Pengertian limit secara intuisi

  − −

  =

  ! " # # $ $$ $$$ $$$$ % $ $$

  $$$ $$$$ & & & &

  ' & " ( & ! )

  ) = − = −

  − →

  " * & − −

  • ( (

  , =

  →

  = ∈ =

  → →

  ∈

  → →

  ± = ±

  { } → → →

  =

  → →

  =

  → → → →

  = ≠

  !

  → → →

  " #

  $ % %

  $ &

  ' ( − )

  # − *

  → →

  →

  )

  • →−

  − ) = − = − = ) + ) →

  − = − + = − , + = +

  • !

  → → # − = − = = * * * *

  → − + − + + = = = −

  • →−

  

− + − +

) ) )

  & ' %

  →

  − −

  →

  − + −

  ! !

  →

  − − − = = =

  − − − "

  #

  → →

  − −

  = −

  →

  = + = + =

  • !

  − − +

  =

  →

  − −

  → →

  − − +

  = −

  → →

  " #

  − − −

  − + − + − + = = =

  →

  !

  = =

Hitunglah nilai limit berikut ini!(Perasionalan Akar

  • &mi
  • − a.

  b.

  →− →− → →

  − −

  − −

  Solusi:

  • − + − −

  ! a. = = =

  →

  − − − !

  • − + − + + = ⋅

  → → − −

  − −

  ( )

  = =

  → →

  − − + + + +

  ( ( ) )

  − − + + + +

  ( ( ) ) ( ( ) )

  ( ( ) )

  − =

  = →

  − + +

  ( ) → ( )

  = = = =

  − + −

  − ! = = = b.

  →− − − − − !

  • − −

  = ⋅

  →− →−

  − −

  −

  ( ( ) ) ( ( ) )

  = =

  →− →−

  − + + − + +

  ( ) ( ) )

  ) ( (

  − =

  =

  →− →−

  ( ) ( )

  = = = =

  • − +

  • !
  • !

  − →

  • !

  = = ⇔ =

  • + −

  → → →

  • +

  12

  → ≠

  − →

.

  →

  ≤ − + 

  = − < < - $ .

   − + − ≥

  →− →

  % % / /

  • /

  #

  →− − − + = = − + = →− →−

  = = − = + +

  →− →− − + = = ⇒ = →− →− →−

  % /

  / − + # #

  → → ≤ − + 

  = = = − −

  = − < < -  →− →

  − + − ≥

  = − + = − + =

  → → ≠ ⇒

  − + →− → →

   ≤

   = < <

  " 

  

  • ≥ 

  / →

  • /

  → → /

  →

  1 2

  − − f x x xx lim ( ) = lim = =

  → f x x lim ( ) lim xx = = + +

  1

  1 1 lim ( ) lim

  − − 1 x x f x x → →

  = = 2 lim ( ) lim 2 3 f x x = + =

  • + −

  → → ≠

  1

  • + + 3 x x f x x

  2

  2

  2 lim ( ) lim2

  

6

x x f x x

  → → = + = 2 1 1 lim ( ) lim 2

  → → = + =

  →

  1 & &

  − − , − ! a. f.

  → ) →−

  −

  • b.

  − →− g.

  − c.

  → → ! ! − −

  • h.
  • &mi
  • )

  → − d.

  → −

  −

  • i.

  e.

  →

  →− − )

  ,

  2 ;

  1  x x

f x ( ) lim ( ) f x "

  =  x 1

  1 x

  1

>

 !

  2 2x ; x ≤ 

  ( )

  1 & " f x = x < ≤ x   2

  1

  1  + x x >  lim ( ) f x lim ( ) f x x x 1 !

  2 → → x 2; x

  1

− − < −

2f x ( ) x ; 1 x

  1 3 " = − − ≤ <  2 1 ;

  1 x x

   + ≥  lim ( ) f x lim ( ) f x x 1 x 1 !

  2 →− →

  2

  2

  !

  f x

  lim ( ) x

  3

  f x

  − >  1 lim ( ) x

  = < ≤  

  x x f x x x x

  3

  3 1,

  1 ( ) 5 ,1

  !

  4 " 2 3 2 ,

  f x

  lim ( ) x

  3

  f x

  − >  1 lim ( ) x

  = < ≤  

   + ≤ 

  x x f x x x x

  3

  3 3 1,

  1 ( ) 5, 1

  • ≤ 5 "
  • 2
  • ≤  

  → − + −

  → − +

  →− − − −

  − −

  → − +

  • − −

  − →

  • =

  →

  − =

  − + − +

  →

  − + =

  − − −

  −

  x

,

  1 x ≤ −

   + x

  1 

  • + ( ) ,-1

  1

!" f x = x < ≤ x #

  − 1 x , x >

  1  

  $ % x x

   

, ,

  1 x x ≤ − ≤ −

  1

   + x

  1  ( ) ,-1

  1

!" f x = x < ≤ x #

  − 1 x , x >

  1  

  $ %