) (


(37)

commit to user

2.7.

.

Perencanaan Pondasi

1. Pembebanan : Beban aksial dan momen dari analisa struktur portal akibat beban mati dan beban hidup.

2. Analisa tampang menggunakan peraturan SNI 03-2847-2002. Perhitungan kapasitas dukung pondasi :

s yang terjadi =

2 .b.L 6 1 Mtot A Vtot +

= σtanahterjadi< s ijin tanah…...( dianggap aman )

a. Perhitungan tulangan lentur : Mu = ½ . qu . t2

m =

fc fy . 85 , 0

Rn =

d b Mn

.

r = ÷÷

ø ö ç ç è æ -fy 2.m.Rn 1 1 m 1

rb = ÷÷

ø ö çç è æ + fy fy fc 600 600 . . . 85 , 0 b

rmax = 0,75 . rb

rmin < r < rmaks tulangan tunggal r < rmin dipakai rmin = 0,0036 As = rada . b . d

Luas tampang tulangan As = r . b .d

b. Perhitungan tulangan geser : Æ = 0,75


(38)

commit to user

Vc = 16x f'cxbxd fVc=0,75 x Vc Vu < ½fVc

( tidak perlu tulangan geser ) ½fVc < Vu <fVc

( perlu tulangan geser minimum ) fVc < Vu ≤ 3fVc

( perlu tulangan geser ) 3fVc < Vu ≤ 5fVc ( perlu tulangan geser ) Vu > 5fVc

( penampang diperbesar ) Vs perlu = Vu –fVc ( pilih tulangan terpasang ) Vs ada =

s d fy Av. . ) (


(39)

commit to user

BAB 3

PERENCANAAN ATAP

3.1. Rencana Atap

Gambar 3.1. Rencana Atap

Keterangan :

KU = Kuda-kuda utama G = Gording

KT = Kuda-kuda trapesium N = Nok SK = Setengah kuda-kuda utama L = Lisplank

TS = Track Stank J = Jurai

350

400

400

300 200

2000

350

KT

3100

375 375 400 400 400 400 375 375

J

SK N

KU KU

G

TS

L N SK

G

TS TS

TS

TS TS TS TS

G G

G

G G

KU KU KU

KT

KT KT


(40)

commit to user

3.1.1. Dasar Perencanaan

Secara umum data yang digunakan untuk perhitungan rencana atap adalah sebagai berikut :

a. Bentuk rangka kuda-kuda : seperti tergambar. b. Jarak antar kuda-kuda : 4 m

c. Kemiringan atap (a) : 30°

d. Bahan gording : baja profil lip channels ( ).

e. Bahan rangka kuda-kuda : baja profil double siku sama kaki (ûë). f. Bahan penutup atap : genteng.

g. Alat sambung : baut-mur.

h. Jarak antar gording : 2,165 m

i. Bentuk atap : limasan.

j. Mutu baja profil : Bj-37 ( σ leleh = 2400 kg/cm2 ) (sultimate = 3700 kg/cm2)

3.2. Perencanaan Gording

3.2.1. Perencanaan Pembebanan

Dicoba menggunakan gording dengan dimensi baja profil tipe lip channels/ kanal kait ( ) 150 x 75 x 20 x 4,5 pada perencanaan kuda- kuda dengan data sebagai berikut :

a. Berat gording = 11 kg/m. b. Ix = 489 cm4. c. Iy = 99,2 cm4. d. h = 150 mm e. b = 75 mm

f. ts = 4,5 mm g. tb = 4,5 mm h. Zx = 65,2 cm3. i. Zy = 19,8 cm3.


(41)

commit to user

Kemiringan atap (a) = 30°. Jarak antar gording (s) = 2,165 m. Jarak antar kuda-kuda utama = 4 m. Jarak antara KU dengan KT = 3,75 m.

Pembebanan berdasarkan SNI 03-1727-1989, sebagai berikut : a. Berat penutup atap = 50 kg/m2.

b. Beban angin = 25 kg/m2. c. Berat hidup (pekerja) = 100 kg. d. Berat penggantung dan plafond = 18 kg/m2

3.2.2. Perhitungan Pembebanan

a. Beban Mati (titik)

Berat gording = 11 kg/m

Berat penutup atap = ( 2,165 x 50 ) = 108,25 kg/m q = 119,25 kg/m

qx = q sin a = 119,25 x sin 30° = 59,63 kg/m. qy = q cos a = 119,25 x cos 30° = 130,27 kg/m.

Mx1 = 1/8 . qy . L2 = 1/8 x 130,27 x (4,00)2 = 206,54 kgm. My1 = 1/8 . qx . L2 = 1/8 x 73,13 x (4,00)2 = 119,26 kgm.

y

a

q qy qx

x


(42)

commit to user

b. Beban hidup

P diambil sebesar 100 kg.

Px = P sin a = 100 x sin 30° = 50 kg. Py = P cos a = 100 x cos 30° = 86,603 kg.

Mx2 = 1/4 . Py . L = 1/4 x 86,603 x 4,00 = 86,603 kgm. My2 = 1/4 . Px . L = 1/4 x 50 x 4,00 = 50 kgm.

c. Beban angin

TEKAN HISAP

Beban angin kondisi normal, minimum = 25 kg/m2. Koefisien kemiringan atap (a) = 30°.

1) Koefisien angin tekan = (0,02a – 0,4) = 0,2 2) Koefisien angin hisap = – 0,4

Beban angin :

1) Angin tekan (W1) = koef. Angin tekan x beban angin x 1/2 x (s1+s2) = 0,2 x 25 x ½ x (2,165+2,165) = 10,825 kg/m. 2) Angin hisap (W2) = koef. Angin hisap x beban angin x 1/2 x (s1+s2)

= – 0,4 x 25 x ½ x (2,165+2,165) = -21,65 kg/m. Beban yang bekerja pada sumbu x, maka hanya ada harga Mx :

1) Mx (tekan) = 1/8 . W1 . L2 = 1/8 x 10,825x (4,00)2 = 21,65 kgm. 2) Mx (hisap) = 1/8 . W2 . L2 = 1/8 x -21,65 x (4,00)2 = -43,3 kgm.

y

a

P Py Px


(43)

commit to user

Tabel 3.1. Kombinasi Gaya Dalam pada Gording

Momen Beban Mati

Beban Hidup

Beban Angin Kombinasi

Tekan Hisap Maksimum Minimum Mx My 206,54 119,26 86,603 50 21,65 - -43,3 - 403,733 223,112 351,773 223,112

3.2.3. Kontrol Terhadap Tegangan

Ø Kontrol terhadap momen Maximum

Mx = 403,773 kgm = 40377,3 kgcm. My = 223,112 kgm = 22311,2 kgcm. Asumsikan penampang kompak :

Mnx = Zx.fy = 65,2. 2400 = 156480 kgcm Mny = Zy.fy = 19,8. 2400 = 47520 kgcm Check tahanan momen lentur yang terjadi :

1 .

. nx + ny £

b M My M Mx f f 1 756 , 0 47520 2 , 22311 0,9.156480 40377,3 £ = + ……..ok

Ø Kontrol terhadap momen Minimum

Mx = 351,773 kgm = 35177,3 kgcm. My = 223,112 kgm = 22311,2 kgcm. Asumsikan penampang kompak :

Mnx = Zx.fy = 65,2. 2400 = 156480 kgcm Mny = Zy.fy = 19,8. 2400 = 47520 kgcm

Check tahanan momen lentur yang terjadi : 1

. . nx + ny £

b M My M Mx f f 1 719 , 0 47520 2 , 22311 0,9.156480 35177,3 £ = + ……..ok


(44)

commit to user

3.2.4. Kontrol Terhadap Lendutan

Di coba profil : 150 x 75 x 20 x 4,5

E = 2,1 x 106 kg/cm2 qy = 1,2665 kg/cm

Ix = 489 cm4 Px = 50 kg

Iy = 99,2 cm4 Py = 86,603 kg qx = 0,7313 kg/cm

Zx =

Iy E L Px Iy E L qx . . 48 . . . 384 . .

5 4 3

+ = 2 , 99 . 10 . 2 . 48 400 . 50 2 , 99 . 10 . 2 . 384 ) 400 ( 7313 , 0 . 5 6 3 6 4

+ = 1,56 cm

Zy =

Ix E L Py Ix E l qy . . 48 . . . 384 . .

5 4 3

+ = 489 . 10 . 2 . 48 ) 400 .( 603 , 86 489 . 10 2 . 384 ) 400 .( 2665 , 1 . 5 6 3 6 4 +

´ = 0,55 cm

Z = Zx2 +Zy2

= (1,56)2+(0,55)2 = 1,65 cm Z £ Zijin

1,65 cm £ 2,22 cm ……… aman !

Jadi, baja profil lip channels ( ) dengan dimensi 150 × 70 × 20 × 4,5 aman dan mampu menerima beban apabila digunakan untuk gording.

= 2,22 ´ = 400 180 1 ijin Z


(45)

commit to user

1 2 3 4

15 13

12 11 10 9

5

6

7

8

14 3.3. Perencanaan Jurai

Gambar 3.2. Rangka Batang Jurai

`

3.3.1. Perhitungan Panjang Batang Jurai

Perhitungan panjang batang selanjutnya disajikan dalam tabel dibawah ini :

Tabel 3.2. Panjang Batang pada Jurai

Nomer Batang Panjang Batang (m)

1 2,652

2 2,652

3 2,652

4 2,652

5 2,864

6 2,864

7 2,864

8 2,864

9 1,083

10 2,864


(46)

commit to user

12 3,423

13 3,226

14 4,193

15 4,330

3.3.2. Perhitungan luasan jurai

Gambar 3.3. Luasan Atap Jurai

Panjang j1 = ½ . 2,165 = 1,082 m

Panjang j1 = 1-2 = 2-3 = 3-4 = 4-5 = 5-6 = 6-7 = 7-8 = 8-9 = 1,082 m Panjang aa’ = 2,375 m Panjang a’s = 4,250 m

Panjang cc’ = 1,406 m Panjang c’q = 3,281 m Panjang ee’ = 0,468 m Panjang e’o = 2,334 m Panjang gg’ = g’m = 1,397 m

Panjang ii’ = i’k = 0,468 m

· Luas aa’sqc’c = (½ (aa’ + cc’) 7-9) + (½ (a’s + c’q) 7-9)

= (½( 2,375+1,406 ) 2 . 1,082)+(½(4,250 + 3,281) 2 . 1,082) = 12,239 m2

a b c d e f g h i j f' i' h' g' e' d' c' b' a' k l m n o p q r s 1 2 3 4 5 6 7 8 9 a b c d e f g h i j f' i' h' g' e' d' c' b' a' k l m n o p q r s 1 2 3 4 5 6 7 8 9


(47)

commit to user

· Luas cc’qoe’e = (½ (cc’ + ee’) 5-7 ) + (½ (c’q + e’o) 5-7)

= ( ½ (1,406+0,468) 2 . 1,082)+(½ (3,281+2,334) 2 . 1,082) = 8,101 m2

· Luas ee’omg’gff’ = (½ 4-5 . ee’) + (½ (e’o + g’m) 3-5) + (½ (ff’ + gg’) 3-5)

=(½×1,082×0,468)+(½(2,334+1,397)1,082)+(½(1,875+1,379)1,0 82)

= 4,042 m2

· Luas gg’mki’i = (½ (gg’ + ii’) 1-3) × 2

= (½ (1,397 + 0,468) 2 . 1,082) × 2 = 2,018 m2

· Luas jii’k = (½ × ii’ × j1) × 2

= (½ × 0,468 × 1,082) × 2 = 0,506 m2

Gambar 3.4. Luasan Plafon Jurai

Panjang j1 = ½ . 1,875 = 0,9 m

Panjang j1 = 1-2 = 2-3 = 3-4 = 4-5 = 5-6 = 6-7 = 7-8 = 8-9 = 0,9 m Panjang bb’ = 1,875 m Panjang b’r = 3,741 m

Panjang cc’ = 1,406 m Panjang c’q = 3,272 m Panjang ee’ = 0,468 m Panjang e’o = 2,343 m Panjang gg’ = g’m = 1,406 m

a b c d e f g h i j f' i' h' g' e' d' c' b' a' k l mn o p q r s 1 2 3 4 5 6 7 8 9 a b c d e f g h i j f' i' h' g' e' d' c' b' a' k l m n o p q r s 1 2 3 4 5 6 7 8 9


(48)

commit to user

Panjang ii’ = i’k = 0,468 m

· Luas bb’rqc’c = (½ (bb’ + cc’) 7-8) + (½ (b’r + c’q) 7-8)

= (½ (1,875 + 1,406) 0,9) + (½ (3,741 + 3,272) 0,9) = 4,632 m2

· Luas cc’qoe’e = (½ (cc’ + ee’) 5-7) + (½ (c’q + e’o) 5-7)

= (½ (1,406+0,468) 2 .0,9) + (½ (3,272 +2,343)2 .0,9) = 6,740 m2

· Luas ee’omg’gff’ = (½ 4-5 . ee’) + (½ (e’o + g’m) 3-5) + (½ (ff’ + gg’) 3-5)

=(½×0,9×0,468)+(½(2,343+1,406)0,9) +(½(1,875+1,406)0,9)

= 3,374 m2

· Luas gg’mki’i = (½ (gg’ + ii’) 1-3) × 2

= (½ (1,406+0,468) 2 . 0,9 ) × 2 = 3,373 m2

· Luas jii’k = (½ × ii’ × j1) × 2

= (½ × 0,468 × 0,9) × 2 = 0,421 m2

3.3.3. Perhitungan Pembebanan Jurai

Data-data pembebanan :

Berat gording = 11 kg/m Berat penutup atap = 50 kg/m2 Berat plafon dan penggantung = 18 kg/m2 Berat profil kuda-kuda = 25 kg/m


(49)

commit to user

1 2 3 4

15 13

12 11 10 9

5

6

7

8

14 P1

P2

P3

P4

P5

P9 P8 P7 P6

Gambar 3.5. Pembebanan jurai akibat beban mati

a. Beban Mati

1) Beban P1

a) Beban Gording = berat profil gording × panjang gording bb’r = 11 × (1,875+3,741) = 64,776 kg

b) Beban Atap = luasan aa’sqc’c × berat atap = 12,239 × 50 = 611,95 kg c) Beban Plafon = luasan bb’rqc’c’ × berat plafon

= 4,632 × 18 = 83,376 kg

d) Beban Kuda-kuda = ½ × btg (1 + 5) × berat profil kuda-kuda = ½ × (2,652 + 2,864) × 25

= 68,95 kg

e) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 68,95 = 20,685 kg f) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 68,95 = 6,895 kg 2) Beban P2

a) Beban Gording = berat profil gording × panjang gording dd’p = 11 × (0,937+2,812) = 28,983 kg


(50)

commit to user

b) Beban Atap = luasan cc’qoe’e × berat atap = 8,101× 50 = 405,05 kg

c) Beban Kuda-kuda = ½ × btg (5 + 9 + 10 + 6) × berat profil kuda-kuda = ½ × (2,864 + 1,083 + 2,864 + 2,864 ) × 25 = 120,937 kg

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 120,937 = 36,281 kg e) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 120,937 = 12,094 kg

3) Beban P3

a) Beban Gording = berat profil gording × panjang gording ff’n = 11 × (1,875+1,875) = 41,25 kg

b) Beban Atap = luasan ee’omg’gff’ × berat atap = 4,042 × 50 = 202,1 kg

c) Beban Kuda-kuda = ½ × btg (6 + 11 + 12 + 7) × berat profil kuda-kuda = ½ × (2,864 + 2,165 + 3,423 + 2,864) × 25

= 146,963 kg

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 146,963 = 47,089 kg e) Beban Bracing = 10 % × beban kuda-kuda

= 10 % × 146,963 = 15,696 kg

4) Beban P4

a) Beban Gording = berat profil gording × panjang gording hh’l = 11 × (0,937+0,937) = 20,614 kg

b) Beban Atap = luasan gg’mki’i × berat atap = 2,018 × 50 = 100,9 kg

c) Beban Kuda-kuda = ½ × btg (7 + 13 + 15 + 8) × berat profil kuda-kuda = ½ × (2,864 + 3,226 + 4,193 + 2,864) × 25


(51)

commit to user

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 164,338 = 49,301 kg e) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 164,338 = 16,434 kg

5) Beban P5

a) Beban Atap = luasan jii’k × berat atap = 0,506 × 50 = 25,3 kg

b) Beban Kuda-kuda = ½ × btg (8+15) × berat profil kuda-kuda = ½ × (2,864 + 4,33) × 25

= 89,925 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 89,925 = 26,977 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 89,925 = 8,992 kg

6) Beban P6

a) Beban Plafon = luasan jii’k × berat plafon = 0,421 × 18 = 7,578 kg

b) Beban Kuda-kuda = ½ × btg (15 + 14 + 4) × berat profil kuda-kuda = ½ × (4,33 + 4,193 + 2,652) × 25

= 139,687 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 139,687 = 41,906 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 139,687 = 13,969 kg

7) Beban P7

a) Beban Plafon = luasan gg’mki’i × berat plafon = 3,373 × 18 = 60,714 kg


(52)

commit to user

b) Beban Kuda-kuda = ½ × btg (4 + 12 + 13 + 3) × berat profil kuda-kuda = ½ × (2,652 + 3,226 + 3,423 + 2,652) × 25

= 149,412 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 149,412 = 44,824 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 149,412 = 14,941 kg

8) Beban P8

a) Beban Plafon = luasan ee’omg’gff’ × berat plafon = 3,374 × 18 = 60,732 kg

b) Beban Kuda-kuda = ½ × btg (3 + 11 + 4 + 10) × berat profil kuda-kuda = ½ × (2,652+2,652 + 3,423 + 2,864) × 25

= 144,887 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 144,887= 43,466 kg d) Beban Bracing = 10 % × beban kuda-kuda

= 10 % × 144,887 = 14,487 kg

9) Beban P9

a) Beban Plafon = luasan cc’qoe’e × berat plafon = 6,74 × 18 = 121,32 kg

b) Beban Kuda-kuda = ½ × btg (2 + 9 + 1) × berat profil kuda-kuda = ½ × (2,652 + 1,083 + 2,652) × 25

= 79,837 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 79,837 = 23,951 kg d) Beban Bracing = 10% × beban kuda-kuda


(53)

commit to user

Tabel 3.3. Rekapitulasi Pembebanan Jurai

Beban

Beban Atap

(kg)

Beban gording

(kg)

Beban

Kuda-kuda (kg)

Beban Bracing

(kg)

Beban Plat Penyambung

(kg)

Beban Plafon (kg)

Jumlah Beban

(kg)

Input SAP 2000 ( kg ) P1 611,95 64,776 68,950 6,895 20,685 83,376 856,632 857 P2 405,05 28,983 120,937 12,094 36,281 - 603,345 604

P3 202,1 41,25 146,963 15,696 47,089 - 453,098 454

P4 100,9 20,614 164,338 16,434 49,301 - 351,587 352

P5 25,3 - 89,925 8,992 26,977 - 151,194 152

P6 - - 139,687 13,969 41,906 7,578 203,14 204

P7 - - 149,412 14,941 44,824 60,714 269,891 270

P8 - - 144,887 14,487 43,466 60,732 263,572 264

P9 - - 79,837 7,984 23,951 121,32 233,092 234

b. Beban Hidup


(54)

commit to user

c. Beban Angin

Perhitungan beban angin :

Gambar 3.6. Pembebanan Jurai akibat Beban Angin

Beban angin kondisi normal, minimum = 25 kg/m2. § Koefisien angin tekan = 0,02a - 0,40

= (0,02 × 30) – 0,40 = 0,2 a) W1 = luasan × koef. angin tekan × beban angin = 12,239 × 0,2 × 25 = 61,195 kg

b) W2 = luasan × koef. angin tekan × beban angin = 8,101 × 0,2 × 25 = 40,505 kg

c) W3 = luasan × koef. angin tekan × beban angin = 4,042 × 0,2 × 25 = 20,21 kg

d) W4 = luasan × koef. angin tekan × beban angin = 2,018 × 0,2 × 25 = 10,09 kg

e) W5 = luasan × koef. angin tekan × beban angin = 0,506 × 0,2 × 25 = 2,53 kg

8

1 2 3 4

15 13

12 11 10 9 5

6

7

14

W1

W2

W3

W4


(55)

commit to user

Tabel 3.4. Perhitungan Beban Angin Jurai

Beban

Angin Beban (kg)

Wx W.Cos a (kg)

(Untuk Input SAP2000)

Wy W.Sin a (kg)

(Untuk Input SAP2000)

W1 61,195 56,740 57 22,924 23

W2 40,505 37,555 38 15,173 16

W3 20,21 18,738 19 7,570 8

W4 10,09 9,355 10 3,780 4

W5 2,53 2,346 3 0,948 1

Dari perhitungan mekanika dengan menggunakan program SAP 2000 diperoleh gaya batang yang bekerja pada batang setengah kuda-kuda sebagai berikut :

Tabel 3.5. Rekapitulasi Gaya Batang Jurai Batang kombinasi

Tarik (+) (kg) Tekan (-) (kg)

1 880,17

2 885,01

3 285,02

4 285,02

5 1011,55

6 1100,38

7 473,93

8 949,39

9 357,51

10 2103,87

11 1578,15

12 757,54

13 28,90

14 749,34


(56)

commit to user

3.3.4. Perencanaan Profil Jurai

a. Perhitungan profil batang tarik

Pmaks. = 1100,38 kg

Fy = 2400 kg/cm2 (240 MPa) Fu = 3700 kg/cm2 (370 MPa) Ag perlu =

Fy Pmak

= 2400

38 , 1100

= 0,46 cm2 Dicoba, menggunakan baja profil ûë 50.50.5

Dari tabel baja didapat data-data = Ag = 4,80 cm2

x = 1,51 cm An = 2.Ag-dt

= 9600-14.5 = 9530 mm2 L =Sambungan dengan Diameter

= 3.12,7 =38,1 mm 1

, 15

=

x mm

L x U =1

= 1- 1 , 38 15,1

= 0,604 Ae = U.An

= 0,604. 9530 = 5756,12 mm2 Check kekuatan nominal

Fu Ae Pn=0,75. . f

= 0,75. 5756,12 .370 = 1597323,3 N


(57)

commit to user

b. Perhitungan profil batang tekan

Pmaks. = 2103,37 kg

lk = 2,864 m = 286,4 cm Ag perlu =

Fy Pmak = 2400 37 , 2103

= 0,75 cm2

Dicoba, menggunakan baja profil ûë 50.50.5 (Ag = 4,80 cm2) Periksa kelangsingan penampang :

Fy t

b 200

< =

240 200 5

50 <

= 10 < 12,9

r L K.

=

l =

51 , 1 4 , 286 . 1 = 189,66 E Fy c p l l = = 200000 240 14 , 3 189,66

= 2,09 …… λc ≥ 1,2 ω =1,25.lc2

ω 2

c 1,25.l

= = 1,25. (2,092) = 5,46

w Fy

Fcr = =

5,46 2400

= 439,56 Fcr

Ag Pn=2. .

= 2.4,80.439,56 = 4219,776 776 , 4219 . 85 , 0 2103,37 = Pn P f


(58)

commit to user

3.3.5. Perhitungan Alat Sambung

a. Batang Tekan

Digunakan alat sambung baut-mur. Diameter baut (Æ) = 12,7 mm ( ½ inches) Diameter lubang = 14 mm.

Tebal pelat sambung (d) = 0,625 . db

= 0,625 . 12,7 = 7,94 mm. Menggunakan tebal plat 8 mm

Ø Tahanan geser baut

Pn = m.(0,4.fub).An

= 2.(0,4.825) .¼ . p . 12,72 = 8356,43 kg/baut Ø Tahanan tarik penyambung

Pn = 0,75.fub.An

=7833,9 kg/baut Ø Tahanan Tumpu baut :

Pn = 0,75 (2,4.fu.db.t) = 0,75 (2,4.370.12,7.9) = 7612,38 kg/baut

P yang menentukan adalah Ptumpu = 7612,38 kg. Perhitungan jumlah baut-mur,

276 , 0 7612,38 2103,37 P

P n

tumpu

maks. = =

= ~ 2 buah baut

Digunakan : 2 buah baut Perhitungan jarak antar baut : a) 3d £ S1 £ 3t atau 200 mm Diambil, S1 = 3 db = 3. 12,7

= 38,1 mm = 40 mm


(59)

commit to user

Diambil, S2 = 1,5 db = 1,5 . 12,7 = 19,05 mm

= 20 mm

b. Batang tarik

Digunakan alat sambung baut-mur.

Diameter baut (Æ) = 12,7 mm ( ½ inches ) Diameter lubang = 14,7 mm.

Tebal pelat sambung (d) = 0,625 . db

= 0,625 x 12,7 = 7,94 mm. Menggunakan tebal plat 8 mm

Ø Tahanan geser baut

Pn = n.(0,4.fub).An

= 2.(0,4.825) .¼ . p . 12,72 = 8356,43 kg/baut Ø Tahanan tarik penyambung

Pn = 0,75.fub.An

=7833,9 kg/baut Ø Tahanan Tumpu baut :

Pn = 0,75 (2,4.fu. db t) = 0,75 (2,4.370.12,7.9) = 7612,38 kg/baut

P yang menentukan adalah Ptumpu = 7612,38 kg. Perhitungan jumlah baut-mur,

0,145 7612,38

1100,38 P

P n

geser

maks. = =

= ~ 2 buah baut

Digunakan : 2 buah baut Perhitungan jarak antar baut : a) 3d £ S1 £ 3t atau 200 mm Diambil, S1 = 3 db = 3. 12,7

= 38,1 mm = 40 mm


(60)

commit to user

Diambil, S2 = 1,5 db = 1,5 . 12,7 = 19,05 mm

= 20 mm

Tabel 3.6. Rekapitulasi Perencanaan Profil Jurai Nomer

Batang Dimensi Profil Baut (mm)

1 ûë50 . 50 .5 2 Æ 12,7

2 ûë50 . 50 .5 2 Æ 12,7

3 ûë50 . 50 .5 2 Æ 12,7

4 ûë50 . 50 .5 2 Æ 12,7

5 ûë50 . 50 .5 2 Æ 12,7

6 ûë50 . 50 .5 2 Æ 12,7

7 ûë50 . 50 .5 2 Æ 12,7

8 ûë50 . 50 .5 2 Æ 12,7

9 ûë50 . 50 .5 2 Æ 12,7

10 ûë50 . 50 .5 2 Æ 12,7

11 ûë50 . 50 .5 2 Æ 12,7

12 ûë50 . 50 .5 2 Æ 12,7

13 ûë50 . 50 .5 2 Æ 12,7

14 ûë50 . 50 .5 2 Æ 12,7


(61)

commit to user

3.4. Perencanaan Setengah Kuda-kuda

Gambar 3.7. Rangka Batang Setengah Kuda-kuda

3.4.1. Perhitungan Panjang Batang Setengah Kuda-kuda

Perhitungan panjang batang selanjutnya disajikan dalam tabel dibawah ini :

Tabel 3.7. Perhitungan Panjang Batang pada Setengah Kuda-kuda

Nomer Batang Panjang Batang

1 1,875

2 1,875

3 1,875

4 1,875

5 2,165

6 2,165

7 2,165

8 2,165

9 1,083

10 2,165

11 2,165

1 2 3 4

5

6

7

8

15

9 10

13

14

12 11


(62)

commit to user

12 2,864

13 3,248

14 3,750

15 4,330

3.4.2. Perhitungan luasan Setengah Kuda-kuda

Gambar 3.8. Luasan Atap Setengah Kuda-kuda

Panjang ak = 7,5 m Panjang bj = 6,6 m Panjang ci = 4,7 m Panjang dh = 2,8 m Panjang eg = 0,9 m

Panjang atap ab = jk = 2,166 m

Panjang b’c’ = c’d’ = d’e’ = 1,875 m Panjang e’f = ½ × 1,875 = 0,937 m Panjang atap a’b’ = 1,938 m

Panjang atap bc = cd = de = gh = hi = ij = 2,096 m

· Luas atap abjk = ½ x (ak + bj) x a’b’ = ½ x (7,5 x 6,6) x 0,937 = 6,345 m2

a b c

j k

a' b' d e f

i h g

c' d' e'

a b c

j k

a' b'

d e f

i h g

c' d' e'


(63)

commit to user

· Luas atap bcij = ½ x (bj + ci) x b’c’ = ½ x (6,6 + 4,7) x 1,875 = 10,594 m2

· Luas atap cdhi = ½ x (ci + dh) x c’d’ = ½ x (4,7 + 2,8) x 1,875 = 7,031 m2

· Luas atap degh = ½ x (dh + eg) x d’e’

= ½ x (2,8 + 0,9) x 1,875 = 3,469 m2

· Luas atap efg = ½ x eg x e’f

= ½ x 0,9 x 0,937 = 0,422 m2

Gambar 3.9. Luasan Plafonpp

Panjang ak = 7,5 m Panjang atap a’b’ = 1,938 m

Panjang atap b’c’ = c’d’ = d’e’ = 1,875 m Panjang atap e’f’ = 0,937 m

Panjang bj = 6,6 m Panjang ci = 4,7 m Panjang dh = 2,8 m Panjang eg = 0,9 m

a b c

j k

a' b'

d e f

i h g

c' d' e'

a b c

j k a' b' d e f

i h g

c' d' e'


(64)

commit to user

Panjang atap ab = jk = 2,166 m

Panjang atap bc = cd = de = gh = hi = ij = 2,096 m · Luas atap abjk = ½ x (ak + bj) x a’b’

= ½ x (7,5 x 6,6) x 0,937 = 6,345 m2

· Luas atap bcij = ½ x (bj + ci) x b’c’ = ½ x (6,6 + 4,7) x 1,875 = 10,594 m2

· Luas atap cdhi = ½ x (ci + dh) x c’d’ = ½ x (4,7 + 2,8) x 1,875 = 7,031 m2

· Luas atap degh = ½ x (dh + eg) x d’e’

= ½ x (2,8 + 0,9) x 1,875 = 3,469 m2

· Luas atap efg = ½ x eg x e’f

= ½ x 0,9 x 0,937 = 0,422 m2

3.4.3. Perhitungan Pembebanan Setengah Kuda-kuda

Data-data pembebanan :

Berat gording = 11 kg/m Berat penutup atap = 50 kg/m2 Berat profil kuda - kuda = 25 kg/m


(65)

commit to user

a. Beban Mati

Gambar 3.10. Pembebanan Setengah Kuda-kuda akibat Beban Mati

1) Beban P1

a) Beban Gording = berat profil gording × panjang gording = 11 × 7,5 = 82,5 kg

b) Beban Atap = luasan abjk × berat atap = 14,632× 50 = 731,6 kg c) Beban Plafon = luasan abjk × berat plafon

= 6,345× 18 = 114,21 kg

d) Beban Kuda-kuda = ½ × btg (1 + 5) × berat profil kuda-kuda = ½ × (1,875 + 2,165) × 25

= 50,5 kg

e) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 50,5 = 15,15 kg f) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 50,5 = 5,05 kg

2) Beban P2

1 2 3 4

5

6

7

8

15

9 10

13 14

12 11

P 1

P 2

P 3

P 4

P 5


(66)

commit to user

a) Beban Gording = berat profil gording × panjang gording = 11 x 5,625 = 61,875 kg

b) Beban Atap = luasan bcij × berat atap = 10,594 × 50 = 529,7 kg

c) Beban Kuda-kuda = ½ × btg (5 + 9 + 10 + 6) × berat profil kuda-kuda = ½ × (2,165+1,083+2,165+2,165) × 25

= 94,725 kg

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 94,725 = 28,418 kg e) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 94,725 = 9,472 kg

3) Beban P3

a) Beban Gording = berat profil gording × panjang gording = 11 x 3,75 = 41,25 kg

b) Beban Atap = luasan cdhi × berat atap = 7,031 × 50 = 351,55 kg

c) Beban Kuda-kuda = ½ × btg (6 + 11 + 13 + 7) × berat profil kuda-kuda = ½ × (2,165 + 2,165 + 2,864 + 2,165) × 25

= 116,988 kg

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 116,988 = 35,096 kg e) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 116,988 = 11,699 kg

4) Beban P4

a) Beban Gording = berat profil gording × panjang gording = 11 × 1,875 = 20,625 kg

b) Beban Atap = luasan degh × berat atap = 3,469 × 50 = 173,45 kg


(67)

commit to user

= ½ × (2,165+3,248+3,750+2,165) × 25 = 141,6 kg

d) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 141,6 = 42,48 kg e) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 141,6 = 14,16 kg

5) Beban P5

a) Beban Atap = luasan efg × berat atap = 0,422 × 50 = 21,1 kg

b) Beban Kuda-kuda = ½ × btg (8 + 15) × berat profil kuda-kuda = ½ × (2,165 + 4,33) × 25

= 81,187 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 81,187 = 24,356 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 81,187 = 8,119 kg

6) Beban P6

a) Beban Plafon = luasan efg × berat plafon = 0,422 × 18 = 7,596 kg

b) Beban Kuda-kuda = ½ × btg (15 + 14 + 4) × berat profil kuda-kuda = ½ × (4,33 + 3,75 + 1,875) × 25

= 124,437 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 124,437 = 37,331 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 124,437 = 12,444 kg

7) Beban P7


(68)

commit to user

= 3,469 × 18 = 62,442 kg

b) Beban Kuda-kuda = ½ × btg (4 + 12 + 13 + 3) × berat profil kuda-kuda = ½ × (1,875 +3,248 + 2,864 + 1,875) × 25

= 123,275 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 123,275 = 36,982 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 123,275 = 12,328 kg

8) Beban P8

a) Beban Plafon = luasan cdhi × berat plafon = 7,031 × 18 = 126,558 kg

b) Beban Kuda-kuda = ½ × btg (2 + 3 + 10 + 11) × berat profil kuda-kuda = ½ × (2,165 + 2,165 + 1,875 + 1,875) × 25

= 101,000 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 101,000 = 30,300 kg d) Beban Bracing = 10% × beban kuda-kuda

= 10 % × 101,000 = 10,100 kg

9) Beban P9

a) Beban Plafon = luasan bcij × berat plafon = 10,594 × 18 = 190,692 kg

b) Beban Kuda-kuda = ½ × btg (2 + 9 + 1) × berat profil kuda-kuda = ½ × (1,875 + 1,083 + 1,875) × 25

= 60,412 kg

c) Beban Plat Sambung = 30 % × beban kuda-kuda = 30 % × 60,412 = 18,124 kg

d) Beban Bracing = 10% × beban kuda-kuda = 10 % × 60,412 = 6,041 kg


(69)

commit to user

Tabel 3.8. Rekapitulasi Pembebanan Setengah Kuda-kuda

Beban

Beban Atap

(kg)

Beban gording

(kg)

Beban

Kuda-kuda (kg)

Beban Bracing

(kg)

Beban Plat Penyambung

(kg)

Beban Plafon (kg)

Jumlah Beban

(kg)

Input SAP 2000 ( kg )

P1 731,6 82,5 50,5 5,05 15,15 114,21 975,21 976

P2 529,7 61,875 94,725 9,472 28,418 - 724,19 725

P3 351,55 41,25 116,988 11,699 35,096 - 556,583 557

P4 173,45 20,625 141,6 14,16 42,48 - 392,315 393

P5 21,1 - 81,187 8,119 24,356 - 134,762 135

P6 - - 124,437 12,444 37,331 7,596 181,808 182

P7 - - 123,275 12,327 36,982 62,442 235,026 236

P8 - - 101,00 10,10 30,30 126,558 267,958 268

P9 - - 60,412 6,041 18,124 190,692 275,269 276

a. Beban Hidup


(70)

commit to user

b. Beban Angin

Perhitungan beban angin :

Gambar 3.11. Pembebanan Setengah Kuda-kuda akibat Beban Angin

Beban angin kondisi normal, minimum = 25 kg/m2. § Koefisien angin tekan = 0,02a - 0,40

= (0,02 ´ 30) – 0,40 = 0,2 a) W1 = luasan × koef. angin tekan × beban angin = 14,632 × 0,2 × 25 = 73,16 kg

b) W2 = luasan × koef. angin tekan × beban angin = 10,594 × 0,2 × 25 = 52,97 kg

c) W3 = luasan × koef. angin tekan × beban angin = 7,031 × 0,2 × 25 = 35,155 kg

d) W4 = luasan × koef. angin tekan × beban angin = 3,469 × 0,2 × 25 = 17,345 kg

e) W5 = luasan × koef. angin tekan × beban angin

= 0,422 × 0,2 × 25 = 2,11 kg

1 2 3 4

5

6

7

8

15

9 10

13 14

12 11

W1

W2

W3

W4


(71)

commit to user

Tabel 3.9. Perhitungan Beban Angin Setengah Kuda-kuda

Beban Angin

Beban (kg)

Wx W.Cos a

(kg)

Untuk Input SAP2000

Wy W.Sin a

(kg)

Untuk Input SAP2000

W1 73,16 63,358 64 36,58 37

W2 52,97 45,873 46 26,485 27

W3 35,155 30,445 31 17,577 18

W4 17,345 15,021 16 8,672 9

W5 2,110 1,827 2 1,055 1,1

Dari perhitungan mekanika dengan menggunakan program SAP 2000 diperoleh gaya batang yang bekerja pada batang kuda-kuda utama sebagai berikut :

Tabel 3.10. Rekapitulasi Gaya Batang Setengah Kuda-kuda

Batang Kombinasi

Tarik (+) ( kg ) Tekan (-) ( kg )

1 3677,68 -

2 3664,28 -

3 2375,54 -

4 1133,99 -

5 - 2135,88

6 - 678,49

7 763,23 -

8 2051,14 -

9 366,12 -

10 - 1484,20

11 - 1197,30

12 - 1903,24

13 1842,63 -

14 - 2283,13


(72)

commit to user

3.4.4. Perencanaan Profil Setengah Kuda- kuda

a. Perhitungan profil batang tarik

Pmaks. = 3677,68 kg

Fy = 2400 kg/cm2 (240 MPa) Fu = 3700 kg/cm2 (370 MPa) Ag perlu =

Fy Pmak

=

2400 68 , 3677

= 1,53 cm2 Dicoba, menggunakan baja profil ûë 50.50.5

Dari tabel baja didapat data-data = Ag = 4,80 cm2

x = 1,51 cm An = 2.Ag-dt

= 9600 -14.5 = 9530 mm2 L =Sambungan dengan Diameter

= 3.12,7 =38,1 mm

L x U =1

= 1- 1 , 38 15,1

= 0,604 Ae = U.An

= 0,604. 9530 = 5756,12 mm2

Check kekuatan nominal Fu

Ae Pn=0,75. . f

= 0,75. 5756,12.370 = 1597323,3 N


(73)

commit to user

b. Perhitungan profil batang tekan

Pmaks. = 2283,13 kg

lk = 2,165 m = 216,5 cm Ag perlu =

Fy Pmak

=

2400 2283,13

= 0,95 cm2

Dicoba, menggunakan baja profil ûë 50.50.5 (Ag = 4,80 cm2) Periksa kelangsingan penampang :

Fy t

b 200

< =

240 200 5

50 <

= 10 < 12,9

r L K.

=

l =

51 , 1 4 , 286 . 1 = 189,66 E Fy c p l l = = 200000 240 14 , 3 189,66

= 2,09 …… λc ≥ 1,2 ω =1,25.lc2

ω 2

c 1,25.l

= = 1,25. (2,092) = 5,46

w Fy

Fcr = =

5,46 2400

= 439,56 Fcr

Ag Pn=2. .

= 2.4,80.439,56 = 4219,77

4219,77 . 85 , 0 68 , 1521 = Pn P f


(74)

commit to user

3.4.5. Perhitungan Alat Sambung

a. Batang Tekan

Digunakan alat sambung baut-mur. Diameter baut (Æ) = 12,7 mm ( ½ inches) Diameter lubang = 14 mm.

Tebal pelat sambung (d) = 0,625 . db

= 0,625 . 12,7 = 7,94 mm. Menggunakan tebal plat 8 mm

Ø Tahanan geser baut

Pn = m.(0,4.fub).An

= 2.(0,4.825) .¼ . p . 12,72 = 8356,43 kg/baut Ø Tahanan tarik penyambung

Pn = 0,75.fub.An

=7833,9 kg/baut Ø Tahanan Tumpu baut :

Pn = 0,75 (2,4.fu.db.t) = 0,75 (2,4.370.12,7.9) = 7612,38 kg/baut

P yang menentukan adalah Ptumpu = 7612,38 kg. Perhitungan jumlah baut-mur,

299 , 0 7612,38

2283,13 P

P n

tumpu

maks. = =

= ~ 2 buah baut

Digunakan : 2 buah baut

Perhitungan jarak antar baut : a) 1,5d £ S1 £ 3d

Diambil, S1 = 2,5 db = 2,5. 12,7 = 3,175 mm


(75)

commit to user

b) 2,5 d £ S2 £ 7d

Diambil, S2 = 5 db = 1,5 . 12,7 = 6,35 mm = 60 mm

b. Batang tarik

Digunakan alat sambung baut-mur.

Diameter baut (Æ) = 12,7 mm ( ½ inches ) Diameter lubang = 14,7 mm.

Tebal pelat sambung (d) = 0,625 . db

= 0,625 x 12,7 = 7,94 mm. Menggunakan tebal plat 8 mm

Ø Tahanan geser baut

Pn = n.(0,4.fub).An

= 2.(0,4.825) .¼ . p . 12,72 = 8356,43 kg/baut Ø Tahanan tarik penyambung

Pn = 0,75.fub.An

=7833,9 kg/baut Ø Tahanan Tumpu baut :

Pn = 0,75 (2,4.fu. db t) = 0,75 (2,4.370.12,7.9) = 7612,38 kg/baut

P yang menentukan adalah Ptumpu = 7612,38 kg. Perhitungan jumlah baut-mur,

0,49 7612,38

3677,68 P

P n

geser

maks. = =

= ~ 2 buah baut

Digunakan : 2 buah baut Perhitungan jarak antar baut : a) 3d £ S1 £ 3t atau 200 mm Diambil, S1 = 3 db = 3. 12,7

= 38,1 mm = 40 mm


(76)

commit to user

b) 1,5 d £ S2 £ (4t +100) atau 200 mm Diambil, S2 = 1,5 db = 1,5 . 12,7

= 19,05 mm = 20 mm

Tabel 3.11. Rekapitulasi Perencanaan Profil Setengah Kuda-kuda

Nomer

Batang Dimensi Profil Baut (mm)

1 ûë 50. 50. 5 2 Æ 12,7

2 ûë 50. 50. 5 2 Æ 12,7

3 ûë 50. 50. 5 2 Æ 12,7

4 ûë 50. 50. 5 2 Æ 12,7

5 ûë 50. 50. 5 2 Æ 12,7

6 ûë 50. 50. 5 2 Æ 12,7

7 ûë 50. 50. 5 2 Æ 12,7

8 ûë 50. 50. 5 2 Æ 12,7

9 ûë 50. 50. 5 2 Æ 12,7

10 ûë 50. 50. 5 2 Æ 12,7

11 ûë 50. 50. 5 2 Æ 12,7

12 ûë 50. 50. 5 2 Æ 12,7

13 ûë 50. 50. 5 2 Æ 12,7

14 ûë 50. 50. 5 2 Æ 12,7


(77)

commit to user

9

10

11 12 13 14

15

16

1 2 3 4 5 6 7 8

29 28

27 26 25 24 23 22 21 20 19 18 17

3.5. Perencanaan Kuda-kuda Trapesium

Gambar 3.12. Rangka Batang Kuda-kuda Trapesium

3.5.1. Perhitungan Panjang Batang Kuda-kuda Trapesium

Perhitungan panjang batang selanjutnya disajikan dalam tabel dibawah ini :

Tabel 3.12. Perhitungan Panjang Batang pada Kuda-kuda Trapesium

Nomer Batang Panjang Batang (m)

1 1,875

2 1,875

3 1,875

4 1,875

5 1,875

6 1,875

7 1,875

8 1,875

9 2,165

10 2,165

11 1,875

12 1,875

13 1,875

14 1,875


(78)

commit to user

3.5.2. Perhitungan luasan kuda-kuda trapesium

Gambar 3.13. Luasan Atap Kuda-kuda Trapesium

16 2,165

17 1,083

18 2,165

19 2,165

20 2,864

21 2,165

22 2,864

23 2,165

24 2,864

25 2,165

26 2,864

27 2,165

28 2,165

29 1,083

a

d b c

ef g

h

a

d

b

c

e

f

g


(79)

commit to user

Panjang ah = 4,25 m Panjang bg = 3,281 m Panjang cf = 2,343 m Panjang de = 1,875 m Panjang ab = 1,937 m Panjang bc = 1,875 m Panjang cd = 0,937 m

· Luas abgh = ÷

ø ö ç è æ + 2 bg ah × ab = ÷ ø ö ç è æ + 2 281 , 3 245 , 4 × 1,937 = 7,288 m2

· Luas bcfg = ÷

ø ö ç è æ + 2 cf bg × bc = ÷ ø ö ç è æ + 2 343 , 2 281 , 3 × 1,875 = 5,272 m2

· Luas cdef = ÷

ø ö ç è æ + 2 de cf × cd = ÷ ø ö ç è æ + 2 875 , 1 343 , 2 × 0,937 = 1,976 m2


(1)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

220

Tugas akhir

Perencanaan Struktur Gedung Restoran 2 Lantai

Bab 10 Rekapitulasi

Rekapitulasi penulangan plat Atap

Tulangan lapangan arah x D 8 – 200 mm Tulangan lapangan arah y D 8 – 200 mm Tulangan tumpuan arah x D 8 – 200 mm

10.4. Perencanaan Balok Anak

Penulangan balok anak Plat Lantai a. Tulangan balok anak as B’

Tumpuan = 2 D 16 mm Lapangan = 2 D 16 mm Geser = Ø 8 – 150 mm

Penulangan balok anak Plat Lantai b. Tulangan balok anak as G’

Lapangan = 3 D 12 mm Geser = Ø 8 – 150 mm

10.5. Perencanaan Portal

a. Dimensi ring balk : 200 mm x 250 mm Lapangan = 2 D 12 mm

Tumpuan = 2 D 12 mm

b. Dimensi balok portal : 300 mm x 500 mm ♦ Balok portal memanjang :

Lapangan = 3 D 19 mm Tumpuan = 3 D 19 mm Geser = Æ 10 – 200 mm

♦ Balok portal melintang : Lapangan = 3 D 19 mm Tumpuan = 3 D 19 mm Geser = Æ 10– 200 mm


(2)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

221

Tugas akhir

Perencanaan Struktur Gedung Restoran 2 Lantai

Bab 10 Rekapitulasi

c. Dimensi kolom : 400 x 400 mm Tulangan = 5 D 16 mm

Geser = Æ 8 – 200 mm

d. Dimensi sloof : 200 mm x 300 mm ♦ Sloof memanjang :

Lapangan = 2 D 16 mm Tumpuan = 3 D 16 mm Geser = Æ 8 – 100 mm

♦ Sloof melintang : Lapangan = 2 D 16 mm

Tumpuan = 2 D 16 mm Geser = Æ 8 – 100 mm

10.6. Perencanaan Pondasi Footplat Pondasi F1

- Kedalaman = 2,0 m

- Ukuran alas = 1800 x 31800 mm - g tanah = 1,75 t/m3 = 1750 kg/m3 - s tanah = 3kg/cm2 = 30000 kg/m3

- Tebal = 30 cm

- Penulangan pondasi

Tul. Lentur = D 19 –120 mm

Pondasi F2

- Kedalaman = 2,0 m

- Ukuran alas = 1200 x 1200 mm - g tanah = 1,75 t/m3 = 1750 kg/m3 - s tanah = 3kg/cm2 = 30000 kg/m3

- Tebal = 30 cm

- Penulangan pondasi


(3)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

222

Tugas akhir

Perencanaan Struktur Gedung Restoran 2 Lantai

Bab 10 Rekapitulasi

10.7. Rencana Anggaran Biaya

REKAPITULASI RENCANA ANGGARAN BIAYA

KEGIATAN : PEMBANGUNAN GEDUNG PERPUSTAKAAN 2 LANTAI LOKASI : SOLO

TAHUN ANGGARAN : 2011

NO. JENIS PEKERJAAN JUMLAH HARGA (Rp.)

I PEKERJAAN PERSIAPAN 5O.834.329,68 II PEKERJAAN TANAH 22,079,609.11 III PEKERJAAN PONDASI 20,795,806.24 IV PEKERJAAN DINDING 52,787,305.39 V PEKERJAAN PLESTERAN 63,307,141.31 VI PEKERJAAN KAYU 285,053,123.78 VII PEKERJAAN BETON 1,525,265,313.19 VIII PEKERJAAN PENUTUP ATAP 66,136,860.56

IX PEKERJAAN LANGIT-LANGIT 30,439,661.40 X PEKERJAAN SANITASI 72,552,101.42

XI PEKERJAAN BESI DAN

ALLMUNIUM 37,707,413.12 XII PEKERJAAN KUNCI DAN KACA 14,576,593.27

XIII PEKERJAAN PENUTUP LANTAI

DAN DINDING 78,516,965.01 XIV PEKERJAAN PENGECATAN 31,793,308.64

XV PEKERJAAN INSTALASI

LISTRIK 18,895,000.00

XVI PEKERJAAN PEMBERSIHAN 3,270,500.00 JUMLAH Rp 2,374,011,032.10

Ppn 10% Rp 237,401,103.21 Jumlah Total Rp 2,872,553,348.85 Dibulatkan Rp 2,872,600,000.00


(4)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

Tugas Akhir

Perencanaan Struktur Gedung Restoran 2 Lantai

`

BAB 11 Kesimpulan

223

BAB 11

KESIMPULAN

Dari hasil perencanaan dan perhitungan struktur bangunan yang telah dilakukan maka dapat diambil beberapa kesimpulan sebagai berikut :

1. Perencanaan struktur bangunan di Indonesia mengacu pada peraturan dan pedoman perencanaan yang berlaku di Indonesia.

2. Dalam merencanakan struktur bangunan, kualitas dari bahan yang digunakan sangat mempengaruhi kualitas struktur yang dihasilkan.

3. Perhitungan pembebanan digunakan batasan – batasan dengan analisa statis equivalent.

4. Adapun Peraturan-peraturan yang digunakan sebagai acuan dalam penyelesaian analisis, diantaranya :

a. Standar Nasional Indonesia Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03-2847-2002), Direktorat Penyelidik Masalah Bangunan, Direktorat Jendral Cipta Karya Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.

b. Standar Nasional Indonesia Tata Cara Perhitungan Struktur Baja Untuk Bangunan Gedung (SNI 03-1729-2002), Direktorat Penyelidik Masalah Bangunan, Direktorat Jendral Cipta Karya Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.

c. Peraturan Pembebanan Indonesia untuk Gedung(PPIUG), 1989, Cetakan ke-2, Departemen Pekerjaan Umum dan Tenaga Listrik, Direktorat Jendral Cipta Karya Yayasan Lembaga Penyelidik Masalah Bangunan, Bandung.

d. Tata Cara Perencanaan Struktur Baja Untuk Pembangunan Gedung, Departemen Pekerjaan Umum, Bandung.

e. Peraturan Perencanaan Bangunan Baja Indonesia (PPBBI), 1984, Cetakan ke -2, Yayasan Lembaga Penyelidikan masalah bangunan.


(5)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

Tugas Akhir

Perencanaan Struktur Perpustakaan 2 Lantai

BAB 11 Kesimpulan

224

f. Peraturan Beton Bertulang Indonesia (PBBI), 1971, N.1-2 Cetakan ke-7, Direktorat Penyelidik Masalah Bangunan, Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.


(6)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

xx

DAFTAR PUSTAKA

Anonim, 2002, Standar Nasional Indonesia Tata Cara Perhitungan Struktur

Beton Untuk Bangunan Gedung (SNI 03-2847-2002), Direktorat

Penyelidik Masalah Bangunan, Direktorat Jendral Cipta Karya Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.

Anonim, 1971, Peraturan Beton Bertulang Indonesia, 1971, N.1-2 Cetakan ke-7, Direktorat Penyelidik Masalah Bangunan, Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum dan Tenaga Listrik, Bandung.

Anonim, 1983, Peraturan Pembebanan Indonesia untuk bangunan Gedung

(PPIUG), 1983, Cetakan ke-2, Departemen Pekerjaan Umum dan Tenaga Listrik, Direktorat Jendral Cipta Karya Yayasan Lembaga Penyelidik Masalah Bangunan, Bandung.

Anonim, 2002, Tata Cara Perencanaan Struktur Baja Untuk Pembangunan

Gedung, Departemen Pekerjaan Umum, Bandung.