Pengaruh Penambahan Amonium Sulfat dan Sukrosa pada Media Air Kelapa Terhadap Produksi dan Karakteristik Fisik Selulosa Mikrobial Acetobacter xylinum
26
Amnuaikit, T., Chusuit, T., Raknam, R. and Boonme, P. 2011. Effects of a
Cellulose Mask Synthesized by a Bacterium on Facial Skin
Characteristics and User Satisfaction. Dove Press. 4: 77-81.
Ampe, F., Benomar, N., Moizan, C., Wacher, C. and Guyot, J. 1999. Polyphasic
Study of Microorganism in Mexican Pozol, a Fermented Maize Dough,
Demonstrates the Need for Cultivation-independent Method to
Investigate Traditional Fermentation. Applied & Environmental
Microbiology. 65:5464-5473.
AOAC. 1979. Official Methods of Analysis of Assosiation of Official Analytical
Chemists. Di dalam Sudarmadji, S. Haryono, B dan Suhardi. Prosedur
Analisa untuk Bahan Makanan dan Pertanian. Yogyakarta: Liberty.
Baumann, U and Bisping, B. 1995. Proteolysis During Tempe Fermentation. Food
Microbiology.12:39-47.
Brown, R. M.JR. 2004. Cellulose Structure and Biosynthesis: What is in Store for
the 21st Century?. Journal of Polymer Science. 42:487–495.
Buckle, K. A., Edwards, R. A., Fleet, G. H. dan Wooton, M. 1985. Ilmu Pangan.
Jakarta: UI Press.
Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. 1999. Kinetic Aspects of
Bacterial Cellulose Formation in Nata de Coco Culture System.
Carbohydrate Polymers. 40:137–143.
Caplice, E and Fitzgerald, G. F. 1999. Food Fermentations: Role of
Microorganisms in Food Production and Preservation. International
Journal Food Microbiology. 50:131-149.
Cheng, K., Catchmark, J. M. and Demirci, A. 2009. Effect of Different Additives
on Bacterial Cellulose Production by Acetobacter xylinum and Analysis
of Material Property. Cellulose. 16:1033–1045.
Çoban, E. P and Biyik, H. 2011. Effect of Various Carbon and Nitrogen Sources
on Cellulose Synthesis by Acetobacter lovaniensis HBB5. African
Journal of Biotechnology. 10:5346-5354.
Denter, J., Rehm, H. and Bisping, B. 1998. Changes in the Contents of Fat-soluble
Vitamins and Provitamins During Tempe Fermentation. International
Journal Food Microbiology. 45:129-134.
De Reu, J. C., Ramdaras, D.,Rambouts, F. M. Nout, M. J. R. 1994. Changes in
Soya Bean Lipids During Tempe Fermentation. Food Chemistry. 50:171175.
27
Gama, M., Gatenholm, P. and Klemm, D. 2013. Bacterial Nanocellulose. Boca
Raton: CRC Press.
Hesseltine, C. W. 1991. Mixed Culture Fermentation an Introduction to Oriental
Food Fermentation. McGraw-Hill, Inc. New York.
Holzapfel, W. H. 2002. Appropriate Starter Culture Technologies for Small-Scale
Fermentation in Developing Countries. International Journal Food
Microbiology.75:197-212.
Hornung, M., Biener, R. and Schmauder, H. 2009. Dynamic Modelling of
Bacterial Cellulose Formation. Journal of Enginering Live Sciences. 9
(4): 342-347.
Hubert, J., Berger, M., Nepveu, F., Paul, F. and Dayde, J. 2008. Effects of
Fermentation on the Phytochemical Composition and Antioxidant
Properties of Soy Germ. Food Chemistry.109:709-721.
Iguchi, M., Yamanaka, S. and Bidhiono, A. 2000. Review Bacterial Cellulose – A
Masterpiece of Nature’s Arts. Journal of Materials Science. 35:261– 270.
Jagannath, A., Kalaiselvan, A., Manjunatha, S.S., Raju, P.S. and Bawa, A.S. 2008.
The Effect of pH, Sucrose and Ammonium Sulphate Consentration on
the Production of Cellulose (Nata de Coco) by Acetobacter xylinum.
World Journal Microbiology and Biotechnology. 24: 2593-2599.
Ketaren, S. 1978. Daya Guna Air Kelapa. Bogor: Departemen Teknologi Hasil
Pertanian, Fatemepa IPB.
Kholifah, S. 2010. Pengaruh Penambahan ZA dan Gula Terhadap Karakteristik
Fisik, Organoleptik dan Kandungan Logam Nata de Coco. [Skripsi].
Bogor: IPB.
Kimura, S and Itoh, T. 1995. Evidence for the Role of the Glomerulocyte in
Cellulose Synthesis in the Tunicate, Metandrocarpa uedai. Protoplasma.
186:24-33.
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonc¸alvesMis´kiewicz, M., Turkiewicz, M. and Bielecki, S. 2002. Factors
Affecting the Yield and Properties of Pacterial Cellulose. Journal of
Industrial Microbiology and Biotechnology. 29: 189-195.
uedai
Kurosumi, A., Sasaki, C., Yamashita, Y. and Nakamura, Y. 2009. Utilization of
Various Fruit Juices as Carbon Source for Production of
BacterialCellulose by Acetobacter xylinum NBRC 13693. Carbohydrate
Polymers. 76:333-335.
Kwiatkowski, A., Clemente, E., Scarcelli, B. and Vida, J. B. 2008. Quality of
Coconut Water ‘in natura’ Belonging to Green Dwarf Fruit Variety
28
inDifferent Stages of Development, in Plantation on the Northwest Area
of Paraná, Brazil. Journal of Food, Agriculture & Environment. 6:102105.
Lestari, P., Elfrida, N., Suryani, A. and Suryadi, Y. 2014. Study on the Production
of Bacterial Cellulose from Acetobacter xylinum using Agro-Waste.
Jordan Journal of Biological Sciences. 7:75-80.
Masaoka, S., Ohe, T. and Sakota, N. 1993. Production of Cellulose from Glucose
by Acetobacter xylinum. Journal of Fermentation and Bioengineering.
75:18-22.
Melliawati, R., Prayitno,N.R. dan Sukara, E. 1998. Pengaruh Cara Sterilisasi dan
Jenis
Air
Kelapa
Terhadap
Produksi
Bioselulosa
oleh
Acetobactersp.EMN-1. Prosiding Simposium Tahunan Perhimpunan
Mikrobiologi Indonesia. Bandar Lampung, Desember 1997.
Melliawati, R. 2008. Kajian Bahan Pembawa untuk Meningkatkan Kualitas
InokulumPasta Nata de Coco. Biodiversitas. 9:255-258.
Mounier, J., Monnet, C., Vallaeys, T., Arditi, R., Santhou, A., Helias, A. and
Irlinger, F. 2008. Microbial Interaction Within a Cheese Microbial
Community. Applied & Environmental Microbiology. 74:172-181.
Nainggolan, J. 2009. Kajian Pertumbuhan Bakteri Acetobacter sp. dalam
Kombucha-Rosella Merah (Hibiscus sabdariffa) pada Kadar Gula dan
Lama Fermentasi yang Berbeda. [Thesis]. Medan : USU.
Ogier, J. C., Lafarge, V., Girard, V., Rault, A., Maladen, V., Gruss, A., Leveau, J.
Y. and Delacroix-Buchet. 2004. Molecular Fingerprinting of Dairy
Microbial Ecosystems by Use of Temporal Temperature and Denaturing
Gradient Gel Electrophoresis. Applied & Environmental Microbiology.
70:5628-5643.
Raghunathan, D. 2013. Production of Microbial Cellulose from the New Bacterial
Strain Isolated From Temple Wash Waters. International Journal of
Current Microbiology & Applied Sciences. 2:275-290.
Rajwade, J. M., Paknikar, K. M. and Kumbhar, J. V. 2015.Applications of
Bacterial Cellulose and its Composites in Biomedicine.Applied
Microbiology & Biotechnology. 70:5628-5643.
Ramana, K. V., Tomar, A. and Singh, L. 2000. Effect of Various Carbon and
Nitrogen Sources on Cellulose Synthesisby Acetobacter xylinum. World
Journal of Microbiology & Biotechnology. 16:245-248.
Randazzo, C. L., Torriani, S., Akkermans, D. L., de Vos, W. M. and Vaughan, E.
E. 2002. Diversity, Dynamics, and Activity of Bacterial Communities
29
During Production of an Artisanal Sicilian Cheese as Evaluated by 16S
rRNA Analysis. Applied & Environmental Microbiology. 68:1882-1892.
Saragih, Y. P. 2004. Membuat Nata de Coco. Jakarta: Puspa Swara.
Seumahu, C. A. 2005. Analisa Dinamika Populasi Bakteri Selama Proses
Fermentasi Nata de Coco Menggunakan Amplified Ribosomal DNA
Restriction Analysis (ARDRA). [Thesis]. Bogor : IPB.
Scionti, G. 2010. Mechanical Properties of Bacterial Cellulose Implants. [Thesis].
Sweden: Chalmers University of Technology.
SNI 01-2891-1992. Analisis Kadar Air Metode Gravimetri. Badan Standardisasi
Nasional, Jakarta.
SNI 01-4317-1996. Standar Mutu Produk Nata dalam Kemasan. Badan
Standardisasi Nasional, Jakarta.
SNI 02-1760-2005. Syarat Mutu Pupuk Amonium Sulfat. Badan Standardisasi
Nasional, Jakarta.
Son, H. J., Kim, H. G., Kim, K., Kim, H. S., Kim, Y. G. and Lee, S. J. 2003.
Increased Production of Bacterial Cellulose by Acetobacter sp.V6 in
Synthetic Media Under Shaking Culture Conditions. Bioresource
Technology. 86:215–219.
Sukumaran, R. K., Singhania, R. R. and Pandey, A. 2005. Microbial CellulasesProduction, Applications and Challenges. Journal of Scientific &
Industrial Research. 64:832-864.
Sutarminingsih, L. 2004. Peluang Usaha Nata de Coco. Yogyakarta: Kanisius.
Torres, F. G., Commeaux, S. and Troncoso, O. P. 2012. Biocompatibility of
Bacterial Cellulose Based Biomaterials. Journal of Functional
Biomaterials. 3:864-878.
Trovatti, E. 2012.The Future of Bacterial Cellulose and Other Microbial
Polysaccharides. Journal Renewable Material. 1(1).
Van der Meulen, R., Scheirlinck, I., Van Schoor, A., Huys, G., Vancanneyt, M.,
Vandamme, P. and De Vuyst, L. 2007. Population Dynamics and
Metabolite Target Analysis of Lactic Acid Bacteria During Laboratory
Fermentations of Wheat and Spelt Sourdoughs. Applied & Environtal
Microbiology. 73:4741-4750.
Vigliar, R., Salepanian, V. L. and Neto, U. F. 2006. Biochemical Profile of
Coconut Water from Coconut Palms Planted in an Inland Region.
Journal de Pediaria. 82:308-312.
30
Winarno, F. G. 1980. Kimia Pangan dan Gizi. Bogor: PUSBANGTEPA, IPB.
Zambre, M., Chowdhury, B., Kuo, Y. H., Montagu, M. V., Angenon, G. and
Lambein, F. 2002. Prolific Regeneration of Fertile Plants from Green
Nodular Callus Induced from Meristematic Tissues in Lathyrus sativus L.
(Grass Pea). Plant Science. 163:1107- 1112.
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. and Römling, U. 2001. The
Multicellular Morphotypes of Salmonella typhimurium and Escherichia
coliProduce Cellulose as the Second Component of the Extracellular
Matrix. Molecular Microbiology. 39: 1452-1463.
Amnuaikit, T., Chusuit, T., Raknam, R. and Boonme, P. 2011. Effects of a
Cellulose Mask Synthesized by a Bacterium on Facial Skin
Characteristics and User Satisfaction. Dove Press. 4: 77-81.
Ampe, F., Benomar, N., Moizan, C., Wacher, C. and Guyot, J. 1999. Polyphasic
Study of Microorganism in Mexican Pozol, a Fermented Maize Dough,
Demonstrates the Need for Cultivation-independent Method to
Investigate Traditional Fermentation. Applied & Environmental
Microbiology. 65:5464-5473.
AOAC. 1979. Official Methods of Analysis of Assosiation of Official Analytical
Chemists. Di dalam Sudarmadji, S. Haryono, B dan Suhardi. Prosedur
Analisa untuk Bahan Makanan dan Pertanian. Yogyakarta: Liberty.
Baumann, U and Bisping, B. 1995. Proteolysis During Tempe Fermentation. Food
Microbiology.12:39-47.
Brown, R. M.JR. 2004. Cellulose Structure and Biosynthesis: What is in Store for
the 21st Century?. Journal of Polymer Science. 42:487–495.
Buckle, K. A., Edwards, R. A., Fleet, G. H. dan Wooton, M. 1985. Ilmu Pangan.
Jakarta: UI Press.
Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. 1999. Kinetic Aspects of
Bacterial Cellulose Formation in Nata de Coco Culture System.
Carbohydrate Polymers. 40:137–143.
Caplice, E and Fitzgerald, G. F. 1999. Food Fermentations: Role of
Microorganisms in Food Production and Preservation. International
Journal Food Microbiology. 50:131-149.
Cheng, K., Catchmark, J. M. and Demirci, A. 2009. Effect of Different Additives
on Bacterial Cellulose Production by Acetobacter xylinum and Analysis
of Material Property. Cellulose. 16:1033–1045.
Çoban, E. P and Biyik, H. 2011. Effect of Various Carbon and Nitrogen Sources
on Cellulose Synthesis by Acetobacter lovaniensis HBB5. African
Journal of Biotechnology. 10:5346-5354.
Denter, J., Rehm, H. and Bisping, B. 1998. Changes in the Contents of Fat-soluble
Vitamins and Provitamins During Tempe Fermentation. International
Journal Food Microbiology. 45:129-134.
De Reu, J. C., Ramdaras, D.,Rambouts, F. M. Nout, M. J. R. 1994. Changes in
Soya Bean Lipids During Tempe Fermentation. Food Chemistry. 50:171175.
27
Gama, M., Gatenholm, P. and Klemm, D. 2013. Bacterial Nanocellulose. Boca
Raton: CRC Press.
Hesseltine, C. W. 1991. Mixed Culture Fermentation an Introduction to Oriental
Food Fermentation. McGraw-Hill, Inc. New York.
Holzapfel, W. H. 2002. Appropriate Starter Culture Technologies for Small-Scale
Fermentation in Developing Countries. International Journal Food
Microbiology.75:197-212.
Hornung, M., Biener, R. and Schmauder, H. 2009. Dynamic Modelling of
Bacterial Cellulose Formation. Journal of Enginering Live Sciences. 9
(4): 342-347.
Hubert, J., Berger, M., Nepveu, F., Paul, F. and Dayde, J. 2008. Effects of
Fermentation on the Phytochemical Composition and Antioxidant
Properties of Soy Germ. Food Chemistry.109:709-721.
Iguchi, M., Yamanaka, S. and Bidhiono, A. 2000. Review Bacterial Cellulose – A
Masterpiece of Nature’s Arts. Journal of Materials Science. 35:261– 270.
Jagannath, A., Kalaiselvan, A., Manjunatha, S.S., Raju, P.S. and Bawa, A.S. 2008.
The Effect of pH, Sucrose and Ammonium Sulphate Consentration on
the Production of Cellulose (Nata de Coco) by Acetobacter xylinum.
World Journal Microbiology and Biotechnology. 24: 2593-2599.
Ketaren, S. 1978. Daya Guna Air Kelapa. Bogor: Departemen Teknologi Hasil
Pertanian, Fatemepa IPB.
Kholifah, S. 2010. Pengaruh Penambahan ZA dan Gula Terhadap Karakteristik
Fisik, Organoleptik dan Kandungan Logam Nata de Coco. [Skripsi].
Bogor: IPB.
Kimura, S and Itoh, T. 1995. Evidence for the Role of the Glomerulocyte in
Cellulose Synthesis in the Tunicate, Metandrocarpa uedai. Protoplasma.
186:24-33.
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonc¸alvesMis´kiewicz, M., Turkiewicz, M. and Bielecki, S. 2002. Factors
Affecting the Yield and Properties of Pacterial Cellulose. Journal of
Industrial Microbiology and Biotechnology. 29: 189-195.
uedai
Kurosumi, A., Sasaki, C., Yamashita, Y. and Nakamura, Y. 2009. Utilization of
Various Fruit Juices as Carbon Source for Production of
BacterialCellulose by Acetobacter xylinum NBRC 13693. Carbohydrate
Polymers. 76:333-335.
Kwiatkowski, A., Clemente, E., Scarcelli, B. and Vida, J. B. 2008. Quality of
Coconut Water ‘in natura’ Belonging to Green Dwarf Fruit Variety
28
inDifferent Stages of Development, in Plantation on the Northwest Area
of Paraná, Brazil. Journal of Food, Agriculture & Environment. 6:102105.
Lestari, P., Elfrida, N., Suryani, A. and Suryadi, Y. 2014. Study on the Production
of Bacterial Cellulose from Acetobacter xylinum using Agro-Waste.
Jordan Journal of Biological Sciences. 7:75-80.
Masaoka, S., Ohe, T. and Sakota, N. 1993. Production of Cellulose from Glucose
by Acetobacter xylinum. Journal of Fermentation and Bioengineering.
75:18-22.
Melliawati, R., Prayitno,N.R. dan Sukara, E. 1998. Pengaruh Cara Sterilisasi dan
Jenis
Air
Kelapa
Terhadap
Produksi
Bioselulosa
oleh
Acetobactersp.EMN-1. Prosiding Simposium Tahunan Perhimpunan
Mikrobiologi Indonesia. Bandar Lampung, Desember 1997.
Melliawati, R. 2008. Kajian Bahan Pembawa untuk Meningkatkan Kualitas
InokulumPasta Nata de Coco. Biodiversitas. 9:255-258.
Mounier, J., Monnet, C., Vallaeys, T., Arditi, R., Santhou, A., Helias, A. and
Irlinger, F. 2008. Microbial Interaction Within a Cheese Microbial
Community. Applied & Environmental Microbiology. 74:172-181.
Nainggolan, J. 2009. Kajian Pertumbuhan Bakteri Acetobacter sp. dalam
Kombucha-Rosella Merah (Hibiscus sabdariffa) pada Kadar Gula dan
Lama Fermentasi yang Berbeda. [Thesis]. Medan : USU.
Ogier, J. C., Lafarge, V., Girard, V., Rault, A., Maladen, V., Gruss, A., Leveau, J.
Y. and Delacroix-Buchet. 2004. Molecular Fingerprinting of Dairy
Microbial Ecosystems by Use of Temporal Temperature and Denaturing
Gradient Gel Electrophoresis. Applied & Environmental Microbiology.
70:5628-5643.
Raghunathan, D. 2013. Production of Microbial Cellulose from the New Bacterial
Strain Isolated From Temple Wash Waters. International Journal of
Current Microbiology & Applied Sciences. 2:275-290.
Rajwade, J. M., Paknikar, K. M. and Kumbhar, J. V. 2015.Applications of
Bacterial Cellulose and its Composites in Biomedicine.Applied
Microbiology & Biotechnology. 70:5628-5643.
Ramana, K. V., Tomar, A. and Singh, L. 2000. Effect of Various Carbon and
Nitrogen Sources on Cellulose Synthesisby Acetobacter xylinum. World
Journal of Microbiology & Biotechnology. 16:245-248.
Randazzo, C. L., Torriani, S., Akkermans, D. L., de Vos, W. M. and Vaughan, E.
E. 2002. Diversity, Dynamics, and Activity of Bacterial Communities
29
During Production of an Artisanal Sicilian Cheese as Evaluated by 16S
rRNA Analysis. Applied & Environmental Microbiology. 68:1882-1892.
Saragih, Y. P. 2004. Membuat Nata de Coco. Jakarta: Puspa Swara.
Seumahu, C. A. 2005. Analisa Dinamika Populasi Bakteri Selama Proses
Fermentasi Nata de Coco Menggunakan Amplified Ribosomal DNA
Restriction Analysis (ARDRA). [Thesis]. Bogor : IPB.
Scionti, G. 2010. Mechanical Properties of Bacterial Cellulose Implants. [Thesis].
Sweden: Chalmers University of Technology.
SNI 01-2891-1992. Analisis Kadar Air Metode Gravimetri. Badan Standardisasi
Nasional, Jakarta.
SNI 01-4317-1996. Standar Mutu Produk Nata dalam Kemasan. Badan
Standardisasi Nasional, Jakarta.
SNI 02-1760-2005. Syarat Mutu Pupuk Amonium Sulfat. Badan Standardisasi
Nasional, Jakarta.
Son, H. J., Kim, H. G., Kim, K., Kim, H. S., Kim, Y. G. and Lee, S. J. 2003.
Increased Production of Bacterial Cellulose by Acetobacter sp.V6 in
Synthetic Media Under Shaking Culture Conditions. Bioresource
Technology. 86:215–219.
Sukumaran, R. K., Singhania, R. R. and Pandey, A. 2005. Microbial CellulasesProduction, Applications and Challenges. Journal of Scientific &
Industrial Research. 64:832-864.
Sutarminingsih, L. 2004. Peluang Usaha Nata de Coco. Yogyakarta: Kanisius.
Torres, F. G., Commeaux, S. and Troncoso, O. P. 2012. Biocompatibility of
Bacterial Cellulose Based Biomaterials. Journal of Functional
Biomaterials. 3:864-878.
Trovatti, E. 2012.The Future of Bacterial Cellulose and Other Microbial
Polysaccharides. Journal Renewable Material. 1(1).
Van der Meulen, R., Scheirlinck, I., Van Schoor, A., Huys, G., Vancanneyt, M.,
Vandamme, P. and De Vuyst, L. 2007. Population Dynamics and
Metabolite Target Analysis of Lactic Acid Bacteria During Laboratory
Fermentations of Wheat and Spelt Sourdoughs. Applied & Environtal
Microbiology. 73:4741-4750.
Vigliar, R., Salepanian, V. L. and Neto, U. F. 2006. Biochemical Profile of
Coconut Water from Coconut Palms Planted in an Inland Region.
Journal de Pediaria. 82:308-312.
30
Winarno, F. G. 1980. Kimia Pangan dan Gizi. Bogor: PUSBANGTEPA, IPB.
Zambre, M., Chowdhury, B., Kuo, Y. H., Montagu, M. V., Angenon, G. and
Lambein, F. 2002. Prolific Regeneration of Fertile Plants from Green
Nodular Callus Induced from Meristematic Tissues in Lathyrus sativus L.
(Grass Pea). Plant Science. 163:1107- 1112.
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. and Römling, U. 2001. The
Multicellular Morphotypes of Salmonella typhimurium and Escherichia
coliProduce Cellulose as the Second Component of the Extracellular
Matrix. Molecular Microbiology. 39: 1452-1463.