BANGUNAN PENGOLAHAN AIR BUANGAN RPH(RUMAH POTONG HEWAN).

TUGAS PERENCANAAN

BANGUNAN PENGOLAHAN AIR BUANGAN RPH
(RUMAH POTONG HEWAN)

Oleh :

I KOMANG TRI SUARBAWA
0952010004

PROGRAM STUDI TEKNIK LINGKUNGAN
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
UNIVERSITAS PEMBANGUNAN NASIONAL “ VETERAN”
JAWA TIMUR
2013

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

TUGAS PERENCANAAN


BANGUNAN PENGOLAHAN AIR BUANGAN RPH
(RUMAH POTONG HEWAN)

Diajukan Untuk Memenuhi Salah Satu Persyaratan Dalam Memperoleh
Gelar Sarjana Teknik ( S-1)

PROGRAM STUDI TEKNIK LINGKUNGAN

Oleh :

I KOMANG TRI SUARBAWA
0952010004

PROGRAM STUDI TEKNIK LINGKUNGAN
FAKULTAS TEKNIK SIPIL & PERENCANAAN
UNIVERSITAS PEMBANGUNAN NASIONAL “ VETERAN” JAWA
TIMUR
2013

Hak Cipta © milik UPN "Veteran" Jatim :

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

TUGAS PERENCANAAN

BANGUNAN PENGOLAHAN AIR BUANGAN RPH
(RUMAH POTONG HEWAN)

Oleh :

I KOMANG TRI SUARBAWA
0952010004
Telah diperiksa dan disetujui
Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan
Universitas Pembangunan Nasional” Veteran” Jawa Timur.
Mengetahui
Ketua Jurusan

Menyetujui
Pembimbing


Dr.Ir. Munawar, MT.
NIP : 19600401 198803 1001

Ir. Putu Wesen, MS.
NIP.19520920 198303 1001

Laporan Tugas Perencanaan ini telah diterima sebagai salah satu persyaratan
untuk memperoleh gelar sarjana (S-1), tanggal ...........................................

Dekan Fakultas Teknik Sipil dan Perencanaan

Ir. Naniek Ratni Juliardi AR., M.KES.
NIP :19590729 198603 2001

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

i

KATA PENGANTAR


Puji syukur saya kepada Ida Sang Hyang Widhi Wasa atas wara nugraha Nya
sehingga penyusun dapat menyelesaikan tugas Perencanaan Bangunan Pengolahan
Air Buangan RPH (Rumah Potong Hewan) dengan baik.
Tugas perencanaan ini merupakan salah satu persyaratan bagi setiap
mahasiswa Jurusan Teknik Lingkungan, Fakultas Teknik Sipil Dan Perencanaan,
Universitas Pembangunan Nasional “Veteran” Jawa Timur untuk mendapatkan gelar
sarjana.
Selama menyelesaikan tugas ini, kami telah banyak memperoleh bimbingan
dan bantuan dari berbagai pihak, untuk itu pada kesempatan ini penyusun ingin
mengucapkan terima kasih yang sebesar-besarnya kepada :
1. Ir. Naniek Ratni, JAR., M.Kes. selaku Dekan Fakultas Teknik Sipil Dan
Perencanaan Universitas Pembangunan Nasional “Veteran” Jawa Timur.
2. Dr. Ir. Munawar, MT. selaku Ketua Program Studi Teknik Lingkungan
Fakultas Teknik Sipil Dan Perencanaan Universitas Pembangunan Nasional
“Veteran” Jawa Timur .
3. Ir. Putu Wesen, MS. selaku Dosen Pembimbing tugas PBPAB yang telah
membantu, mengarahkan dan membimbing hingga tugas perencanaan ini
dapat selesai dengan baik.


Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

ii

4. Firra Rossariawari, ST dan Ir. Yayok Suryo P, MS. selaku dosen mata kuliah
PBPAB.
5. Kedua orang tua dan kakak saya yang telah membantu pikiran, tenaga dan
material serta support yang tidak pernah habis buat saya.
6. Ananta Angga, Nove Adi W dan Hasan Ashari sebagai partner tugas PBPAB
yang selalu memberikan semangat, dan membantu baik secara langsung
maupun tidak langsung hingga terselesainya tugas PBPAB ini, “we are the
best team”. Adhi Dwi dan I Made Hendra sebagai pembimbing spiritual saya
7. Semua rekan-rekan di Teknik Lingkungan 2009 yang secara langsung
maupun tidak langsung telah membantu hingga terselesainya tugas ini.
8. Semua pihak yang telah membantu dan yang tidak dapat saya sebutkan satu
per satu.
Penyusun menyadari bahwa masih banyak kekurangan dalam penyusunan
tugas perencanaan ini, untuk itu saran dan kritik yang membangun akan penyusun
terima dengan senang hati. Akhir kata penyusun mengucapkan terima kasih dan

mohon maaf yang sebesar-besarnya apabila didalam penyusunan laporan ini terdapat
kata-kata yang kurang berkenan atau kurang dipahami.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

iii

DAFTAR ISI

KATA PENGANTAR……………………………………………………..…… I
DAFTAR ISI………………………………………………………………..…... III
BAB I

PENDAHULUAN………………………………………………. 1
I.1 Latar Belakang…………………………………………....... 1
I.2 Maksud dan Tujuan……………………………………….... 3
I.3 Ruang Lingkup…………………………………………….. 3

BAB II


TINJAUAN PUSTAKA……………………………………….....5
II.1. Aktivitas RPH ……......................................................…….. 5
II.2. Bangunan Pengolahan Untuk RPH …………….....................7
II.2.1. Pratreatment (Pengolahn Pendahuluan) …....….......7
II.2.2 Pengolahan Sekunder (Secondary Treatment)......... 28
II.3. Presentase Penyisihan Pada Berbagai Bangunan……............34

BAB III

DATA PERENCANAAN………………………………………..35
III.1. Kapasitas Dan Kualitas Pengolah Air Limbah…..……… …35
III.2. Kualitas Effluent Yang Direncanakan ………………… ..36
III.3. Sistem Pengolahan ………………………………………....37
III.4. Diagram Alir Pengolahan Limbah…………………………..37

BAB IV

PERHITUNGAN BANGUNAN PENGOLAHAN……………... 39


BAB V

KESIMPULAN DAN SARAN
V.1. Kesimpulan………………………………………………….143

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

iv

V.2. Saran………………………………………………………...143
DAFTAR PUSTAKA
LAMPIRAN A Tabel dan Grafik
LAMPIRAN B GAMBAR

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

BAB I
PENDAHULUAN


I.1.

Latar Belakang
Tugas perencanaan pengolahan air buangan ini merupakan salah
satu tugas wajib yang harus diselesaikan dalam tahap meraih gelar Sarjana
bagi seluruh Mahasiswa Program Studi Teknik Lingkungan, Fakultas
Teknik Sipil dan Perencanaan UPN ”VETERAN JAWA TIMUR. Dalam
tugas perencanaan bangunan pengolahan air buangan ini didasari dari
penurunan kualitas lingkungan yang sangat tinggi dan signifikan serta
berdampak negatif dalam kedepannya. Penurunan kualitas lingkungan
akan terus muncul secara serius diberbagai Negara di dunia sepanjang
penduduk di negara negara tersebut tidak segera memikirkan dan
mengusahakan keselamatan dan keseimbangan lingkungan. Begitupun
juga di Indonesia, permasalahan lingkungan hidup seolah-olah seperti
dibiarkan menggelembung sejalan dengan intensitas pertumbuhan industri,
walaupun industrialisasi itu sendiri sedang menjadi prioritas dalam
pembangunan. Tidak kecil jumlah korban ataupun kerugian yang justru
terpaksa ditanggung oleh masyarakat luas tanpa ada kompensasi yang
sebanding dari pihak industri. Proses perusakan lingkungan tetap terus

berjalan dan kerugian yang ditimbulkan harus ditanggung oleh banyak
pihak, tetapi solusinya yang tepat tetap saja belum bisa ditemukan. Bahkan
di sisi lain sebenarnya sudah ada perangkat hukum yaitu Undang-Undang

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

2

Lingkungan Hidup, tetapi tetap saja pemecahan masalah lingkungan hidup
menemui jalan buntu. Hal demikian pada dasarnya disebabkan oleh
adanya kesenjangan yang tetap terpelihara menganga antara masyarakat,
industri dan pemerintah termasuk aparat penegak hukum.
Kebutuhan masyarakat terhadap produk industri pertenakan
semakin meningkat. Daging adalah salah satu produk industri pertenakan
yang dihasilkan dari usaha pemotongan hewan. Rumah Potong Hewan
(RPH) sebagai tempat usaha pemotongan hewan dalam penyediaan daging
sehat seharusnya memeperhatikan faktor-faktor yang berhubungan dengan
sanitasi baik dalam lingkungan RPH maupun lingkunagan disekitarnya.
Limbah pemotongan hewan (RPH) yang berupa fase urine, isi rumen atau

isi lambung, darah afkiran daging atau lemak, dan air cuciannya, dapat
bertindak sebagai media pertumbuhan dan perkembangan mikroba
sehingga limbah tersebut mudah mengalami pembusukan. Sebagai
konsekuensi logis perlu diadakan suatu penanganan, pengolahan maupun
pengelolaan secara khusus agar air buangan tidak mencemari lingkungan,
terutama badan air penerima yang tidak hanya berfungsi menampung hasil
olahan air buangan, tetapi juga dimanfaatkan sebagai sumber penyediaan
air untuk konsumsi air bersih di sepanjang aliran sungai. Oleh karena itu,
sesuai dengan S.Kep Gubenur Jawa Timur No.45 Tahun 2002 tentang
Baku Mutu Air Limbah, maka diperlukan suatu

penanganan dimana

terjadi proses penghilangan bahan organik maupun anorganik.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

3

I.2.

Maksud Dan Tujuan

I.2.1

Maksud
Menentukan dan merencanakan jenis pengolahan air buangan
Rumah Potong Hewan (RPH) sesuai karakteristik air buangannya
termasuk

hal – hal yang terkait didalamnya, seperti layout dan

pengoperasiannya, agar diperoleh suatu kualitas air buangan yang sesuai
standart baku mutu yang berlaku.
I.2.2. Tujuan
Tujuan dari tugas ini adalah Mahasiswa dapat merancang bangunan
pengolahan air limbah Rumah Potong Hewan (RPH) sesuai dengan
karakteristik yang di tentukan, agar sesuai dengan standart baku mutu yg
di ada dalam Surat Keputusan Gubernur Jawa Timur no.45 Tahun 2002.
I.3.

Ruang Lingkup
Ruang lingkup tugas Perencanaan Bangunan Pengolahan Air

Buangan Industri RPH ini meliputi :
1. Penentuan kapasitas pengolahan
2. Pembuatan diagram alir
3. Kriteria desain
4. Perhitungan detail tiap-tiap unit pengolahan
5. Perhitungan hidrolis
6. Gambar-gambar :
a. Tata letak
b. Denah dan potongan

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

4

c. Detil bangunan
d. Profil hidrolis

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

5

BAB II
TINJ AUAN PUSTAKA
II.1. Aktivitas RPH
Rumah Potong Hewan sebagai tempat usaha tempat usaha pemotongan
hewan dalam mengolah penyediaan daging sehat dan aman bagi kebutuhan
penduduk. Syarat dan tata cara pemotongan hewan potong tercantum dalam SK
Menteri Pertanian No. 413/Kpt/TN.3101711992.
Kegiatan RPH akan

menghasilkan

limbah dengan kandungan bahan

organik tinggi disertai kosentrasi bahan padat dan lemak yang relatif tinggi.
Menurut Kusnoputranto (1995) limbah ini akan berdampak pada kualitas fisik air
yaitu warna dan pH disamping itu total padatan terlarut. Padatan tersuspensi,
kandungan lemak, BOD5, ammonium, nitrogen, fosfor akan mengalami
peningkatan. Limbah terbesar berasal dari darah dan isi perut (Tjiptadi 1990).
Sedangkan darah berdampak pada peningkatan nilai BOD dan padatan
tersuspensi. Disamping itu isi perut (rumen) dan usus akan meningkatan jumlah
padatan. Pencucian karkas juga meningkatkan nilai BOD. Sedangkan Bewick
(1980) menyatakan bahwa limbah ternak merupakan sumber pencemaranbagi air
yang mempunyai kandungan BOD tinggi dan kandungan oskigen yang terlarut
didalam air relatif sedikit. Beberapa sifat limbah cair yang perlu diketahui anatar
lain volume aliran. Kosentrasi organik, sifat-sifat karakteristik dan toksisitas
(Jenie dan Rahayu, 1993). Pengukuran BOD dan COD adalah salah satu
parameter pengukuran terhadap kadar organik dari limbah. Apabila limbah cair
mempunyai COD tinggi dan BOD rendah maka studi toksisitas mungkin

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

6

diperlukan (Jenie dan Rahayu, 1993). Untuk menangani limbah yang dihasilkan
oleh RPH, maka ada tiga kegiatan yang perlu dilakukan yaitu identifikasi limbah,
karakterisasi dan pengolahan limbah (Ross et al., 1992). Hal ini harus dilakukan
agar dapat ditentukan suatu bentuk penanganan limbah RPH yang efektif.
Gambar II.1 Sumber-sumber limbah RPH

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

7

II.2. Bangunan Pengolahan Buangan Untuk RPH
Bangunan Pengolahan Air Buangan mempunyai kelompok tingkat
pengolahan, pengolahan air buangan dibedakan atas :
II.2.1. Pra Treatment (Pengolahan Pendahuluan)
Proses

pengolahan

yang

dilakukan

untuk

membersihkan

dan

menghilangkan sampah terapung dan pasir agar mempercepat proses pengolahan
selanjutnya. Unit proses pengolahannya meliputi,:
A. Sumur Pengumpul dan Pemompaan.
Sumur pengumpul merupakan unit penyeimbang, sehingga debit dan
kualitas limbah yang masuk ke instalasi dalam keadaan konstan. Pada sumur
pengumpul dibutuhkan Pemompaan yang digunakan untuk mengalirkan limbah
dari sumur pengumpul ke unit pengolahan selanjutnya untuk jenis dan fungsi
masing masing pompa ditampilkan pada tabel II.1
TABEL II.1 MACAM-MACAM KARAKTERISTIK POMPA
KlasifikasiUtama
Kinetik

Type Pompa
Centrifugal

Peripheral

Kegunaan Pompa
-

Air limbah sebelum diolah

-

Penggunaan lumpur kedua

-

Pembuangan effluent

-

Limbah logam, pasir lumpur,
air limbah kasar

Rotor

-

Minyak,

pembuangan

gas

permasalahan zat-zat kimia
pengaliran lambat untuk air
dan air buangan

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

8

Screw Pump
Saluran Pembawa
Pipa inlet

Gambar II.2 Screw Pump

Rumus yang digunakan :
td =

V
Q

V=AxH

dengan :
V

= volume sumur pengumpul (m3)

A

= luas permukaan sumur pengumpul (m2)

Q

= debit air buangan yang dipompa (m3/dt)

td

= waktu detensi (dt)

H

= kedalaman air (m)

(Sumber : Metcalf and Eddy, , 1991)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

9

B. Screening
Screening biasanya terdiri-dari batang pararel, kawat atau grating,
perforated plate

dan umumnya memiliki bukaan yang berbentuk bulat atau

persegi empat. Secara umum peralatan screen terbagi menjadi dua tipe yaitu
screen kasar dan screen halus. Dan cara pembersihannya ada dua cara yaitu secara
manual dan mekanis. Perbedaan screen kasar dan halus adalah pada jauh dekatnya
jarak antar bar screen. Prinsip yang digunakan bahan padat kasar dihilangkan
dengan sederet bahan baja yang diletakan dan dipasang melintang arah aliran.
Kecepatan arah aliran harus lebih dari 0.3 m/dt sehingga bahan padatan yang
tertahan di depan saringan tidak terjepit. Jarak antar batang biasanya 20-40 mm
dan bentuk penampang batang tersebut empat persegi panjang berukuran 10 mm x
50 mm. Untuk bar screen yang dibersihkan secara manual, biasanya saringan
dimiringkan dengan kemiringan 60o terhadap horizontal seperti yang ditampilkan
pada gambar II.3
Screen ber fungsi untuk :
-

Menyaring benda padat dan kasar yang ikut terbawa atau hanyut dalam air
buangan supaya benda-benda tersebut tidak menggangu aliran idalam saluran
dan tidak mengganggu proses pengolahan air buangan.

-

Mencegah timbulnya kerusakan dan penyumbatan dalam saluran pembawa.

-

Melindungi peralatan seperti pompa, valve dan peralatan lainnya.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

10

W ire m e s h

Gambar II.3 Screening

Dari penjelasan diatas Jenis dan ukuran screen ditampilkan pada tabel II.2, II.3
dan II.4
Tabel II.2. Pembagian Screen

Bagian-bagian

Manual

Mekanikal

1. Ukuran kisi
-

Lebar

05 – 15 mm

05 – 15 mm

-

Dalam

25 – 75 mm

25 – 75 mm

25 – 50 mm

15 – 75 mm

300 - 400

00 - 300

0,3 – 0,6 m/det

0,6 – 1,0 m/det

150 mm

150 mm

2. Jarak antar kisi
3. Sloop
4. Kecepatan melalui bar
5. Head Loss

(Sumber : Met Calf and Eddy, “1991)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

11

Rumus yang digunakan :
Headloss pada bar screen :

h = β .(w / b )

4

3.

.hv. sin ϑ

dengan :
h

= headloss, (m)

β

= Faktor bentuk

w

= Lebar mauka kisi

b

= Jarak antar kisi

hv

= Tekanan kecepatan air yang melalui kisi, (m)

θ

= Sudut terhadap horizontal

(Sumber: Syed R. Qasim, , 1985)

Tabel II.3. Faktor bentuk
J enis Bar

β

- Segi empat sisi runcing

2,42

- Segi empat sisi bulat runcing

1,83

- Segi empat sisi bulat

1,67

- Bulat

1,79

Bentuk

(Sumber : Metcalf and Eddy, 1979 )

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

12

J umlah Batang :

ws = (n + 1).b + n.t
dengan :
Ws = lebar saluran, (m)
n

= jumlah batang

b

= jarak antar kisi, (m)

t

= tebal kisi/bar, (m)

Lebar Bukaan Screen :
wc = ws − n.t

Kecepatan melalui kisi :
Vi =

Q
wc .h

Tekanan kecepatan melalui screen :

hv =

Vi 2
2.g

(Sumber: Ven Te Chow, Open Channel Hydraulics)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

13

Tabel II.4. J enis-jenis Screen

PERMUKAAN SCREEN

TIPE SCREEN

KLASIF

UKURAN

IKASI

RATA-

UKURA RATA (in2)

TERBUAT DARI

N
1. Bar Rack
2. Screen
- Inclinet
(Fixed)
- Inclinet
(Rotary)
- Drum
(Rotary)

Kasar

0,6 – 1,5

Baja, stainless, steel

Medium

0,01 – 0,1

Kasar
Kasar

0,03 x 0,09
x2

Stainless – steel,
widge – wire

Medium

0,1 – 0,2

Halus
-

-

Rotary
disk

0,01 – 0,1

Kincir perunggu /
plat
Stainless – steel,
widge – wire

Medium

6 –35 µm

Halus

0,01 – 0,4

Stainless – steel,
widge – wire

Halus

0,001 –
0,02

Stainless – steel,
polyester

0,002 –
0,02

Stainless – steel

Centrifug
al

Stainless, steel
Stainless – steel,
polyester - kain

Sumber; (Metcalf and Edy ,1979)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

14

C. Flotasi
Berfungsi untuk memisahkan partikel-partikel suspensi, seperti minyak,
lemak dan bahan-bahan apung lainnya yang terdapat dalam air limbah dengan
mekanisme pengapungan. Berdasarkan mekanismenya pemisahannya :
1. Bisa berlangsung secara fisik, yaitu tanpa penggunaan bahan untuk
membantu percepatan flotasi, hal ini bisa terjadi karena partikel-partikel
suspensi yang terdapat dalam air limbah akan mengalami tekanan ke atas
sehingga mengapung di permukaan karena berat jenisnya lebih rendah
dibanding berat jenis air limbah.
2. Bisa dilakukan dengan penambahan bahan, yaitu : Udara atau bahan
polimer yang diinjeksikan ke dalam cairan pembawanya, yang dapat
mempercepat laju partikel ringan menuju permukaan. Untuk keperluan
flotasi, udara yang diinjeksikan jumlahnya relatif sedikit (± 0,2 m3 udara)
untuk setiap m3 air limbah. Semakin kecil ukuran gelembung udara maka
proses flotasi akan semakin sempurna.
Rumus yang digunakan :
1.

a. Operasi tanpa resirkulasi
A 1,3 Sa (fP − 1)
=
S
Sa

b. Operasi dengan Resir kulasi
A 1,3 Sa (fP − 1). R
=
S
Sa . XQ

dengan :

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

15

A/ S =

perbandingan udara dengan padatan, mL udara/mg
padatan

Sa

= kelarutan udara, mL/L

f

= fraksi udara terlarut pada tekanan P, biasanya 0,5

P

= tekanan, atm

p + 14,7
= (U.S. customary units )
14,7
p + 101,35
= (SI units)
101,3

p

= gage pressure, lb/in2 gage (kPa)

Sa

= padatan lumpur, mg/L

Sumber: (Metcalf and Eddy,1991)

D. Netralisasi
Air buangan industri dapat bersifat asam atau basa/alkali, maka sebelum
diteruskan ke badan air penerima atau ke unit pengolahan secara biologis dapat
optimal. Pada sistem biologis ini perlu diusahakan supaya pH berbeda diantara
nilai 6,5 – 8,5. Sebenarnya pada proses biologis tersebut kemungkinan akan
terjadi netralisasi sendiri dan adanya suatu kapasitas buffer yang terjadi karena
ada produk CO2 dan bereaksi dengan kaustik dan bahan asam.seperti ditampilkan
pada gambar II.4.
Larutan dikatakan asam bila

: H+ > H- dan pH < 7

Larutan dikatakan netral bila

: H+ = H- dan pH = 7

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

16

Larutan dikatakan basa bila

: H+ < H- dan pH > 7

Ada beberapa cara menetralisasi kelebihan asam dan basa dalam limbah cair,
seperti :
-

Pencampuran limbah.

-

Melewatkan limbah asam melalui tumpukan batu kapur.

-

Pencampuran limbah asam dengan Slurry kapur.

-

Penambahan sejumlah NaOH, Na2CO3 atau NH4OH ke limbah asam.

-

Penambahan asam kuat (H2SO4,HCl) dalam limbah basa.

-

Penambahan CO2 bertekanan dalam limbah basa.

-

Pembangkitan CO2 dalam limbah basa.

Inffluen

pH sensor

Effluen

Pengaduk

Pipa Injeksi

Gambar Bak II.4 Netralisasi
Rumus yang digunakan :
a. Dosis dibawah H2SO4
Y (mg )
1
1
x
x 3
Vair (lt ) BM ( gr / grmol ) 10 (mg / gr )

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

17

dengan:
Y

= Dosis kebutuhan chlor

V

= Volume air

BM

= Berat mol

b. Reaksi : H2SO4 → 2H+ + SO42-

[H ] adalah :
+

2.

Y
Vair

[ ]

pH = − log H + = − log 2.

c.

Y
Vair

d. Kecepatan putaran turbine

Dt =

( ρ .g )

1

5

(KT .n .γ )
3

1

5

dengan :

-

Dt

= Diameter turbine

KT

= Koefisien turbine

n

= Kecepatan turbine

p

= Power

g

= Kecepatan gravitasi

γ

= Berat jenis air

Dosis diatas H2SO4

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

18

Y (mg )
1
1
×
× 3
Vair
BM (gr / gr mol ) 10 (mg / gr )

Dengan:

-

Y

= Dosis kebutuhan

V

= Volume air

BM

= Berat molekul

Reeaksi: NaOH → Na + OH ֿ◌
(H) adalah: Y/V air

-

pOH = 14-pH = -log (OH ֿ◌ )

-

Kecepatan putaran turbin

(ρ . g ) 2
1

Dt =

(KT . n . γ )
3

1

2

Dimana:
DT

= diameter turbin

KT

= kefisien turbin

N

= kecepatan turbin(rps)

ρ

= power(hp)
G
γ

= kecepatan gravitasi
= berat jenis

(Sumber: TA- Christian Harry W, 2002)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

19

E. Koagulasi-flokulasi
Tingkat pengolahan air buangan selalu meningkat karena perkembangan
industri yang kompleks dan meningkatnya populasi penduduk. Populasi yang ada
dalam air terdiri dari bahan-bahan organik dan an-organik terlarut, bakteri dan
plankton, dan bahan an-organik yang tersuspensi. Komponen kasar seperti pasir
dan lumpur dapat dipisah dengan cara pengendapan secara sederhana, sedangkan
partikel-partikel halus tidak dapat dipisah dengan cara sederhana tetepi harus
dilakukan flokulasi untuk menghasilkan partikel besar yang dapat dipisahkan.
Koloid adalah substans yang berdiameter 0.1 milimikcron-100 milimicron yang
sukar

dipisahkan

dengan

cara

sedimentasi

sederhana.

Untuk

dapat

mengatasinya(hydroxide) yang bermuatan positif. Hydroxide ini akan menetralisir
koloid yang bermuatan negatif.Koagulasi dapat didefinisikan sebagai proses
pembentukan partikel tak stabil dan penggabungan awal dari partikel awal tak
stabil dengan cara penambahan bahan kimia yang disebut koagulan. Untuk
keperluan ini diperlukan energi yang cukup besar dalam waktu yang relatif
singkat yaitu antara 30-60 detik, dengan gradien kecepoatan 200-500/detik.
Flokulasi adalah transportasi partikel tak stabil sehingga terjadi kontak antara
partikel.

Pada flokulasi dilakukan pengadukan lambat untuk mengabungkan

partikel yang tidak stabil sehingga membentuk flok yang cepat mengendap. Nilai
gradien kecepatan bewrkisar antara 10-90/detik, dengan waktu kontak

5-10

menit. (sumber: Putu wesen,2000).Pengolahan dengan proses koagulasi selalui
diikuti proses flokulasi. Fungsi dari proses koagulasi untuk memberikan
koagulan(alumunium sulfat, garam besi, dan kalium hidroksida) pada air buangan.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

20

Sedangkan fungsi dari proses flokulasi adalah untukm membentuk flok-flok.
Perbedaan proses flokulasi dan koagulasi pada kecepatan pengadukannya, proses
koagulasi memerlukan yang relatif cepat dibanding proses flokulasi.
Jenis-jenis koagulan yang sering digunakan adalah:
a. Koagulan Alumunium Sulfat
Alumunium sulfat dapat digunakan sebagai koagulan dalam pengolahan
air buangan. Koagulan ini membutukkan kehadiran alkalinitas dalam air untuk
membentuk flok. Dalam reaksi koagulasi, flok alum dituliskan sebagai Al(OH)3.
Mekanisme koagulasi ditentulkan oleh Ph, konsentrasi koagulan dan konsentrasi
koloid. Koagulan dapat menurunkan pH dan alkalinitas karbonat. Rentang pH
agar koagulasi dapat berjalan dengan baik antara 6-8. Didalam air koagulan alum
akan mengalami proses disosiasi, hidrolisa dan polimerisasi.
Reaksi disosiasi:
Al2(SO4)3

2Al³. 3SO4²-

Al2(SO4)3 + 6H2O

2Al(OH)3 +3H2SO4

Reaksi hidrolisa:

Reaksi polimerisai ion komplek
[Al(H2O)6]3+ + H+O

[Al(H2O)5 OH]2+ +H2O

[Al(H2O)5 OH]2+ +H2O

[Al(H2O)4 (OH)2]4+ +H2O

b. Koagulan Fer ri Clorida
c. Koagulan Chlorinated Copperas (Fe(SO 4)3), Fe Cl3 . 7H 2O
d. Koagulan Poly Aluminium Chlorid

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

21

J enis-jenis flokulasi, yaitu:
1. Flokulasi mekanis
2. Flokulasi hidrolis
-

Baffle channel flocculator

-

Gravel bed flocculator

-

Hidrolic jet flokulator

3. Flokulasi pneumatis
Pengolahan dengan proses koagulasi selalu diikuti dengan proses
flokulasi. Pengolahan dengan cara ini diperlukan untuk mengolah limbah
yang tingkat kekeruhannya cukup tinggi yang disebabkan oleh zat pencemar.
Perbedaan proses koagulasi dengan flokulasi adalah pada kecepatan
pengadukannya.

Koagulasi diperlukan pengadukan yang relatif cepat

sedangkan flokulasi pengadukannya secara perlahan seperti ditampilkan pada
gambar II.5.

Rumus yang digunakan :
1. Koagulasi
P
µC

-

G=

-

P = µ .G2 . C

Dimana :
P

= Tenaga motor (gr.cm/dtk)

G = Gradient kecepatan 500-1000( detik –1 )
C = Kapasitas ( cm 3 )

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

22

µ = Viskositas absolut ( 10-2 gr.massa/cm.dtk )
(besarnya tergantung temperatur)
-

Untuk blade :
P = 1,44 x 10-4 CD ρ [(1 – K) n]3 b ∑ (r4-ro4)
Dimana:
n

= Putaran per menit

k

= Koefisien gosokan

ρ = massa jenis air
r

= Jarak dari as kebagaian luar paddle

ro = jarak dari as ke bagian dalam paddle
2.

Flokulasi
-

P = µ C . G2

-

P = 1,44 x 104 CD ρ [(1 – K) n]3 b ∑ (r4-ro4)

-

V=

R

2

3

.S
n

1

2

Dimana :
R = jari – jari hidrolis
S = kemiringan saluran
n

= konstanta manning

V = kecepatan aliran (m/dt)
G = 20-100 detik-1
-

Kecepatan air pada saluran lurus :
VH = (15 – 45) cm/dt

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

23

-

Kecepatan air pada belokan :
VB = ( 2 – 3,5 ) . VH
Motor

Inffluen

Effluen

Inffluen

Effluen

Gambar II.5 Koagulasi – Flokulasi
( Sumber: Unit Operasi, Agus Slamet )

F. Bak Pengendap I
Effisiensi penyisihan dari bak pengendap pertama ini tergantung dari
kedalaman bak dan dipengaruhi oleh luas permukaan serta waktu detensi.
Berfungsi

untuk

memisahkan

padatan

tersuspensi

dari

cairan

dengan

menggunakan sistem gravitasi dengan syarat kecepatan horizontal partikel tidak
boleh lebih besar dari kecepatan pengendapan. Skimmer yang ada pada bak
pengendap I digunakan untuk tempat pelimpah lemak dan minyak yang
mengambang. Seperti ditampilkan pada gambar II.6.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

24

Gambar II.6 Bak Pengendap Rektanguler

Rumus yang digunakan :
1. Setling Zone
Untuk proses pengendapan atau pemisahan partikel dari buangan.
a. Kecepatan pengendapan partikel, mengikuti hukum Stokes.
Vs = g

18

.

(Ss − 1) .dρ 2
v

dengan :
Vs

= Kecepatan pengendapan partikel (cm/det)

g

= Percepatan gravitasi (cm/det2)

Ss

= Spesifik gravity

v

= Viskositas kinematik (cm2/det)

dp

= Diameter partikel (cm)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

25

b. Check terjadinya penggerusan

Vsc = [8. β α .(Ss − 1).g.dρ ] 2
1

dengan :
β

= Faktor friksi porositas : 0,02 – 0,12

α

= Faktor friksi hidrolis : 0,03

s

= Spesifik gravity

Dimana bila Vsc > Vh maka tidak terjadi penggerusan.
c. Check terjadinya aliran pendek, ditentukan oleh Froude Number
(NFr)

NFr =

Vh 2
g.R

dengan :
Vh

= Kecepatan horizontal (cm/det)

R

= Jari-jari hidrolis

Jika NFr > 10-5 tidak akan terjadi aliran pendek.
d. Check terjadinya aliran turbulensi ditentukan oleh Reynold
Number.
Nre =

Vh.R
v

Bila Nre < 2000 untuk mencegah terjadinya aliran turbulensi.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

26

2. Inlet Zone
Untuk memperluas aliran dari effluen ke settling zone.
Bila dipergunakan multiple openning :
Q = c. A.(2.g .H )

1

2

dengan :
Q = Debit air buangan (m3/detik)
c = Faktor kontraksi 0,6
A = Luas area total m2
H = Beda tinggi air di saluran dan di bak.
3. Outlet Zone
Zone ini dibatasi oleh beban pelimpah yang merupakan banyaknya air
yang melimpah perpanjang perperiode waktu.
a. Penentuan panjang weir :

Q .B〈5.HW
n
b. Tinggi diatas air weir :
Q = 0,342.L.H

3

2

dengan :
L = Panjang weir (m)
H = Tinggi air diatas weir (m)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

27

c. Sludge Zone
Untuk menampung material terendap dalam bentuk lumpur. Ruang lumpur
berbentuk limas terpancung.

{

1
V = t . A + A'+ ( A. A') 2
3

}

dengan :
A = Luas bagian atas limas (m2)
A’ = Luas bagian bawah limas (m2)
Sumber : (Huisman, L, Prof. Ir., Sedimentation and Flotation)

II.2.2. Pengolahan Sekunder (Secondary Treatment)
Pengolahan sekunder akan memisahkan koloid dan komponen organik
terlarut dengan proses biologis. Proses pengolahan biologis ini dilakukan secara
aerobik maupun anaerobik dengan efisiensi reduksi BOD antara 75 - 90 % serta
90 % SS.
Macam-macam pengolahan sekunder adalah:
a. Activated Sludge Proses
Dalam proses lumpur aktif, air limbah mengalir ke tangki aerasi. Ini
merupakan yang campuran kompleks yang mengandung bakteri, jamur,
protozoa, dan mikroorganisme lainnya dan keadaan ini disebut secara
kolektif sebagaii biomassa.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

28

b. Pegolahan dengan Biofilm
Macam-macam pengolahan dengan menggunakan biofilm :
Tricling Filter
Tricling filter menurunkan beban organik yang terdapat dalam air
buangan dengan cara mengalirkannya pada media yang permukaannya
diselimuti

oleh lumpur aktif sebagai biological film. Filter yang

digunakan batua- batuan, pasir, granit dan lain-lain dalam berbagai ukuran
mulai dari diameter 3/4 in sampai dengan diameter 2,5 in. Proses yang
terjadi adalah proses biologis yang memerlukan oksigen (aerobik).
Cara kerja Tricling filter :
Air limbah dari pengolahan primer dialirkan masuk melalui pipa yang
berputar diatas suatu lahan dengan media filter, beban organik yang ada dalam
limbah disemprotkan diatas media, dan diuraikan oleh mikroorganisme yang
menempel pada media filter. Bahan organik sebagai substrat yang terlarut dalam
air limbah di absorbsi dalam biofilm antar lapisan berlendir.
Pada lapisan bagian luar biofilm, bahan organik diuraikan oleh
mikroorganisme aerobik. Pertumbuhan mikroorganisme mempertebal lapisan
biofilm, oksigen yang terdifusi dapat dikomsumsi sebelum biofilm mencapai
ketebalan maksimum. Pada saat mencapai ketebalan penuh maka oksigen tidak
dapat mencapai penetrasi secara penuh, sehingga pada bagian dalam atau pada
permukaan media akan berat pada kondisi anaerobik. Pada saat lapisan biofilm
mengalami penambahan ketebalan, dan bahan organik yang diabsorbsi dapat
diuraikan oleh mikroorganisme namun tidak mencapai mikroorganisme yang

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

29

berada pada permukaan media. Dengan kata lain tidak tersedia bahan organik
untuk sel carbon pada bagian permukaan media, sehingga mikroorganisme sekitar
permukaan media mengalami fase endogenous atau kematian. Pada akhirnya
mikroorganisme sebagai biofilm tersebut akan lepas dari media, cairan yang
masuk akan ikut melepas atau mencuci dan mendorong biofilm keluar setelah itu
lapisan biofilm baru akan segera tumbuh. Fenomena lepasnya biofilm dari media
tersebut sloughing dan hal ini fungsi dari beban organik dan beban hidrolik pada
trickling filter tersebut. Beban hidrolik memberikan kecepatan daya gerus biofilm
sedangkan beban organik

memberikan kecepatan daya dalam biofilm.

Berdasarkan beban hidrolik dan organik maka dapat dikelompokan tipe trickling
filter low rate dan high rate.Trickling filter terdiri dari suatu bak dengan media
permeable

untuk

pertumbuhan

mikroorganisme.

Filter

media

biasanya

mempunyai ukuran diameter 25-100 mm, kedalaman filter berkisar 0,9-2,5m
(rata-rata 1,8) media filter dapat mencapai 12 m yang disebut sebagai tower
trickling filter.Air limbah didistribusikan pada bagaian atas dengan satu lengan
distributor yang dapat berputar. Filter juga dilengkapi dengan underdrain untuk
mengumpulkan biofilm yang mati untuk kemudian diendapakan dalam bak
sedimentasi. Bagaian cairan yang keluar biasanya dikembalikan lagi ketrickling
filter sebagai air pengencer air baku yang diolah seperti yang ditampilkan pada
gambar II.7.
(Metcalf and Eddy,1991)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

30

Gambar II.7 Trikling Filter

1) Formula NRc
Formula praktis yang dikembangkan oleh NRc
E1 =

100
1 + 0,0085 yo' / V1 . F1

Dimana:
E1

= efisiensi tricking filter (%)

y0

= lb BOD5 influent per hari (SOQ)

V

= volume filter bagian media (actft)

F

= faktor resirkuler

Harga F dihitung dengan persamaan resirkulasi
F=

1+ R / Q

(1 + 0,1R / Q)2

R/Q adalah perbandingan resirkulasi (nilai maksimal 8) untuk tricking
filter jenis low rate, harga aktiva tetap = 1; apabila kita menggunakan

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

31

2 tricking filter yang dibangun secara seri, maka kinerja filter kedua
dapat dihitung dengan rumus:
E2 =

100
0,0085
y 0 ' / V1 . F1
1+
1 − E1

Dimana:
E2

= efisiensi tricking filter kedua (%)

y0 '

= lb BOD5 influent per hari (S0 . Q)
= y0 . (1 – E1)

V

= volume filter bagian media (ft3)

F

= faktor resirkulasi (Metcalf and Eddy,1991

2) Kontrol Organik Loading
OL = S0 . Q/V
Dimana:
S0

= konsentrasi BOD5 (gr/m3)

Q

= debit air limbah (m3/dt)

V

= volume media tricking filter

3) Kontrol Hidraulic Loading
HL = Q/A
Dimana:
Q

= debit air limbah (m3/dt)

A

= luas media tricking filter (m2)

(Metcalf and Eddy,1991)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

32

c. Sludge Drying Bed
Sludge drying bed terdiri dari lapisan pasir kasar dengan kedalaman
15 – 25 cm, lapisan kerikil dengan ukuran yang berbeda – beda, dan pipa
yang berlubang – lubang sebagai jalan aliran air. Sludge drying bed dibuat
dengan beberapa bak / bagian, tergantung pada keperluannya. Pembagian ini
dimaksudkan agar lumpur benar – benar kering sebelum lumpur yang basah
dimasukkan kembali.
Lumpur dimasukkan ke dalam Sludge drying bed dengan ketebalan
20 – 30 cm dan dibiarkan hingga kering. Waktu pengeringan tergantung
kondisi setempat. Misalnya dalam waktu 10 – 15 dengan bantuan sinar
matahari hari dan akan dicapai tingkat kekeringan antara 30% - 40%. Rumus
yang digunakan adalah :
Vi =

V × (1 − p)
1 − pi

dengan :
Vi = volume cake kering, m3/hari
V = volume lumpur mula-mula, m3/hari
p

= kadar air mula-mula (%)

pi = kadar air yang diharapkan (%)

II.3. Presentase penyisihan pada berbagai bangunan.
Masing – masing bangunan mempunyai persen penyisihan yang
berbeda, persen penyisihan ditampilkan pada tabel II.5.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

33

Tabel II.5 KapasitasRemoval

Unit

Screening

Removal

Nilai

Sumber

BOD
COD
TSS
Minyak/Lemak

20% - 35%
20% - 35%
20% - 35%
-

Syed R. Qasim
Wastewater Treatment Plant
( Hal 156 )

85% - 90%

W. Wesley Eckenfelder, Jr.
Industrial Water
Pollution Control
( Hal 71 )

PH

Flotasi

BOD
COD
TSS
Minyak/Lemak
PH

Koagulasi

Flokulasi

BOD
COD
TSS
Minyak/Lemak
PH

Bak
Pengendap
I

BOD
COD
TSS
Minyak/Lemak
PH

UASB

BOD
COD
TSS
Minyak/Lemak
PH

Bak
Pengendap
II

BOD
COD
TSS
Minyak/Lemak
PH

35% - 75%
35% - 75%
92% - 98%
-

W. Wesley Eckenfelder, Jr.
Industrial Water
Pollution Control
( Hal 95 - 97 )

25% - 40%
25% - 40%
50% - 70%
Hampir 99%

Metchalf and Eddy
Wastewater Engeneering
Treatment and Reuse
( Hal 396 )

756% - 80%
90% - 95%
-

Metchalf and Eddy
Wastewater Engeneering
Treatment and Reuse
( Hal 1005 - 1023 )

80% - 90%
80% - 90%
80% - 90%
-

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

34

BAB III
DATA PERENCANAAN
III. 1. Kapasitas dan Kualitas Pengolahan Air Limbah
Sumber air buangan dari rumah potong hewan (RPH) ini
mempunyai debit (Q) sebesar 1125m3/hari. Sedangkan data kualitas air
buangan yang akan diolah tercantum pada table III.1

Tabel III.1. Kar akter istik buangan RPH yang har us diolah
NO

par ameter

Kadar ( mg/liter )

1

BOD

2000

2

COD

4000

3

TSS

2500

4

NH3-N

100

5

Minyak/ lemak

100

6

pH

6

III.2. Kualitas Efluent yang Direncanakan
Kualitas air buangan setelah diolah diharapkan sesuai dengan
standart baku mutu limbah cair sesuai S.Kep Gubenur Jawa Timur No.45
Tahun 2002. Seperti ditampilkan pada table III.2

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

35

Tabel III.2.Baku Mutu Limbah Cair
Baku Mutu Limbah Cair Untuk Industri RPH
Volume air limbah maximum untuk hewan sapi, kerbau dan kuda 1,5 m³/ekor/hari
Volume air maksimum untuk hewan kambing dan domba 0,015 m³/ekor/hari
Volume air limbah maksimum untuk hewan babi 0,65 m³/ekor/hari
Parameter

Kadar Maximum (Mg/l)

BOD

100

COD

200

TSS

100

Minyak dan Lemak

15

NH3-N

25

PH

6–9

Sumber : SK Gubernur No. 45 Tahun 2002

III. 3. Sistem Pengolahan
Sistem pengolahan yang direncanakan yaitu proses pengolahan
secara fisika,kimia dan biologi. Adapun tahapan tahapan proses
pengolahannya sebagai berikut :
a. Proses pendahuluan : Saluran pembawa, Screening, Bak penampung dan
Pemompaan.
b. Proses Tingkat I

: Flotasi, Bak pengendap I.

c. Proses Tingkat II

: Activated sludge, Bak pengendap II.

d. Pengolahan lumpur : Sludge drying bed.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

36

III. 4. Diagram Alir Pengolahan Limbah
Berdasarkan dari data kualitas air buangan yang akan diolah dan
kualitas air buangan sesuai dengan baku mutu, maka alternatif pengolahan
limbah yang dipilih untuk rangkaian proses pengolahan ditampilkan dalam
diagram alir pada tabel III.1.

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

37

SaluranPembawa

Screen

Bak penampung dan Pompa

Flotasi

Bak pengendap I

R
e
y
c
l
e

Limbah
padat

Activated Sludge +
Nitrifikasi

Bak pengendap II

Badan Air

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

Sludge
Driying
Bed

38

BAB IV
PERHITUNGAN

IV.1.

Saluran Pembawa
IV.1.1. Kriteria Rumus
1. Luas Permukaan (A) = B * y
2. Keliling Basah (P) = B + 2y
3. Jari-jari Hidrolis (R) =

A
P

4. Kemiringan Saluran / Slope (I) = tg x
2

5. Kecepatan Saluran (V) =

1

1
*R3 *I 2
n

6. Check debit (Q) = A * V
(BambangTriadmodjo, 2008, Hidraulika II, Bab IV)

IV.1.2. Data Perencanaan
1. Dibuat saluran pembawa berbentuk persegi
2. Bahan saluran beton, koefesien maning (n) = 0,013
(BambangTriadmodjo, 2008, Hidraulika II, Tabel 4.2 Hargakoefisien Manning)

3. Data jumlah debit yang masuk = Qtotal = 1125 m3/hari = 0,013 m3/dt
Qpuncak /jam = dalam 1 hari = 8 jam
Asumsi = 08.00 = 0,0032 m3/dt
11.00 = 0,0044 m3/dt
13.00 = 0,0029 m3/dt
16.00 = 0,0025 m3/dt

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

39

Q

= 0,013 m3/dt

Maka diperoleh Q saluran = 0,0044 m3/dt
4. Kecepatan aliran = 0,6 m/dt
5. h = 0,25 m
IV.1.3. Perhitungan
1. Luas Permukaan (A)
Q Saluran = 0,0044 m3/dt
Q=A*V→ A=

Q
maka
V

0,0044m3 / dtk
= 0,037 m2 , Faktor Keamanan 20%
A=
0,6 m/dtk

A = 0,037 * 1,2 = 0,0876 m2
2. Menentukan Dimensi Saluran :
B=2y
K=

y
2

A=B*y
0,0876 = 2 y2
y = 0,209
B=2*y
B = 2 * 0,209
B = 0,418
3. KelilingBasah (P)
P = B + 2y = 0,418 m + 2 (0,209 m)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

40

= 0,836 m
4. Jari-jariHidrolis (R)
R=

A
0,0876m 2
=
= 0,1048m
P
0,836m

5. KemiringanSaluran

I=

0,6 * 0,013
0,1048

→ I=




=

2

.

= 0,173 m

3

6. Head loss
HL =

I
P

HL =

0,173m
5m

HL = 0,0904 m
Sketsa Saluran Pembawa

0,209 m

0,418 m

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

41

IV.2. Scr een
IV.2.1. KriteriaDesain :
Tipe

: Bar Screen (manual)
Satuan
Jenis Manual
Tebal penampang batang (w) :
mm
25-30
Lebar penampang batang (d) :
mm
5-15
Jarak antar bar/kisi (r)
:
mm
25-50
Kemiringan batang vertical λ :

30-45
Kecepatan melalui kisi (vs) :
mm
0,3-0,6
Headloss
:
mm
150
(Sumber : M et calf and Edy,2003)

IV.2.2. KriteriaRumus :
1. Ws = n . d + (1 + n) * r, Ws = lebar saluran
n = jumlah kisi
2. Wc = Ws – n * d , Wc = lebar bukaan total
Q
3. V check =
, t = tinggi saluran
wc * t
Q
4. V yang melalui tiap bar =
d *t
5. Headloss = β


IV.2.3. Direncanakan :
Q puncak = 0,0044 m3/dtk
Lebar saluran (ws) = 0,35 m
Lebar penampang batang (d) = 15 mm
Tebal penampang batang (w) = 30 mm
Jarak antar bar/ kisi (r) = 35 mm
Kemiringan batang vertical (λ) = 45 ◦
IV.2.4. Perhitungan :
1. Menentukan jumlah bar / kisi → Ws = n . d + (1 + n) * r
→ 0,35m = n * 0,015 m + (1 + n) * 0,035m
0,35 = 0,015 n + 0,035 + 0,035 n
0,315 = 0,05 n → n = 6,3
n = 6 batang
2. Menentukan lebar bukaan

→ Wc = Ws – n * d
Wc = 0,35 m – (6 * 0,015 m )

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

42

= 0,35 m – 0,09 m = 0,26 m
3. Check kecepatan, t saluran = 0,42 m
=

0,0044 m 3 /dt
Q
=
wc * t 0,26m * 0,25m

= 0,0676 m/dtk
4. Kecepatan tiap bar

0,0044 m 3 /dt
Q
=
0,015m * 0,25m
d *t
= 1,17 m/dtk



5. Menentukan panjang kemiringan = X merupakantinggi screen
= t saluran + free broad
= 0,25 + 0.05 = 0.3

= sin (λ) =

Sin 45 =

Z=

X
Z

0,3
Z

0,3
0,707

Z = 0,4243 m = 0.4 m
6. Check Headloss





Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

43

4

 0,03  3  0,25 
= 2,42 
 
 * sin 45
 0,035   2 * 9,81

= 0,0178 m
IV.3. Flotasi
IV.3.1. Kriteria Desain
1. Bak Flotasi
1. Tekanan Udara (P) = 275 – 350 KPa

(Metcalf&Eddy,420)

2. Rasio Udara per Padatan (A/S) = 0,005 – 0,06

(Metcalf&Eddy,422)

3. Surface Loading Rate (SLR) = 8 – 160 L/m2.mnt(Metcalf&Eddy,423)
4. Fraksi Udara Terlarut dalam Tekanan P (f) = 0,5 (Metcalf&Eddy,423)
5. Kelarutan Udara (sa)
Temperature ˚C
sa (mL/L)

(Metcalf&Eddy,423)
0
29,2

10
22,8

20
18,7

30
15,7

2. Bak Penampung Minyak
1. Effluent Minyak dan Lemak dari Bak Flotasi

Grafik 3.35 Eckenfelder, hal. 111

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

44

2. Massa Jenis Minyak (ρm)

(Appendxi. A: White,392)

IV.3.2. Kriteria Rumus
1. Bak Flotasi
a. Tekanan Udara dalam atm (P)
A
S

=

1,3.sa.( f .P − 1)
Sa

(Metcalf&Eddy,422)

Dengan :
-

A
= Rasio udara per padatan (mL/mg)
S

-

sa = Kelarutan udara (mL/L)

-

f = Fraksi Udara Terlarut dalam Tekanan P

-

P = Tekanan Udara (atm)

-

Sa = Influent Padatan Tersuspensi (mg/L)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

45

b. Tekanan Udara dalam KPa (p)
P

=

p + 101,35
101,35

(Metcalf&Eddy,423)

Dengan :
-

P = Tekanan Udara dalam atm

-

p = Tekanan Udara dalam KPa Debit Recycle (R)

c. Luas Bak (A)
A

=

Q
SLR

(Eckenfelder,119)

Dengan :
-

A = Luas Bak (m2)

-

Q = Debit per Bak Flotasi (m3/dtk)

-

SLR = Surface Loading Rate (L/m2.mnt)

d. Volume Bak Flotasi (V)
Td

=

V
Q

Dengan :
-

V = Volume Bak Flotasi (m3)

-

Q total = Jumlah Debit Total per Bak Flotasi (m3/dtk)

-

Td = Waktu Tinggal (dtk)

e. Panjang Bak (P)
A

=

P.l

Dengan :
-

A = Luas Bak (m2)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

46

-

P = Panjang Bak (m)

-

l = Lebar Bak (m)

f. Tinggi Bak Flotasi
V

=

P.l. t

karena P . l = A
V

=

maka

A.H

Dengan :
-

t = Tinggi Bak (m)

-

V = Volume (m3)

-

A = Luas Bak (m2)

g. Cek Volume (V)
V

=

P.t.H

Dengan :
-

V = Volume (m3)

-

P = Panjang Bak (m)

-

L = Lebar Bak (m)

-

t = Tinggi Bak (m)

2. Bak Penampung Minyak
a. Effluent Minyak dan Lemak
Plot nilai A/S pada grafik 3.35 Eckenfelder, hal.111
b. % Removal
% Removal =

Inf .Minyak − Eff .Minyak
.100% (Spellman,4.24)
Inf .Minyak

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

47

Dengan :
-

% Removal = Prosetantase penyisihan (%)

-

Inf.Minyak = Influent minyak (mg/L)

-

Eff.Minyak = Effluent Minyak (mg/L)

c. Minyak teremoval
Minyak teremoval = Inf.Minyak – Eff.Minyak
Dengan :
-

Inf.Minyak = Influent minyak (mg/L)

-

Eff.Minyak = Effluent Minyak (mg/L)

d. Berat Minyak ke Bak Penampung Minyak (m)
m = Minyak teremoval . Qtotal

(Spellman,4.40)

Dengan :
-

m = Berat Minyak ke Bak Penampung Minyak (g/dtk)

-

Minyak teremoval (mg/L)

-

Qtotal = Debit Total per Bak Flotasi (m3/dtk)

f. Debit Minyak ke Bak Penampung Minyak (Qm)
Qm

=

m
ρm

Dengan :
-

Qm = Debit Minyak ke Bak Penampung (m3/dtk)

-

m = Berat Minyak ke Bak Penampung Minyak (g/dtk)

-

ρ m = Massa Jenis Minyak (g/L)

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

48

g. Volume Bak Penampung Minyak (Vm)

Vm
Qm

Td =

(Spellman,4.15)

Dengan :
-

Vm = Volume Bak Penampung Minyak (m3)

-

Qm = Debit Minyak ke Bak Penampung (m3/dtk)

-

Td = Waktu Tinggal (dtk)

h. Dimensi Bak Penampung Minyak
Vm

=

Pm . Lm . Hm

(Spellman,4.12)

Dengan :

i.

-

Vm = Volume Bak Penampung Minyak (m3)

-

Pm = Panjang Bak Penampung Minyak (m)

-

Lm = Lebar Bak Penampung Minyak (m)

-

Hm = Tinggi Bak Penampung Minyak (m)

Cek Volume (V)
Vm

=

Pm . Lm . Hm

(Spellman,4.12)

Dengan :

j.

-

Vm = Volume Bak Penampung Minyak (m3)

-

Pm = Panjang Bak Penampung Minyak (m)

-

Lm = Lebar Bak Penampung Minyak (m)

-

Hm = Tinggi Bak Penampung Minyak (m)

Diameter Pipa Outlet minyak (D)
Q

=

A.V

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

49

A

=

Q

=

D

=

¼ π . D2
V * ¼ π * D2

4Qm
πV

k. Tinggi minyak di atas pelimpah minyak (h)
3

Qm

=

2
xCdxbx 2 g xH 2
3

(Triatmodjo,174)

-

Qm = Debit Minyak ke Bak Penampung (m3/dtk)

-

Cd = Koefisien Konstruksi

-

b = Panjang saluran pelimpah = Lebak bak Flotasi (m)

-

g = Percepatan gravitasi (m/dtk2)

-

h = Tinggi minyak di atas pelimpah minyak (m)

IV.3.3. Data Perencanaan
I. Bak Flotasi
Limbah dari satu bak penampung dialirkan ke satu bak flotasi, debit tiap
bak flotasi = debit tiap bak penampung.
1. Q = 0,013 m3/dtk

(Dari bak Koagulasi)

2. A/S = 0,009 mL/mg
3. f = 0,5
4. sa = 15,7 mL/L
6. SLR = 20 L/m2.mnt
7. Direncanakan ada 1bak flotasi
II. Bak Penampung Minyak
1.

ρ.minyak = 804 kg/m

3

= 804 g/L

Hak Cipta © milik UPN "Veteran" Jatim :
Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.

50

2.

Td Bak Minyak = 3 hr

3.

Cd = 0,62

(Triatmodjo,174)

IV.3.4. Perhitungan
I. Bak Flotasi
1. Tekanan Udara dalam atm (P)
A
S

=

1,3.sa.( f .P − 1)
Sa

0,009 mL/mg

=

1,3.(15,