TUGAS SISTEM DISTRIBUSI MAKALAH PEMBANGK (1)

TUGAS SISTEM DISTRIBUSI
MAKALAH
PEMBANGKIT LISTRIK TENAGA NUKLIR

Oleh:

M. Irham Tadmim

091910201084

Gigih Perkasa A.S.

091910201088

Winarko Siregar

091910201101

Hafid Anja Dewa

091910201104


JURUSAN TEKNIK ELEKTRO STRATA 1
FAKULTAS TEKNIK
UNIVERSITAS JEMBER
2012
BAB I

PENDAHULUAN
A. LATAR BELAKANG
Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang
dijatuhkan diHiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian
dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih dapat
dirasakan sampaisekarang.Di samping sebagai senjata pamungkas yang dahsyat, sejak lama
orang telah memikirkan bagaimana cara memanfaatkan tenaga nuklir untuk kesejahteraan
umat manusia. Sampai saat ini tenaga nuklir, khususnya zat radioaktif telah dipergunakan
secara luas dalamberbagai bidang antara lain bidang industri, kesehatan, pertanian,
peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan,
bidang hidrologi, yang merupakan aplikasi teknik nuklir untuk non energi.
Salah satu pemanfaatan teknik nuklir dalam bidang energi saat ini sudah berkembang
dan dimanfaatkan secara besar-besaran dalam bentuk Pembangkit Listrik Tenaga nuklir

(PLTN), dimana tenaga nuklir digunakan untuk membangkitkan tenaga listrik yang relatif
murah, aman dan tidak mencemari lingkungan.
Pemanfaatan tenaga nuklir dalam bentuk PLTN mulai dikembangkan secara komersial
sejak tahun 1954. Pada waktu itu di Rusia (USSR), dibangun dan dioperasikan satu unit PLTN
air ringan bertekanan tinggi (VVER = PWR) yang setahun kemudian mencapai daya 5 Mwe.
Pada tahun 1956 di Inggris dikembangkan PLTN jenis Gas Cooled Reactor (GCR + Reaktor
berpendingin gas) dengan daya 100 Mwe. Pada tahun 1997 di seluruh dunia baik di negara
maju maupun negara sedang berkembang telah dioperasikan sebanyak 443 unit PLTN yang
tersebar di 31 negara dengan kontribusi sekitar 18 % dari pasokan tenaga listrik dunia dengan
total pembangkitan dayanya mencapai 351.000 Mwe dan 36 unit PLTN sedang dalam tahap
kontruksi di 18 negara.
Seiring dengan krisis energi yang sedang menimpa Indonesia saat ini yang ditandai
dengan semakin menipisnya cadangan minyak yang dimiliki Indonesia, maka pemerintah
berniat membangun PLTN (Pembangkit Listrik Tenaga Nuklir) di Indonesia. Pemerintah
merasa pembangkit-pembangkit listrik yang sudah ada sekarang dirasa masih kurang untuk
memenuhi konsumsi listrik di Indonesia.

Pengertian dari PLTN sendiri adalah stasiun pembangkit listrik thermal di mana panas
yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. Cara kerja
PLTN tidak jauh dengan PLTU (Pembangkit Listrik Tenaga Uap). Bedanya pada PLTN energi

panas yang dihasilkan berasal dari reaksi nuklir. Panas yang dihasilkan dari reaksi nuklir ini
digunakan untuk menguapkan air pendingin. Uap ini digunakan untuk menggerakkan turbin
sehingga diperoleh energi kinetik. Energi kinetik yang dihasilkan digunakan untuk memutar
generator yang akhirnya menghasilkan energi listrik.
Namun masih terdapat pro dan kontra dalam masyarakat mengenai rencana
pemerintahan ini.oleh karena itu pemerintah harus memberikan penyuluhan mengenai
teknologi nuklir kepada masyarakat. Selain itu pemerintah juga harus menerapkan standar
keamanan yang ketat terhadap PLTN yang akan didirikan.

B. TUJUAN
1. Meningkatkan pengetahuan mahasiswa tentang PLTN.
2. Menambah cara berfikir mahasiswa untuk menganalisis suatu permasalahan.
3. Agar mahasiswa sapat mengaplikasikan dalam kehidupan bermasyarakat.
C. RUMUSAN MASALAH
Dalam penulisan makalah ini ada beberapa permasalahan yang perlu dibahas antara
lain:
1. Bagaimana prinsip kerja dari PLTN?
2. Bagaimana proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam
PLTN?
3. Keuntungan dan kerugian dari PLTN ?

D. METODE PENULISAN
Dalam penulisan makalah ini, metode penulisan yang digunakan adalah metode studi
pustaka, yaitu: metode dan suber penulisannya versumber dari buku-buku dan data dari
internet

E. SISTEMATIKA PENULISAN

Dalam penulisan laporan ini sistematika penulisan yang digunakan adalah:
1. Kata Pengantar
2. Daftar Isi
3. Bab I berisi Latar belakang, Tujuan, Rumusan Masalah, Metode Penulisan,
Sistematika Penulisan
4. Bab II berisi Landasan Teori Pembangkit Listrik Tenaga Nuklir, jenis-jenis
Pembangkit listrik Tenaga Nuklir (PLTN)
5. Bab III Pembahasan, Prinsip Kerja PLTN, Proses pemanfaatan panas hasil fisi untuk
menghasilkan energi listrik di dalam PLTN, keuntungan dan kekurangan PLTN.

BAB II

TINJAUAN PUSTAKA

A.

LANDASAN TEORI
Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di

mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.
PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika
daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah
dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40
MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya
600-1.
Pada dasarnya sistem kerja dari PLTN sama dengan pembangkit listrik konvensional,
yaitu: air diuapkan di dalam suatu ketel melalui pembakaran. Ulang yang dihasilkan dialirkan
ke turbin yang akan bergerak apabila ada tekanan uap. Perputaran turbin digunakan untuk
menggerakkan generator, sehingga menghasilkan tenaga listrik. Satu gram U-235 setara
dengan 2650 batu bara.
Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama, dihasilkan dari
reaksi pembelahan inti bahan fisil (uranium) dalam reactor nuklir. Sebagai pemindah panas
biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses
pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti

CO2, SO2, atau NOx, juga tidak mengeluarkan asap atau debu yang mengandung logam berat
yang dilepas ke lingkungan. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah
lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa
elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa
disimpan di lokasi PLTN.
B.
1.

JENIS-JENIS PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)
Pressurized Water Reactor (PWR)/Reaktor Air Tekan
PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai

pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh
Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi
kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division.

Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor
digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga
penggerak kapal.


Gambar 3 Skema Reaktor Pressurized Water Reactor (PWR)

Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu
mencapai 325oC sehingga perlu diberi tekanan tertentu (sekitar 155 atm) oleh perangkat
pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan
untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi
uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di
dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator
uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya.
2.

Boiling water reactor (BWR)/Reaktor Air Didih
Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin

dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor
BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric (GE). Sampai saat
ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General
Electric dibangun di Humboldt Bay di California. Reaktor ini mempunyai banyak persamaan
dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang
digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor.


Gambar 4 Skema Reaktor Boiling Water Reactor (BWR)
Pada reaktor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan
rendah (sekitar 75 atm) sehingga aliran pendingin tersebut dapat mendidih di dalam teras
mencapai suhu 285oC. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan
pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di
sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus
diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat
radioaktif yang terdapat pada air tersebut beumur paro sangat singkat, misalnya N-16 dengan
umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan.
Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap
diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan
memulai siklus kembali seperti di atas.
3.

Reaktor Air Didih Lanjut (Advanced Boiling Water Reactor, ABWR)
ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang

ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah,
kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami

perbaikan desain adalah (1) pompa internal, (2) penggerak batang kendali, (3) alat pengatur
aliran uap, (4) sistem pendinginan teras darurat, (5) sungkup reaktor dari beton pra-tekan, (6)
turbin, (7) alat pemanas untuk pemisah uap (penurun kelembaban), (8) sistem kendali dijital
dan lain-lain.

4.

Reaktor tabung tekan
Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air

ringan (ada juga air berat) dan moderator air berat atau pendingin air ringan dan moderator
grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa
tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada
kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat
(Steam-Generating Heavy Water Reactor, SGHWR), pendingin air berat moderator air berat
(Canadian Deuterium Uranium, CANDU), pendingin air ringan moderator grafit (Channel
Type Graphite-moderated Water-cooled Reactor, RBMK). Teras reaktor terdiri dari banyak
kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan
pendingin mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal
bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik.

Disebut juga rektor nuklir tipe kanal.

BAB III
PEMBAHASAN
1. Prinsip kerja dari PLTN
Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya
Pembangkit Listrik Tenaga Uap (PLTU). Yang membedakan antara dua jenis pembangkit
listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi
nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti
batubara atau minyak bumi. Uap bertekanan tinggi pada PLTU digunakan untuk memutar
turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah
generator.
Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan
untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan (fisi) inti Uranium menghasilkan
tenaga panas (termal) dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah
neutron. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus
menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar
uranium ini tidak melepaskan partikel seperti CO2, SO, atau NOx, juga tidak melepaskan
asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Satu gram U-235
setara dengan 2650 batu bara.

Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah
radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas
dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan dilokasi PLTN,
sebelum dilakukan penyimpanan secara lestari.

Prinsip kerja dari PLTU

2.

Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam
PLTN adalah sebagai berikut :

 Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas
yang sangat besar.
 Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa
pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan.
 Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak
(kinetik).
 Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga
dihasilkan arus listrik.
3.

Keuntungan dan kekurangan

Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:
 Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah

kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit
menghasilkan gas).
 Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon

monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap
fotokimia.
 Sedikit menghasilkan limbah padat (selama operasi normal).
 Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.

 Ketersedian bahan bak ar yang melimpah - sekali lagi, karena sangat sedikit bahan
bakar yang diperlukan.
Kekurangan dari PLTN
 Risiko kecelakaan nuklir

- kecelakaan nuklir terbesar adalah kecelakaan

Chernobylcontainment building) (yang tidak mempunyai.
 Limbah Nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan

hingga ribuan tahun.

BAB IV
KESIMPULAN DAN SARAN
A. KESIMPULAN
Prinsip kerja PLTN berdasarkan sumber panas yang dihasilkan oleh suplai panas dari
reaksi nuklir. Pemanfaatan energy panas tersebut tidak dapat dihasilkan apabila kurangnya
bahan bakar.
Adapun jenis PLTN yang ada di Bumi, merupakan pengembangan dari kemajuan
teknologi yang ada. Oleh karena itu, banyak terjadi perkembangan pembangkit energy listrik
yang baru.
B. SARAN
1. Pengembangan PLTN di Indonesia sangat penting bagi kemajuan ekonomi bagi Negara
tersebut.
2. Sebaiknya pengembangan PLTN dibuat berdasarkan kebutuhan.
3. Oleh karena itu, pemerintah mampu menyokong dalam pengembangan PLTN di Indonesia.