STRUKTUR and ORGANEL SEL HEWAN and TUMBU

STRUKTUR & ORGANEL SEL HEWAN & TUMBUHAN

Sel adalah unit struktural dan fungsional terkecil dari makhluk hidup. Dari kupu-kupu hingga
kanguru, dari pohon kelapa hingga cemara semua tersusun atas sel. Makhluk hidup ada yang
tersusun dari satu sel saja, disebut organisme uniseluler, dan ada makhluk hidup yang tersusun
lebih dari satu sel, disebut organisme multiseluler.Sel meskipun memiliki ukuran sangat kecil, sel
tergolong luar biasa. Kenapa? Sel bagai sebuah pabrik yang senantiasa bekerja agar kehidupan
terus berlangsung. Ada bagian sel yang berfungsi menghasilkan energi, ada yang bertanggung
jawab terhadap perbanyakan sel, dan ada bagian yang menyeleksi lalu lintas zat masuk dan
keluar sel.
Dengan mempelajari komponen sel, kita akan dapat memahami fungsi sel bagi kehidupan.
Sel pertama kali ditemukan oleh Robert Hooke (yang hidup pada 1635-1703). Hooke (pada
tahun 1665) mengamati sel gabus dengan menggunakan mikroskop sederhana. Ternyata sel
gabus tersebut tampak seperti ruangan-ruangan kecil. Maka, dipilihlah kata dari bahasa Latin
yaitu cellula yang berarti kamar kecil untuk menamai objek yang ditemukannya itu.
SEJARAH PENEMUAN SEL
Sel adalah unit terkecil dalam organisme hidup, baik dalam dunia tumbuh-tumbuhan maupun
hewan. Sel terdiri atas protoplasma, yaitu, isi sel yang terbungkus oleh suatu membran atau
selaput sel.
Evolusi sains seringkali berada sejajar dengan penemuan peralatan yang memperluas indera
manusia untuk bisa memasuki batas-batas baru. Penemuan dan kajian awal tentang sel

memperoleh kemajuan sejalandengan penemuan dan penyempurnaan mikroskop pada abad ke
tujuh belas. Sehingga mikroskop sejak awal tidak dapat dipisahkan dengan sejarah penemuan sel,
yang dijelaskan sebagai berikut:

• Galileo Galilei (Awal Abad 17) dengan alat dua lensa menggambarkan struktur tipis dari mata
serangga. Gallei sebenarnya bukan seorang biologiwan pertama yang mencatat hasil pengamatan
biologi melalui mikroskop.
• Robert Hook (1635-1703) melihat gambaran satu sayatan tipis gabus suatu kompertemen atau
ruang-ruang disebut dengan nama Latin cellulae (ruangan kecil), asal mula nama sel.
• Anton van Leeuwenhoek (24 Oktober 1632 – 26 Agustus 1723), menggunakan lensa-lensa untk
melihat beragam spermatozoa, bakteri dan protista.
• Robert Brown (1733-1858) pada tahun 1`820 merancang lensa yang dapat lebih fokus untuk
mengamati sel. Titik buram yang selalu ada pada sel telur, sel polen, sel dari jaringan anggrek
yang sedang tumbuh. Titik buram disebut sebagai nukleus.
• Matias Jacob Schleiden pada tahun 1838 berpendapat bahwa ada hubungan yang erat antara
nukleus dan perkembangan sel.
• Teodor Schwan (1810-18830): Sel adalah bagian dari organisme
TEORI SEL
Sel ialah satu unit kehidupan. Semua benda hidup baik hewan atau tumbuhan disusun oleh sel.
Sel-sel ini berkumpul dan bergabung dengan adanya bahan antara sel diantaranya untuk

membentuk jaringan seperti otot, tulang rawan dan saraf.
Dalam keadaan tertentu beberapa jaringan bergabung dan membina organ seperti kelenjar,
pembuluh darah, kulit dal lain-lain.
Di alam ini kita dapat membagi sel ke dalam dua kelompok, yaitu sel prokariotik dan sel
eukariotik. Istilah prokariotik, dibangun dari kata pro dan karyon. Pro, artinya sebelum dan
kryon, artinya inti. Jadi sel prokariotiiik artiya ”sebelum inti”.
Ini mengandung pengertian bahwa sel prokariotik bukannya tanpa inti, melainkan memiliki
materi genetik yang tersebar di dalam sitplasmanya. Eukariot dibangun dari kata Eu da Karyon.
Eu, berarti sungguh dan karyon berarti inti. Jadi sel eukariotik adalah sel-sel yang telah memiliki
inti sel, atau sel yang memiliki materi inti yang terorganisasi dalam suatu selaput, sehingga inti
selnya tampak jelas (Sumardi dan Marianti, 2007).
Telah diketahui bahwa semua organisme hidup di bumi sekarang berasal dari sel tunggal yang
lahir 3.500 berjuta-juta tahun yang lalu. Sel purba ini digambarkan dengan suatu selaput di
sebelah luar, salah satu peristiwa yang rumit yang memimpin penetapan hidup di atas bumi.
Molekul organik sederhana tersebut mungkin telah diproduksi dalam kondisi-kondisi yang
memungkinkannya hidup dan lestari di bumi dalam status awal hidpunya (kira-kira selama
milyaran tahun pertamanya).

• Sel Prokariot
Yang termasuk di dalam golongan sel-sel prokariotik adalah bakteri dan ganggang hijau-biru atau

Cyanobacteria.
Pada bakteri bagian dalam membran plasma terdapat sitoplasma, ribosom dan nukleoid.
Sitoplasma dapat mengandung vakuola, vesikel (vakuola kecil) dan menyimpa cadangan gula
komplek atau bahan-bahan organik. Ribosom terdapat bebas di dalam sitoplasma dan tempat
terjadinya sintesis protein.
• Sel Eukariot
Sel-sel eukariotik memiliki struktur yang lebh maju dari pada sel-sel prokariotik. Sel pada
umumnya terlihat sebagai massa yang jenih dengan bentuk yang tidak teratur, dibatasi oleh sutu
selaput dan ditengah-tengahnya tedapat bangunan yang lebih pucat yang bentuknya bulat,
disebut nnukleus atau inti sel.
Jadi secara umum sel itu dibina oleh selaput atau membran sel, plasma sel, dan inti sel. Di bawah
dapat dilihat struktur sel eukariotik (sel hewan dan sel tumbuhan).
Selaput Plasma (Plasmalemma)
Yaitu selaput atau membran sel yang terletak paling luar yang tersusun dari senyawa kimia
Lipoprotein (gabungan dari senyawa lemak atau Lipid dan senyawa Protein).
Lipoprotein ini tersusun atas 3 lapisan yang jika ditinjau dari luar ke dalam urutannya adalah:
Protein – Lipid – Protein Þ Trilaminer Layer
Lemak bersifat Hidrofebik (tidak larut dalam air) sedangkan protein bersifat Hidrofilik (larut
dalam air); oleh karena itu selaput plasma bersifat Selektif Permeabel atau Semi Permeabel (teori
dari Overton).

Selektif permeabel berarti hanya dapat memasukkan /di lewati molekul tertentu saja.
Fungsi dari selaput plasma ini adalah menyelenggarakan Transportasi zat dari sel yang satu ke
sel yang lain.
Khusus pada sel tumbahan, selain mempunyai selaput plasma masih ada satu struktur lagi yang
letaknya di luar selaput plasma yang disebut Dinding Sel (Cell Wall).
Dinding sel tersusun dari dua lapis senyawa Selulosa, di antara kedua lapisan selulosa tadi
terdapat rongga yang dinamakan Lamel Tengah (Middle Lamel) yang dapat terisi oleh zat-zat
penguat seperti Lignin, Chitine, Pektin, Suberine dan lain-lain

Selain itu pada dinding sel tumbuhan kadang-kadang terdapat celah yang disebut Noktah. Pada
Noktah/Pit sering terdapat penjuluran Sitoplasma yang disebut Plasmodesma yang fungsinya
hampir sama dengan fungsi saraf pada hewan.
Sitoplasma dan Organel Sel
Bagian yang cair dalam sel dinamakan Sitoplasma khusus untuk cairan yang berada dalam inti
sel dinamakan Nukleoplasma), sedang bagian yang padat dan memiliki fungsi tertentu digunakan
Organel Sel.
Penyusun utama dari sitoplasma adalah air (90%), berfungsi sebagai pelarut zat-zat kimia serta
sebagai media terjadinya reaksi kirnia sel.
Organel sel adalah benda-benda solid yang terdapat di dalam sitoplasma dan bersifat
hidup(menjalankan fungsi-fungsi kehidupan).

A. Dinding Sel
Sel tumbuhan dipisahkan oleh dinding sel yang transparan.Dinding sel adalah struktur di luar
membran plasma yang membatasi ruang bagi sel untuk membesar. Dinding sel merupakan ciri
khas yang dimiliki tumbuhan, bakteri, fungi (jamur), dan alga, meskipun struktur penyusun dan
kelengkapannya berbeda.
Dinding sel menyebabkan sel tidak dapat bergerak dan berkembang bebas, layaknya sel hewan.
Namun demikian, hal ini berakibat positif karena dinding-dinding sel dapat memberikan
dukungan, perlindungan dan penyaring (filter) bagi struktur dan fungsi sel sendiri. Dinding sel
mencegah kelebihan air yang masuk ke dalam sel.
Dinding sel terbuat dari berbagai macam komponen, tergantung golongan organisme. Pada
tumbuhan, dinding-dinding sel sebagian besar terbentuk oleh polimer karbohidrat (pektin,
selulosa, hemiselulosa, dan lignin sebagai penyusun penting).
Pada bakteri, peptidoglikan (suatu glikoprotein) menyusun dinding sel. Fungi memiliki dinding
sel yang terbentuk dari kitin. Sementara itu, dinding sel alga terbentuk dari glikoprotein, pektin,
dan sakarida sederhana (gula).
B. Vakuola
Vakuola merupakan ruang dalam sel yang berisi cairan (cell sap dalam bahasa Inggris). Cairan
ini adalah air dan berbagai zat yang terlarut di dalamnya. Vakuola ditemukan pada semua sel
tumbuhan namun tidak dijumpai pada sel hewan dan bakteri, kecuali pada hewan uniseluler
tingkat rendah.

Pada sel daun dewasa, vakuola mendominasi sebagian besar ruang sel sehingga seringkali sel
terlihat sebagai ruang kosong karena sitosol terdesak ke bagian tepi dari sel.
Bagi tumbuhan, vakuola berperan sangat penting dalam kehidupan karena mekanisme
pertahanan hidupnya bergantung pada kemampuan vakuola menjaga konsentrasi zat-zat terlarut

di dalamnya. Proses pelayuan, misalnya, terjadi karena vakuola kehilangan tekanan turgor pada
dinding sel.
Dalam vakuola terkumpul pula sebagian besar bahan-bahan berbahaya bagi proses metabolisme
dalam sel karena tumbuhan tidak mempunyai sistem ekskresi yang efektif seperti pada hewan.
Tanpa vakuola, proses kehidupan pada sel akan berhenti karena terjadi kekacauan reaksi biokimi
C. Plastida
Plastida adalah organel pada sel tumbuhan (dalam arti luas, Viridoplantae). Organel ini paling
dikenal dalam bentuknya yang paling umum, kloroplas, sebagai tempat berlangsungnya
fotosintesis. Pada kenyataannya, plastida dikenal dalam berbagai bentuk:
• proplastida, bentuk belum “dewasa”
• leukoplas, bentuk dewasa tanpa mengandung pigmen, ditemukan terutama di akar
• kloroplas, bentuk aktif yang mengandung pigmen klorofil, ditemukan pada daun, bunga, dan
bagian-bagian berwarna hijau lainnya
• kromoplas, bentuk aktif yang mengandung pigmen karotena, ditemukan terutama pada bunga
dan bagian lain berwarna jingga

• amiloplas, bentuk semi-aktif yang mengandung butir-butir tepung, ditemukan pada bagian
tumbuhan yang menyimpan cadangan energi dalam bentuk tepung, seperti akar, rimpang, dan
batang (umbi) serta biji.
• elaioplas, bentuk semi-aktif yang mengandung tetes-tetes minyak/lemak pada beberapa
jaringan penyimpan minyak, seperti endospermium (pada biji)
• etioplas, bentuk semi-aktif yang merupakan bentuk adaptasi kloroplas terhadap lingkungan
kurang cahaya; etioplas dapat segera aktif dengan membentuk klorofil hanya dalam beberapa
jam, begitu mendapat cukup pencahayaan.
Plastida adalah organel vital pada tumbuhan. Fungsinya adalah sebagai tempat fotosintesis,
sintesis asam-asam lemak, serta beberapa fungsi sehari-hari sel.
Secara evolusi plastida dianggap sebagai prokariota yang bersimbiosis ke dalam sel eukariota
dan kemudian kehilangan sifat otonomi penuhnya. Teori endosimbiosis ini mirip dengan yang
terjadi terhadap mitokondria namun introduksi plastida dianggap terjadi lebih kemudian.
D. Kloroplas
Kloroplas atau Chloroplast adalah plastid yang mengandung klorofil. Di dalam kloroplas
berlangsung fase terang dan fase gelap dari fotosintesis tumbuhan. Kloroplas terdapat pada
hampir seluruh tumbuhan, tetapi tidak umum dalam semua sel. Bila ada, maka tiap sel dapat

memiliki satu sampai banyak plastid. Pada tumbuhan tingkat tinggi umumnya berbentuk cakram
(kira-kira 2 x 5 mm, kadang-kadang lebih besar), tersusun dalam lapisan tunggal dalam

sitoplasma tetapi bentuk dan posisinya berubah-ubah sesuai dengan intensitas cahaya.
Pada ganggang, bentuknya dapat seperti mangkuk, spiral, bintang menyerupai jaring, seringkali
disertai pirenoid.
Kloroplas matang pada beberapa ganggang , biofita dan likopoda dapat memperbanyak diri
dengan pembelahan. Kesinambungan kloroplas terjadi melalui pertumbuhan dan pembelahan
proplastid di daerah meristem.
Secara khas kloroplas dewasa mencakup dua membran luar yang menyalkuti stroma homogen, di
sinilah berlangsung reaksi-reaksi fase gelap. Dalam stroma tertanam sejumlah grana, masingmasing terdiri atas setumpuk tilakoid yang berupa gelembung bermembran, pipih dan diskoid
(seperti cakram). Membran tilakoid menyimpan pigmen-pigmen fotosintesis dan sistem transpor
elektron yang terlibat dalam fase fotosintesis yang bergantung pada cahaya. Grana biasanya
terkait dengan lamela intergrana yang bebas pigmen.
Prokariota yang berfotosintesis tidak mempunyai kloroplas, tilakoid yang banyak itu terletak
bebas dalam sitoplasma dan memiliki susunan yang beragam dengan bentuk yang beragam pula.
Kloroplas mengandung DNA lingkar dan mesin sistesis protein, termasuk ribosom dari tipe
prokariotik.
Struktur Kloroplas Kloroplas terdiri atas dua bagian besar, yaitu bagian amplop dan bagian
dalam.Bagian amplop kloroplas terdiri dari membran luar yang bersifat sangat permeabel,
membran dalam yang bersifat permeabel serta merupakan tempat protein transpor melekat, dan
ruang antar membran yang terletak di antara membran luar dan membran dalam.
Bagian dalam kloroplas mengandung DNA , RNAs, ribosom, stroma (tempat terjadinya reaksi

gelap), dan granum. Granum terdiri atas membran tilakoid (tempat terjadinya reaksi terang) dan
ruang tilakoid (ruang di antara membran tilakoid). Pada tanaman C3, kloroplas terletak pada sel
mesofil. Contoh tanaman C3 adalah padi (Oryza sativa), gandum (Triticum aestivum), kacang
kedelai (Glycine max), dan kentang (Solanum tuberosum). Pada tanaman C4, kloroplas terletak
pada sel mesofil dan bundle sheath cell. Contoh tanaman C4 adalah jagung (Zea mays) dan tebu
(Saccharum officinarum).
Genom Kloroplas Kloroplas pada tanaman tingkat tinggi merupakan evolusi dari bakteri
fotosintetik menjadi organel sel tanaman. Genom kloroplas terdiri dari 121 024 pasang
nukleotida serta mempunyai inverted repeats (2 kopi) yang mengandung gen-gen rRNA (16S dan
23S rRNAs) untuk pembentukan ribosom.
Genom kloroplas mempunyai subunit yang besar yaitu penyandi ribulosa biphosphate
carboxylase. Protein yang terlibat di dalam kloroplas sebanyak 60 protein. 2/3nya diekspresikan
oleh gen yang terdapat di inti sel sementara 1/3nya diekspresikan dari genom kloroplas.
E. Nukleus

Nukleus ini umumnya paling mencolok pada sel eukariotik. Rata-rata diameternya 5 µm.
Nukleus memiliki membran yang menyelubunginya yang disebut membran atau selubung inti.
Membran ini memisahkan isi nukleus dengan sitoplasma.
Membran atau selubung inti merupakan membran ganda. Kedua selubung ini masing-masing
merupakan bilayer lipid dengan protein yang terkait. Membran ini dilubangi oleh beberapa pori

yang berdiameter sekitar 100 nm. Pada bibir setiap pori membran dalam dan membran luar
selubung nukleus menyatu. Pori-pori ini memungkinkan hubungan antara nukleoplasma (cairan
inti) dengan sitoplasma (cairan sel).
Selain pori, sisi dalam selubung ini dilapisi lamina nukleus dengan susunan mirip jaring yang
terdiri dari filamen protein yang mempertahankan bentuk nukleus.Di dalam nukleus terdapat:
(1). Nukleolus (anak inti), berfungsi mensintesis berbagai macam molekul RNA (asam
ribonukleat) yang digunakan dalam perakitan ribosom. Molekul RNA yang disintesis dilewatkan
melalui pori nukleus ke sitoplasma, kemudian semuanya bergabung membentuk ribosom.
Nukleolus berentuk seperti bola, dan memalui mikroskop elektron nukleolus ini tampak sebagai
suatu massa yang terdiri dari butiran dan serabut berwarna pekat yang menempel pada bagian
kromatin.
(2). Nukleoplasma (cairan inti) merupakan zat yang tersusun dari protein.
(3). Butiran kromatin, yang terdapat di dalam nukleoplasma. Tampak jelas pada saat sel tidak
membelah. Pada saat sel membelah butiran kromatin menebal menjadi struktur seperti benang
yang disebut kromosom. Kromosom mengandung DNA (asam dioksiribonukleat) yang berfungsi
menyampaikan informasi genetik melalui sintesis protein.Secara umum, Nukleus bertugas
mengontrol kegiatan yang terjadi di sitoplasma. DNA yang terdapat di dalam kromosom
merupakan cetak biru bagi pembentukan berbagai protein (terutama enzim). Enzim diperlukan
dalam menjalankan berbagai fungsi di sitoplasma.
F. Retikulum Endoplasma

Retikulum Endoplasma (RE, atau endoplasmic reticula) adalah organel yang dapat ditemukan
pada semua sel eukariotik.Retikulum Endoplasma merupakan bagian sel yang terdiri atas sistem
membran. Di sekitar Retikulum Endoplasma adalah bagian sitoplasma yang disebut sitosol atau
cytosol. Retikulum Endoplasma sendiri terdiri atas ruangan-ruangan kosong yang ditutupi
dengan membran dengan ketebalan 4 nm (nanometer, 10-9 meter). Membran ini berhubungan
langsung dengan selimut nukleus atau nuclear envelope.Pada bagian-bagian Retikulum
Endoplasma tertentu, terdapat ribuan ribosom atau ribosome. Ribosom merupakan tempat
dimana proses pembentukan protein terjadi di dalam sel. Bagian ini disebut dengan Retikulum
Endoplasma Kasar atau Rough Endoplasmic Reticulum. Kegunaan daripada Retikulum
Endoplasma Kasar adalah untuk mengisolir dan membawa protein tersebut ke bagian-bagian sel
lainnya. Kebanyakan protein tersebut tidak diperlukan sel dalam jumlah banyak dan biasanya
akan dikeluarkan dari sel. Contoh protein tersebut adalah enzim dan hormon.
Sedangkan bagian-bagian Retikulum Endoplasma yang tidak diselimuti oleh ribosom disebut
Retikulum Endoplasma Halus atau Smooth Endoplasmic Reticulum. Kegunaannya adalah untuk

membentuk lemak dan steroid. Sel-sel yang sebagian besar terdiri dari Retikulum Endoplasma
Halus terdapat di beberapa organ seperti hati.Retikulum endoplasma memiliki struktur yang
menyerupai kantung berlapis-lapis. Kantung ini disebut cisternae. Fungsi retikulum endoplasma
bervariasi, tergantung pada jenisnya. Retikulum Endoplasma (RE) merupakan labirin membran
yang demikian banyak sehingga retikulum endoplasma melipiti separuh lebih dari total membran
dalam sel-sel eukariotik. (kata endoplasmik berarti “di dalam sitoplasma” dan retikulum
diturunkan dari bahasa latin yang berarti “jaringan”).
Pengertian lain menyebutkan bahwa RE sebagai perluasan membran yang saling berhubungan
yang membentuk saluran pipih atau lubang seperti tabung di dalam sitoplsma.Lubang/saluran
tersebut berfungsi membantu gerakan substansi-substansi dari satu bagian sel ke bagian sel
lainnya.Ada tiga jenis retikulum endoplasma:RE kasar Di permukaan RE kasar, terdapat bintikbintik yang merupakan ribosom. Ribosom ini berperan dalam sintesis protein. Maka, fungsi
utama RE kasar adalah sebagai tempat sintesis protein. RE halus Berbeda dari RE kasar, RE
halus tidak memiliki bintik-bintik ribosom di permukaannya. RE halus berfungsi dalam beberapa
proses metabolisme yaitu sintesis lipid, metabolisme karbohidrat dan konsentrasi kalsium,
detoksifikasi obat-obatan, dan tempat melekatnya reseptor pada protein membran sel. RE
sarkoplasmik RE sarkoplasmik adalah jenis khusus dari RE halus. RE sarkoplasmik ini
ditemukan pada otot licin dan otot lurik. Yang membedakan RE sarkoplasmik dari RE halus
adalah kandungan proteinnya. RE halus mensintesis molekul, sementara RE sarkoplasmik
menyimpan dan memompa ion kalsium. RE sarkoplasmik berperan dalam pemicuan kontraksi
otot.RE halus berfungsi dalam berbagai macam proses metabolisme, trmasuk sintesis lipid,
metabolisme karbohidrat, dan menawarkan obat dan racun”RE berfungsi sebagai alat
transportasi zat-zat di dalam sel itu sendiri”.
Jaring-jaring endoplasma adalah jaringan keping kecil-kecil yang tersebar bebas di antara selaput
selaput di seluruh sitoplasma dan membentuk saluran pengangkut bahan. Jaring-jaring ini
biasanya berhubungan dengan ribosom (titik-titik merah) yang terdiri dari protein dan asam
nukleat, atau RNA. Partikel-partikel tadi mensintesis protein serta menerima perintah melalui
RNA tersebut (Time Life, 1984).jadi fungsi RE adalah mendukung sintesis protein dan
menyalurkan bahan genetic antara inti sel dengan sitoplasma.
Fungsi Retikulum Endoplasma
Menjadi tempat penyimpan Calcium, bila sel berkontraksi maka calcium akan dikeluarkan dari
RE dan menuju ke sitosol
• Memodifikasi protein yang disintesis oleh ribosom untuk disalurkan ke kompleks golgi dan
akhirnya dikeluarkan dari sel.(RE kasar)
• Mensintesis lemak dan kolesterol, ini terjadi di hati(RE kasar dan RE halus)
• Menetralkan racun (detoksifikasi) misalnya RE yang ada di dalam sel-sel hati.
• Transportasi molekul-molekul dan bagian sel yang satu ke bagian sel yang lain (RE kasar dan
RE halus)
G. Ribosom
Ribosom ialah organel kecil dan padat dalam selyang berfungsi sebagai tempat sintesis protein.
Ribosom berdiameter sekitar 20 nm serta terdiri atas 65% RNA ribosom (rRNA) dan 35%
protein ribosom (disebut Ribonukleoprotein atau RNP). Organel ini menerjemahkan mRNA

untuk membentuk rantai polipeptida (yaitu protein) menggunakan asam amino yang dibawa oleh
tRNA pada proses translasi. Di dalam sel, ribosom tersuspensi di dalam sitosol atau terikat pada
retikulum endoplasma kasar, atau pada membran inti sel.
H. Sentriol
Sentriol merupakan organel tak bermembran yang hanya ditemukan pada sel hewan. Organel ini
berukuran kecil , jumlahnya sepasang dan letaknya dekat membrane inti dalam posisi tegak lurus
antar keduanya. Organel ini akan memisah satu sama lain untuk membentuk gelendong
pembelahan pada saat terjadi pembelahan sel. Sentorom merupakan wilayah yang terdiri dari dua
sentriol (sepasang sentriol) yang terjadi ketika pembelahan sel, dimana nantinya tiap sentriol ini
akan bergerak ke bagian kutub-kutub sel yang sedang membelah. Pada siklus sel di tahapan
interfase, terdapat fase S yang terdiri dari tahap duplikasi kromoseom, kondensasi kromoson, dan
duplikasi sentrosom.
Terdapat sejumlah fase tersendiri dalam duplikasi sentrosom, dimulai dengan G1 dimana
sepasang sentriol akan terpisah sejauh beberapa mikrometer. Kemudian dilanjutkan dengan S,
yaitu sentirol anak akan mulai terbentuk sehingga nanti akan menjadi dua pasang sentriol. Fase
G2 merupakan tahapan ketika sentriol anak yang baru terbentuk tadi telah memanjang. Terakhir
ialah fase M dimana sentriol bergerak ke kutub-kutub pembelahan dan berlekatan dengan
mikrotubula yang tersusun atas benang-benang spindel.
I. Badan Golgi
Badan Golgi (disebut juga aparatus Golgi, kompleks Golgi atau diktiosom) adalah organel yang
dikaitkan dengan fungsi ekskresi sel, dan struktur ini dapat dilihat dengan menggunakan
mikroskop cahaya biasa. Organel ini terdapat hampir di semua sel eukariotik dan banyak
dijumpai pada organ tubuh yang melaksanakan fungsi ekskresi, misalnya ginjal. Setiap sel hewan
memiliki 10 hingga 20 badan Golgi, sedangkan sel tumbuhan memiliki hingga ratusan badan
Golgi. Badan Golgi pada tumbuhan biasanya disebut diktiosom.
Badan Golgi ditemukan oleh seorang ahli histologi dan patologi berkebangsaan Italia yang
bernama Camillo Golgi.
beberapa fungsi badan golgi antara lain :
1. Membentuk kantung (vesikula) untuk sekresi. Terjadi terutama pada sel-sel kelenjar kantung
kecil tersebut, berisi enzim dan bahan-bahan lain.
2. Membentuk membran plasma. Kantung atau membran golgi sama seperti membran plasma.
Kantung yang dilepaskan dapat menjadi bagian dari membran plasma.
3. Membentuk dinding sel tumbuhan
4. Fungsi lain ialah dapat membentuk akrosom pada spermatozoa yang berisi enzim untuk
memecah dinding sel telur dan pembentukan lisosom.
5. Tempat untuk memodifikasi protein

6. Untuk menyortir dan memaket molekul-molekul untuk sekresi sel
7. Untuk membentuk lisosom
J. Lisosom
Lisosom adalah organel sel berupa kantong terikat membran yang berisi enzim hidrolitik yang
berguna untuk mengontrol pencernaan intraseluler pada berbagai keadaan. Lisosom ditemukan
pada tahun 1950 oleh Christian de Duve dan ditemukan pada semua sel eukariotik. Di dalamnya,
organel ini memiliki 40 jenis enzim hidrolitik asam seperti protease, nuklease, glikosidase,
lipase, fosfolipase, fosfatase, ataupun sulfatase.
Semua enzim tersebut aktif pada pH 5. Fungsi utama lisosom adalah endositosis, fagositosis, dan
autofagi.
EndositosisEndositosis ialah pemasukan makromolekul dari luar sel ke dalam sel melalui
mekanisme endositosis, yang kemudian materi-materi ini akan dibawa ke vesikel kecil dan tidak
beraturan, yang disebut endosom awal.
Beberapa materi tersebut dipilah dan ada yang digunakan kembali (dibuang ke sitoplasma), yang
tidak dibawa ke endosom lanjut. Di endosom lanjut, materi tersebut bertemu pertama kali dengan
enzim hidrolitik. Di dalam endosom awal, pH sekitar 6. Terjadi penurunan pH (5) pada endosom
lanjut sehingga terjadi pematangan dan membentuk lisosom.
AutofagiProses autofagi digunakan untuk pembuangan dan degradasi bagian sel sendiri, seperti
organel yang tidak berfungsi lagi. Mula-mula, bagian dari retikulum endoplasma kasar
menyelubungi organel dan membentuk autofagosom. Setelah itu, autofagosom berfusi dengan
enzim hidrolitik dari trans Golgi dan berkembang menjadi lisosom (atau endosom lanjut). Proses
ini berguna pada sel hati, transformasi berudu menjadi katak, dan embrio manusia.
Fagositosis
Fagositosis merupakan proses pemasukan partikel berukuran besar dan mikroorganisme seperti
bakteri dan virus ke dalam sel. Pertama, membran akan membungkus partikel atau
mikroorganisme dan membentuk fagosom. Kemudian, fagosom akan berfusi dengan enzim
hidrolitik dari trans Golgi dan berkembang menjadi lisosom (endosom lanjut).
K. Mitokondria
Mitokondria (mitochondrion’, plural: mitochondria’) atau kondriosom (chondriosome) adalah
organel tempat berlangsungnya fungsi respirasi sel makhluk hidup. Respirasi merupakan proses
perombakan atau katabolisme untuk menghasilkan energi atau tenaga bagi berlangsungnya
proses hidup. Dengan demikian, mitokondria adalah “pembangkit tenaga” bagi sel.
Mitokondria merupakan salah satu bagian sel yang paling penting karena di sinilah energi dalam
bentuk ATP [Adenosine Tri-Phosphate] dihasilkan.
Mitokondria mempunyai dua lapisan membran, yaitu lapisan membran luar dan lapisan membran
dalam. Lapisan membran dalam ada dalam bentuk lipatan-lipatan yang sering disebut dengan
cristae. Di dalam Mitokondria terdapat ‘ruangan’ yang disebut matriks, dimana beberapa mineral

dapat ditemukan. Sel yang mempunyai banyak Mitokondria dapat dijumpai di jantung, hati, dan
otot.
Keberadaan mitokondria didukung oleh hipotesis endosimbiosis yang mengatakan bahwa pada
tahap awal evolusi sel eukariot bersimbiosis dengan prokariot (bakteri) [Margullis, 1981].
Kemudian keduanya mengembangkan hubungan simbiosis dan membentuk organel sel yang
pertama. Adanya DNA pada mitokondria menunjukkan bahwa dahulu mitokondria merupakan
entitas yang terpisah dari sel inangnya.
Hipotesis ini ditunjang oleh beberapa kemiripan antara mitokondria dan bakteri. Ukuran
mitokondria menyerupai ukuran bakteri, dan keduanya bereproduksi dengan cara membelah diri
menjadi dua. Hal yang utama adalah keduanya memiliki DNA berbentuk lingkar. Oleh karena
itu, mitokondria memiliki sistem genetik sendiri yang berbeda dengan sistem genetik inti. Selain
itu, ribosom dan rRNA mitokondria lebih mirip dengan yang dimiliki bakteri dibandingkan
dengan yang dikode oleh inti sel eukariot [Cooper, 2000].
Secara garis besar, tahap respirasi pada tumbuhan dan hewan melewati jalur yang sama, yang
dikenal sebagai daur atau siklus Krebs.
L. Badan Mikro (Peroksisom & Glioksisom)
Peroksisom adalah kantong yang memiliki membran tunggal. Peroksisom berisi berbagai enzim
dan yang paling khas ialah enzim katalase. Katalase berfungsi mengkatalisis perombakan
hydrogen peroksida (H2O2). Hidrogen peroksida merupakan produk metabolism sel yang
berpotensi membahayakan sel. Peroksisom juga berperan dalam perubahan lemak menjadi
karbohidrat. Peroksisom terdapat pada sel tumbuhan dan sel hewan. Pada hewan, peroksisom
banyak terdapat di hati dan ginjal, sedang pada tumbuhan peroksisom terdapat dalam berbagai
tipe sel.
Glioksisom hanya terdapat pada sel tumbuhan, misalnya pada lapisan aleuron biji padi-padian.
Aleuron merupakan bentuk dari protein atau kristal yang terdapat dalam vakuola. Glioksisom
sering ditemukan di jaringan penyimpan lemak dari biji yang berkecambah. Glioksisom
mengandung enzim pengubah lemak menjadi gula. Proses perubahan tersebut menghasilkan
energi yang diperlukan bagi perkecambahan.
Perbedaan Sel Hewan dan Sel Tumbuhan
Sel Hewan
1. tidak memiliki dinding sel
2. tidak memiliki plastida
3. memiliki lisosom
4. memiliki sentrosom
5. timbunan zat berupa lemak dan glikogen

6. bentuk tidak tetap
7. pada hewan tertentu memiliki vakuola, ukuran kecil, sedikit
Sel Tumbuhan
1. memiliki dinding sel dan membran sel
2. umumnya memiliki plastida
3. tidak memiliki lisosom
4. tidak memiliki sentrosom
5. timbunan zat berupa pati
6. bentuk tetap
7. memiliki vakuola ukuran besar, banyak
Transpor lewat membran
Transpor lewat membran dibedakan atas:
1. Transpor pasif, tanpa bantuan energi dari sel (difusi dan osmosis)
2. Transpor aktif, dengan menggunakan energi dari sel (endositosis, eksositosis dan pompa
natrium kalium).
Mekanisme Transpor Melalui M0embran
Setiap sel yang hidup harus selalu memasukkan materi yang diperlukan dan membuang sisa-sisa
metabolismenya. Untuk mempertahankan konsentrasi ion-ion di dalam sitoplasma, sel juga
selalu memasukkan dan mengeluarkan ion-ion tertentu. pengaturan keluar masuknya materi dari
dan menuju ke dalam sel sangat dipengaruhi oleh permeabilitas membran.
Bagian dalam lapisan lipid bilayer bersifat hidrofobik, sehingga tidak dapat ditembus oleh
molekul-molekul polar dan substansi yang larut dalam air. Transpor materi-materi yang rarut
dilam air dan bermuatan diperankan oleh protein integral membran. Transpor molekul – molekul
kecil .
1. Transpor Molekul – Molekul Kecil
Pengangkutan molekul-molekul kecil melalui membran dilakukan secara pasif (transpor pasif)
maupun secara aktif (transpor aktif). Kedua macam transpor ini dilakukan secara terpadu untuk
mempertahankan kondisi intraseluler agar tetap konstan.

a) Transpor pasif
Dapat berlangsung karena adanya perbedaan konsentrasi larutan di antara kedua sisi membran.
Pada transpor pasif tidak rnemerlukan energi rnetabolik. Transpor pasif dibedakan menjadi tiga,
yaitu difusi sederhana (simple diffusion), difusi dipermudah atau difasilitasi (facilitated
diffusion), dan osmosis.
l) Mekanisme difusi
Difusi merupakan proses perpindahan atau pergerakan molekul zat atau gas dari konsentrasi
tinggi ke konsentrasi rendah. Difusi melalui membran dapat berlangsung melalui tiga
mekanisme, yaitu difusi sederhana (simple difusion),d ifusi melalui saluran yang terbentuk oleh
protein transmembran (simple difusion by chanel formed), dan difusi difasilitasi (fasiliated
difusion).
Difusi sederhana melalui membrane berlangsung karena molekul -molekul yang berpindah atau
bergerak melalui membran bersifat larut dalam lemak (lipid) sehingga dapat menembus lipid
bilayer pada membran secara langsung. Membran sel permeabel terhadap molekul larut lemak
seperti hormon steroid, vitamin A, D, E, dan K serta bahan-bahan organik yang larut dalam
lemak, Selain itu, memmbran sel juga sangat permeabel terhadap molekul anorganik seperti
O,CO2, HO, dan H2O. Beberapa molekul kecil khusus yang terlarut dalam serta ion-ion tertentu,
dapat menembus membran melalui saluran atau chanel. Saluran ini terbentuk dari protein
transmembran, semacam pori dengan diameter tertentu yang memungkinkan molekul dengan
diameter lebih kecil dari diameter pori tersebut dapat melaluinya. Sementara itu, molekul –
molekul berukuran besar seperti asam amino, glukosa, dan beberapa garam – garam mineral ,
tidak dapat menembus membrane secara langsung, tetapi memerlukan protein pembawa atau
transporter untuk dapat menembus membrane.
Proses masuknya molekul besar yang melibatkan transforter dinamakan difusi difasilitasi.
2) Mekanisme Difusi dan Difasilitasi
Difusi difasiltasi (facilitated diffusion) adalah pelaluan zat melalui membran plasrna yang
melibatkan protein pembawa atau protein transforter. Protein transporter tergolong protein
transmembran yang memliki tempat perlekatan terhadap ion atau molekul vang akan ditransfer
ke dalam sel. Setiap molekul atau ion memiliki protein transforter yang khusus, misalnya untuk
pelaluan suatu molekul glukosa diperlukan protein transforter yang khusus untuk mentransfer
glukosa ke dalam sel.
Protein transporter untuk grukosa banyak ditemukan pada sel-sel rangka, otot jantung, sel-sel
lemak dan sel-sel hati, karena sel – sel tersebut selalu membutuhkan glukosa untuk diubah
menjadi energy.
3) Mekanisme osmosis

Osmosis adalah proses perpindahan atau pergerakan molekul zat pelarut, dari larutan yang
konsentrasi zat pelarutnya tinggi menuju larutan yang konsentrasi zat pelarutya rendah melalui
selaput atau membran selektif permeabel atau semi permeabel. Jika di dalam suatu bejana yang
dipisahkan oleh selaput semipermiabel, jika dalam suatu bejana yang dipisahkan oleh selaput
semipermiabel ditempatkan dua Iarutan glukosa yang terdiri atas air sebagai pelarut dan glukosa
sebagai zat terlarut dengan konsentrasi yang berbeda dan dipisahkan oleh selaput selektif
permeabel, maka air dari larutan yang berkonsentrasi rendah akan bergerak atau berpindah
menuju larutan glukosa yang konsentrainya tinggi melalui selaput permeabel. jadi, pergerakan air
berlangsung dari larutan yang konsentrasi airnya tinggi menuju kelarutan yang konsentrasi
airnya rendah melalui selaput selektif permiabel. Larutan vang konsentrasi zat terlarutnya lebih
tinggi dibandingkan dengan larutan di dalam sel dikatakan .
Sebagai larutan hipertonis. sedangkan larutan yang konsentrasinya sama dengan larutan di dalam
sel disebut larutan isotonis. Jika larutan yang terdapat di luar sel, konsentrasi zat terlarutnya lebih
rendah daripada di dalam sel dikatakan sebagai larutan hipotonis.
Apakah yang terjadi jika sel tumbuhan atau hewan, misalnya sel darah merah ditempatkan dalam
suatu tabung yang berisi larutan dengan sifat larutan yang berbeda-beda? Pada larutan isotonis,
sel tumbuhan dan sel darah merah akan tetap normal bentuknya. Pada larutan hipotonis, sel
tumbuhan akan mengembang dari ukuran normalnya dan mengalami peningkatan tekanan turgor
sehingga sel menjadi keras. Berbeda dengan sel tumbuhan, jika sel hewan/sel darah merah
dimasukkan dalam larutan hipotonis, sel darah merah akan mengembang dan kemudian pecah
/lisis, hal irri karena sei hewan tidak memiliki dinding sel. Pada larutan hipertonis, sel tumbuhan
akan kehilangan tekanan turgor dan mengalami plasmolisis (lepasnya membran sel dari dinding
sel), sedangkan sel hew’an/sel darah merah dalam larutan hipertonis menyebabkan sel hewan/sel
darah merah
mengalami krenasi sehingga sel menjadi keriput karena kehilangan air.
b. Transpor aktif
Pada transpor aktif diperlukan adanya protein pembawa atau pengemban dan memerlukan energi
metabolik yang tersimpan dalam bentuk ATP. selama transpor aktif, molekul diangkut melalui
gradien konsentrasi. Transpor aktif dibedakan menjadi dua, yaitu transpor aktif primer dan
sekunder.
Transpor aktif primer secara langsung berkaitan dengan hidrolisis ATP yang akan menghasilkan
energi untuk transpor ini. contoh transpor aktif primer adalah pompa ion Na- dan ion K+.
Konsentrasi ion K+ di dalam sel lebih besar dari pada di luar sel, sebaliknya konsentrasi ion Na+
diluar sel lebih besar daripada di dalam sel.
Untuk mempertahankan kondisi tersebut, ion-ion Na- dan K+ harus selalu dipompa melawan
gradien konsentrasi dengan energi dari hasil hidrolisis ATP. Tiga ion Na+ dipompa keluar dan
dua ion K+ dipompa ke dalam sel. Untuk hidrolis ATP diperlukan ATP-ase yang merupakan
suatu protein transmembran yang berperan sebagai enzim.

Tranpor aktif sekunder merupakan transpor pengangkutan gabungan yaitu pengangkutan ion-ion
bersama dengan pengangkutan molekul lain.