ANALISIS KRITERIA KETUNTASAN MINIMAL KKM
ANALISIS KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2012/2013
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
Memecahkan masalah
berkaitan dengan konsep
operasi bilangan real
: TKR dan Farmasi
:X
:1
Kompetensi Dasar
1. Menerapkan operasi pada
bilangan real
2. Menerapkan operasi pada
bilangan berpangkat
3. Menerapkan operasi pada
bilangan Irrasional
Intake
Siswa
(A)
65
Skor
Komplek
sitas
(B)
72
Daya
Dukung
(C)
70
65
71
70
69
65
67
70
67
65
70
70
68
Bilangan berpangkat dioperasikan sesuai dengan sifatsifatnya
Bilangan berpangkat disederhanakan atau ditentukan
nilainya dengan menggunakan sifat-sifat bilangan
berpangkat
Konsep bilangan berpangkat diterapkan dalam
penyelesaian masalah
65
69
70
68
65
67
70
67
65
68
70
68
Bilangan bentuk akar disederhanakan atau ditentukan
nilainya dengan menggunakan sifat-sifat bentuk akar
Bilangan bentuk akar dioperasikan sesuai dengan
sifat-sifatnya.
Konsep bilangan irrasional diterapkan dalam
65
70
70
68
65
71
70
69
65
69
70
68
Indikator
Dua atau lebih bilangan bulat dioperasikan (dijumlah,
dikurangi, dikali, dibagi) sesuai dengan prosedur
Dua atau lebih bilangan pecahan dioperasikan
(dijumlah, dikurangi, dikali, dibagi) sesuai dengan
prosedur
Bilangan pecahan dikonversi ke bentuk persen atau
pecahan desimal sesuai prosedur
Konsep perbandingan (senilai dan berbalik nilai),
skala, dan persen digunakan dalam penyelesaian
masalah program keahlian
Nilai KKM
Indikator
KD
SK
69
68
68
68
68
KKM
68
Standar Kompetensi
Kompetensi Dasar
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
Operasi logaritma diselesaikan sesuai dengan sifatsifatnya
Soal-soal logaritma diselesaikan dengan menggunakan
tabel dan tanpa tabel
Permasalahan program keahlian diselesaikan dengan
menggunakan logaritma
65
67
70
67
68
65
69
70
68
65
68
70
68
Hasil membilang dan mengukur dibedakan berdasar
pengertiannya
Hasil pengukuran ditentukan salah mutlak dan salah
relatifnya
Prosentase kesalahan dihitung berdasar hasal
pengukurannya
Toleransi dihitung berdasar hasil pengukurannya
65
72
70
69
65
71
70
69
65
71
70
69
65
69
70
68
Jumlah dan selisih hasil pengukuran dihitung untuk
menentukan hasil maksimum dan hasil minimumnya
Hasil kali pengukuran dihitung untuk menentukan
hasil maksimum dan hasil minimumnya
65
70
70
68
65
69
70
67
Persamaan linear ditentukan penyelesaiannya
Pertidaksamaan linear ditentukan penyelesaiannya
65
65
69
68
70
70
68
68
68
Persamaan kuadrat ditentukan penyelesaiannya
Pertidaksamaan kuadrat ditentukan penyelesaiannya
65
65
67
65
70
70
67
67
67
Persamaan kuadrat disusun berdasarkan akar-akar
yang diketahui
Persamaan kuadrat baru disusun berdasarkan akar-
65
68
70
68
67
65
66
70
67
Indikator
Nilai KKM
SK
penyelesaian masalah
4. Menerapkan konsep logaritma
Memecahkan masalah
berkaitan dengan konsep
aproksimasi kesalahan
1. Menerapkan konsep kesalahan
pengukuran
2. Menerapkan konsep operasi
hasil pengukuran
Memecahkan masalah
berkaitan dengan sistem
persamaan dan
pertidaksamaan linear dan
kuadrat
1. Menentukan himpunan
penyelesaian persamaan dan
pertidaksamaan linear
2. Menentukan himpunan
penyelesaian persamaan dan
pertidaksamaan kuadrat
3. Menerapkan persamaan dan
pertidaksamaan kuadrat
69
69
68
67
KKM
Standar Kompetensi
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
65
65
70
67
Sistem persamaan linear dua dan tiga variabel dapat
ditentukan penyelesaiannya
Sistem persamaan dengan dua variabel, satu linear,
dan satu kuadrat dapat ditentukan penyelesaiannya
65
67
70
67
65
65
70
67
1. Mendeskripsikan macammacam matriks
Matriks ditentukan unsur dan notasinya
Matriks dibedakan menurut jenis dan relasinya
65
65
70
70
70
70
68
68
68
2. Menyelesaikan operasi matriks
Dua matriks atau lebih ditentukan hasil penjumlahan
atau pengurangannya
Dua matriks atau lebih ditentukan hasil kalinya
65
69
70
68
68
65
68
70
68
Matriks ditentukan determinannya
Matriks ditentukan inversnya
65
65
68
66
70
70
68
67
Kompetensi Dasar
Indikator
akar persamaan kuadrat
Persamaan dan pertidaksamaan kuadrat diterapkan
dalam menyelesaikan masalah kompetensi keahlian
4. Menyelesaian sistem
persamaan
Memecahkan masalah
berkaitan dengan konsep
matriks
3. Menentukan determinan dan
invers matriks
Nilai KKM
KD
SK
67
68
68
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
ANALISIS KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2011/2012
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
: TKR dan Farmasi
:X
:2
Kompetensi Dasar
Indikator
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Nilai KKM
Indikator
KD
SK
69
KKM
69
Menyelesaikan masalah
program linear
Menerapkan logika
matematika dalam
pemecahan masalah yang
berkaitan dengan pernyataan
majemuk dan pernyataan
berkuantor
1. Membuat grafik himpunan
penyelesaian sistem
pertidaksamaan linear
Pertidaksamaan linear ditentukan daerah
Sistem pertidaksamaan linear dengan dua variabel
ditentukan daerah penyelesaiannya
68
68
70
69
70
70
69
69
69
2. Menentukan model matematika
dari soal cerita (kalimat verbal)
Soal ceritera (kalimat verbal) diterjemahkan ke
kalimat matematika
Kalimat
matematika
ditentukan
daerah
penyelesaiannya
68
68
70
69
69
68
68
70
69
3. Menentukan nilai optimum dari
sistem pertidaksamaan linear
Fungsi obyektif ditentukan dari soal
Nilai optimum daitentukan berdasar fungsi obyektif
68
68
70
66
70
70
69
68
69
4. Menerapkan garis selidik
Garis selidik digambarkan dari fungsi obyektif
Nilai optimum ditentukan manggunakan garis selidik
68
68
66
65
70
70
68
68
68
1. Mendeskripsikan pernyataan
dan bukan pernyataan (kalimat
terbuka)
2. Mendeskripsikan ingkaran,
konjungsi, disjungsi, implikasi,
biimplikasi, dan ingkarannya
Pernyataan dan bukan pernyataan dibedakan
Suatu pernyataan ditentukan nilai kebenarannya
68
68
72
72
70
70
70
70
70
Ingkaran, konjungsi, disjungsi, implikasi, dan
biimplikasi dibedakan nilai kebenarannya
Ingkaran, konjungsi, disjungsi, implikasi, dan
biimplikasi ditentukan nilai kebenarannya
68
69
70
69
69
68
68
70
69
69
Standar Kompetensi
Kompetensi Dasar
3. Mendeskripsikan invers,
konvers, dan kontraposisi
4. Menerapkan modus ponens,
modus tollens, dan prinsip
silogisme
dalam menarik kesimpulan
Menerapkan perbandingan,
fungsi, persamaan, identitas
trigonometri dalam
pemecahan masalah
1. Menentukan dan menggunakan
nilai perbandingan suatu sudut
2. Mengkonversi koordinat
kartesius dan kutub
3. Menerapkan aturan sinus dan
kosinus
4. Menentukan luas segitiga
Intake
Siswa
(A)
68
Skor
Komplek
sitas
(B)
69
Daya
Dukung
(C)
70
68
69
70
69
Modus ponens, modus tollens, dan silogisme
dijelaskan perbedaannya
Modus ponens, modus tollens, dan silogisme
digunakan untuk menarik kesimpulan
Penarikan kesimpulan ditentukan kesahihannya
68
71
70
70
68
69
70
69
68
68
70
69
Perbandingan trigonometri suatu sudut ditentukan dari
sisi-sisi segitiga siku-siku
Perbandingan trigonometri dipergunakan untuk
menentukan panjang sisi dan besar sudut segitiga
siku-siku
Sudut-sudut diberbagai kuadran ditentukan nilai
perbandingan trigonometrinya
68
69
70
69
68
67
70
68
68
66
70
68
Koordinat kartesius dan koordinat kutub dibedakan
sesuai pengertiannya
Koordinat kartesius dikonversi ke koordinat kutub
atau sebaliknya sesuai prosedur dan rumus yang
berlaku
68
68
70
68
68
66
70
68
Aturan sinus digunakan untuk menentukan panjang
sisi atau besar sudut pada suatu segitiga
Aturan kosinus digunakan untuk menentukan panjang
sisi atau besar sudut pada suatu segitiga
68
67
70
68
68
66
70
68
Luas segitiga ditentukan rumusnya
Luas segitiga dihitung dengan menggunakan rumus
68
68
69
69
70
70
69
69
Indikator
Invers, konvers, dan kontraposisi ditentukan dari suatu
implikasi
Invers, konvers, dan kontraposisi ditentukan dari suatu
implikasi dan ditentukan nilai kebenarannya
Nilai KKM
Indikator
KD
69
69
SK
69
68
68
68
69
68
KKM
Standar Kompetensi
Kompetensi Dasar
Indikator
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Nilai KKM
Indikator
KD
68
SK
luas segitiga
5. Menerapkan rumus
trigonometri jumlah dan selisih
dua sudut
Rumus trigonometri jumlah dan selisih dua sudut dan
sudut rangkap digunakan untuk menyelesaikan soal
Rumus trigonometri perkalian serta jumlah dan selisih
sinus dan kosinus digunakan untuk menyelesaikan
soal
68
66
70
68
68
66
70
68
6. Menyelesaikan persamaan
trigonometri
Identitas
trigonometri
digunakan
dalam
menyederhanakan persamaan atau bentuk trigonometri
Persamaan trigonometri ditentukan penyelesaiannya
68
66
70
68
68
66
70
68
68
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN DIKLAT 2010/2011
Kompetensi Keahlian ``
Kelas
Semester
Standar Kompetensi
Memecahkan masalah yang
berkaitan dengan fungsi,
persamaan fungsi linear,
dan fungsi kuadrat
: TKR
: XI
:3
Kompetensi Dasar
Indikator
Nilai KKM
Intake
Siswa
(A)
62
62
Skor
Komplek
sitas
(B)
64
60
Daya
Dukung
(C)
62
62
Indikator
KD
SK
KKM
Mata
Diklat
63
61
62
62
62
62
1. Mendeskripsikan perbedaan konsep
relasi dan fungsi
Konsep relasi dan fungsi dibedakan dengan jelas
Jenis-jenis fungsi diuraikan dan ditunjukkan
contohnya
2. Menerapkan konsep fungsi linear
Fungsi linear digambar grafiknya
Fungsi linear ditentukan persamaannya jika
diketahui koordinat titik atau gradien atau
grafiknya
Fungsi invers ditentukan dari suatu fungsi linear
62
62
63
63
62
62
62
62
62
64
62
63
3. Menggambar fungsi kuadrat
Fungsi kuadrat digambar grafiknya
Fungsi kuadrat ditentukan persamaannya
62
62
62
61
62
62
62
62
62
4. Menerapkan konsep fungsi kuadrat
Fungsi kuadrat digambar grafiknya melalui titik
ekstrim dan titik potong pada sumbu koordinat
Fungsi kuadrat diterapkan untuk menentukan
persamaannya, jika diketahui grafiknya
62
61
62
62
62
62
60
62
61
Fungsi eksponen digambar grafiknya
Fungsi eksponen ditentukan persamaannya, jika
diketahui grafiknya
62
62
60
60
62
62
61
61
5. Menggambar grafik fungsi eksponen
61
Standar Kompetensi
Skor
Komplek
sitas
(B)
60
Daya
Dukung
(C)
62
62
62
60
60
62
62
61
61
Pola bilangan, barisan, dan deret diidentifikasi
berdasarkan ciri-cirinya
Notasi sigma digunakan untuk menyederhanakan
suatu deret
62
66
62
63
62
65
62
63
Nilai suku ke-n suatu barisan aritmatika ditentukan
menggunakan rumus
Jumlah n suku suatu deret aritmatika ditentukan
dengan
62
65
62
63
62
65
62
63
Nilai suku ke-n suatu barisan geometri ditentukan
menggu-nakan rumus
Jumlah n suku suatu deret geometri ditentukan
dengan menggunakan rumus
Jumlah suku tak hingga suatu deret geometri ditentukan dengan menggunakan rumus
62
64
62
63
62
64
62
63
62
63
62
62
1. Mengidentifikasi sudut
Satuan sudut dalam derajat dikonversi ke satuan
sudut dalam radian atau sebaliknya sesuai
prosedur
62
65
62
63
63
2. Menentukan keliling bangun datar dan
luas daerah bangun datar
Suatu bangun datar dihitung kelilingnya
Daerah suatu bangun datar dihitung luasnya
Bangun datar tak beraturan dihitung luasnya
62
62
62
65
65
64
62
62
62
63
63
63
63
3. Menerapkan transformasi bangun datar
Transformasi bangun datar dideskripsikan menurut
62
61
62
62
62
Kompetensi Dasar
6. Menggambar grafik fungsi logaritma
Menerapkan konsep barisan
dan deret dalam pemecahan
masalah
1. Mengidentifikasi pola bilangan,
barisan, dan deret bilangan
2. Menerapkan konsep barisan dan deret
aritmatika
3. Menerapkan konsep barisan dan deret
geometri
Menentukan kedudukan
jarak dan besar sudut yang
melibatkan titik, garis, dan
bidang dalam ruang
dimensi dua
Nilai KKM
Intake
Siswa
(A)
62
Indikator
Fungsi logaritma dideskripsikan sesuai dengan
ketentuannya
Fungsi logaritma diuraikan sifat-sifatnya
Fungsi logaritma digambar grafiknya
Indikator
KD
61
61
63
SK
63
63
63
63
KKM
Mata
Diklat
Standar Kompetensi
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
62
61
62
62
Unsur-unsur bangun ruang diidentifikasi berdasar
ciri-cirinya
Jaring-jaring bangun ruang digambar pada bidang
datar
62
65
62
63
62
65
62
63
2. Menghitung luas permukaan bangun
ruang
Luas permukaan bangun ruang dihitung dengan
cermat
62
63
62
62
62
3. Menerapkan konsep volume bangun
ruang
Volume bangun ruang dihitung dengan cermat
62
62
62
62
62
4. Menentukan hubungan antara unsurunsur dalam bangun ruang
Jarak antara unsur dalam ruang dihitung sesuai
ketentuan
Besar sudut antar unsur dalam ruang dihitung
sesuai ketentuan
62
62
62
62
62
62
62
62
62
Kompetensi Dasar
Indikator
jenisnya
Trasnformasi bangun datar digunakan untuk
menyelesaikan permasalahan program keahlian
Menentukan kedudukan
jarak dan besar sudut yang
melibatkan titik, garis, dan
bidang dalam ruang
dimensi tiga
Nilai KKM
Intake
Siswa
(A)
1. Mengidentifikasi bangun ruang dan
unsur-unsurnya
KD
SK
63
62
Lebaksiu, 16 Juli 2010
Mengetahui :
Kepala Sekolah,
Guru Mata Diklat,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
Mata
Diklat
KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN DIKLAT 2010/2011
Kompetensi Keahlian ``
Kelas
Semester
Standar Kompetensi
: TKR
: XI
:4
Nilai KKM
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
SK
Konsep vektor dan ruang lingkup vektor
dideskripsikan menurut ciri-cirinya
Operasi pada vektor diselesaikan dengan rumus
yang sesuai
62
65
62
63
63
63
62
64
62
63
Konsep vektor dan ruang lingkup vektor
dideskripsikan menurut ciri-cirinya
Operasi pada vektor diselesaikan dengan rumus
yang sesuai
62
63
62
62
62
63
62
62
1. Mendeskripsikan kaidah pencacahan,
permutasi, dan kombinasi
Kaidah pencacahan, permutasi, dan kombinasi
digunakan dalam menentukan banyaknya cara
menyelesaikan suatu masalah
62
63
62
63
62
2. Menghitung peluang suatu kejadian
Peluang suatu kejadian
menggunakan rumus
dengan
62
62
62
62
62
1. Menerapkan konsep lingkaran
Unsur-unsur lingkaran dideskripsikan sesuai ciricirinya
Persamaan lingkaran ditentukan berdasarkan
unsur-unsur yang diketahui
Garis singgung lingkaran dilukis dengan benar
Panjang garis singgung lingkaran dihitung dengan
62
63
62
62
62
62
62
62
62
62
62
65
63
62
62
63
62
Kompetensi Dasar
Indikator
KKM
Mata
Diklat
62
Menerapkan konsep vektor
dalam pemecahan masalah
Menerapkan konsep vektor dalam
pemecahan masalah
2. Menerapkan konsep vektor pada
bangun ruang
Memecahkan masalah
dengan konsep teori
peluang
Menerapkan konsep irisan
kerucut dalam memecahkan
masalah
dihitung
62
62
62
Standar Kompetensi
Nilai KKM
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
Unsur-unsur parabola dideskripsikan sesuai ciricirinya
Persamaan parabola ditentukan berdasarkan unsurunsur yang diketahui
Grafik parabola dilukis dengan benar
62
62
62
62
62
62
61
62
62
62
63
62
62
Unsur-unsur elips dideskripsikan sesuai ciricirinya
Persamaan elips ditentukan berdasarkan unsurunsur yang diketahui
Grafik elips dilukis dengan benar
62
62
62
62
62
61
62
62
62
63
62
62
Unsur-unsur hiperbola dideskripsikan sesuai ciricirinya
Persamaan hiperbola ditentukan berdasarkan
unsur-unsur yang diketahui
Grafik hiperbola dilukis dengan benar
62
62
62
62
62
61
62
62
62
63
62
62
Menjelaskan arti limit fungsi di satu titik melalui
perhitungan nilai-nilai disekitar titik tersebut
Menjelaskan arti limit fungsi di tak hingga melalui
grafik dan perhitungan
62
64
62
63
62
62
62
62
Menggunakan sifat-sifat limit dalam menghitung
nilai limit
Menentukan nilai bentuk tak tentu dari limit fungsi
Menghitung limit fungsi aljabar dan trigonometri
dengan menggunakan sifat-sifat limit.
62
63
62
62
62
62
62
60
62
62
62
61
Kompetensi Dasar
Indikator
SK
benar
2. Menerapkan konsep parabola
3. Menerapkan konsep elips
4. Menerapkan konsep hiperbola
Menggunakan konsep limit
fungsi dan turunan fungsi
dalam pemecahan masalah
1. Menggunakan konsep limit fungsi dan
turunan fungsi dalam pemecahan masalah
2. Menggunakan sifat limit fungsi untuk
menghitung bentuk tak tentu fungsi
aljabar dan trigonometri.
62
62
63
62
62
KKM
Mata
Diklat
Standar Kompetensi
Kompetensi Dasar
3. Menggunakan konsep dan aturan
turunan dalam perhitungan turunan fungsi
4. Menggunakan turunan untuk
menetukan karakteristik suatu
fungsi dan memecahkan masalah
Indikator
Menjelaskan konsep arti fisis (sebagai laju
perubahan) dan arti geometri dari turunan
Menghitung turunan fungsi yang sederhana
dengan menggunakan definisi turunan
Menjelaskan sifat-sifat turunan fungsi
Menentukan turunan fungsi aljabar dan
trigonometri dengan menggunakan sifat-sifat
turunan
Menentukan turunan fungsi komposisi dengan
menggunakan aturan rantai
Menentukan fungsi monoton naik dan turun
dengan menggunakan konsep turunan pertama
Menggambar sketsa grafik fungsi dengan
menggunakan sifat-sifat turunan
Menentukan koordinat titik ekstrim grafik fungsi
Menentukan persamaan garis singgung sebuah
fungsi
Nilai KKM
Intake
Siswa
(A)
62
Skor
Komplek
sitas
(B)
64
Daya
Dukung
(C)
62
62
63
62
62
62
62
65
61
62
62
63
62
62
60
62
61
62
61
62
62
62
64
62
63
62
62
63
61
62
62
62
62
Indikator
KD
63
62
SK
62
Lebaksiu, 16 Juli 2010
Mengetahui :
Kepala Sekolah,
Guru Mata Diklat,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
Mata
Diklat
ANALISIS KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2011/2012
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
Menggunakan konsep
integral dalam memecahkan
masalah
: TKR dan Farmasi
: XII
: 5 dan 6
Kompetensi Dasar
1. Memahami konsep integral tak
tentu dan integral tentu
2. Menghitung integral tak tentu
dan integral tentu dari fungsi
aljabar dan fungsi trigonometri
yang sederhana
3. Menggunakan integral untuk
menghitung luas daerah dibawah
kurva dan volume benda putar
Menerapkan aturan konsep
statistika dalam pemecahan
masalah
1. Mengidentifikasi pengertian
statistik, statistika, populasi, dan
sampel
Nilai KKM
Intake
Siswa
(A)
71
Skor
Komplek
sitas
(B)
69
Daya
Dukung
(C)
70
71
65
70
69
71
66
70
69
Menetukan nilai integral suatu fungsi dengan cara
substitusi
Menentukan nilai integral suatu fungsi dengan cara
parsial
Menentukan nilai integral suatu fungsi dengan cara
substitusi trigonometri
71
65
70
69
71
65
70
69
71
65
70
69
Menghitung luas daerah yang dibatasi oleh kurva
dan/atau sumbu-sumbu koordinat dengan
menggunakan integral.
Menghitung volume benda putar dengan
menggunakan integral
71
67
70
69
71
66
70
69
Statistik dan statistika dibedakan sesuai dengan
definisinya
Populasi dan sampel dibedakan berdasarkan
karakteristiknya
71
71
70
71
71
71
70
71
Indikator
Menentukan integral tak tentu fungsi aljabar dan
trigonometri
Menentukan integral tertentu fungsi aljabar dan
trigonometri
Menyelesaikan masalah yang melibatkan integral
tentu dan tak tentu
Indikator
KD
SK
70
69
69
69
69
71
70
KKM
70
Standar Kompetensi
Kompetensi Dasar
Indikator
Nilai KKM
Intake
Siswa
(A)
71
71
Skor
Komplek
sitas
(B)
68
68
Daya
Dukung
(C)
70
70
Indikator
KD
70
70
70
70
2. Menyajikan data dalam bentuk
tabel dan diagram
Data disajikan dalam bentuk tabel
Data disajikan dalam bentuk diagram
3. Menentukan ukuran pemusatan
data
Mean, median, dan modus dibedakan sesuai dengan
pengertiannya
Mean, median, dan modus dihitung sesuai dengan
data tunggal dari data kelompok
71
67
70
69
71
68
70
70
Jangkauan, simpangan rata-rata, simpangan baku,
jangkauan semi kuartil, dan jangkauan persentil
dittentukan dari suatu data
Nilai standar ditentukan dari suatu data
Koefisien variansi ditentukan dari suatu data
71
68
70
70
71
71
68
68
70
70
70
70
4. Menentukan ukuran penyebaran
data
SK
70
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2012/2013
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
Memecahkan masalah
berkaitan dengan konsep
operasi bilangan real
: TKR dan Farmasi
:X
:1
Kompetensi Dasar
1. Menerapkan operasi pada
bilangan real
2. Menerapkan operasi pada
bilangan berpangkat
3. Menerapkan operasi pada
bilangan Irrasional
Intake
Siswa
(A)
65
Skor
Komplek
sitas
(B)
72
Daya
Dukung
(C)
70
65
71
70
69
65
67
70
67
65
70
70
68
Bilangan berpangkat dioperasikan sesuai dengan sifatsifatnya
Bilangan berpangkat disederhanakan atau ditentukan
nilainya dengan menggunakan sifat-sifat bilangan
berpangkat
Konsep bilangan berpangkat diterapkan dalam
penyelesaian masalah
65
69
70
68
65
67
70
67
65
68
70
68
Bilangan bentuk akar disederhanakan atau ditentukan
nilainya dengan menggunakan sifat-sifat bentuk akar
Bilangan bentuk akar dioperasikan sesuai dengan
sifat-sifatnya.
Konsep bilangan irrasional diterapkan dalam
65
70
70
68
65
71
70
69
65
69
70
68
Indikator
Dua atau lebih bilangan bulat dioperasikan (dijumlah,
dikurangi, dikali, dibagi) sesuai dengan prosedur
Dua atau lebih bilangan pecahan dioperasikan
(dijumlah, dikurangi, dikali, dibagi) sesuai dengan
prosedur
Bilangan pecahan dikonversi ke bentuk persen atau
pecahan desimal sesuai prosedur
Konsep perbandingan (senilai dan berbalik nilai),
skala, dan persen digunakan dalam penyelesaian
masalah program keahlian
Nilai KKM
Indikator
KD
SK
69
68
68
68
68
KKM
68
Standar Kompetensi
Kompetensi Dasar
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
Operasi logaritma diselesaikan sesuai dengan sifatsifatnya
Soal-soal logaritma diselesaikan dengan menggunakan
tabel dan tanpa tabel
Permasalahan program keahlian diselesaikan dengan
menggunakan logaritma
65
67
70
67
68
65
69
70
68
65
68
70
68
Hasil membilang dan mengukur dibedakan berdasar
pengertiannya
Hasil pengukuran ditentukan salah mutlak dan salah
relatifnya
Prosentase kesalahan dihitung berdasar hasal
pengukurannya
Toleransi dihitung berdasar hasil pengukurannya
65
72
70
69
65
71
70
69
65
71
70
69
65
69
70
68
Jumlah dan selisih hasil pengukuran dihitung untuk
menentukan hasil maksimum dan hasil minimumnya
Hasil kali pengukuran dihitung untuk menentukan
hasil maksimum dan hasil minimumnya
65
70
70
68
65
69
70
67
Persamaan linear ditentukan penyelesaiannya
Pertidaksamaan linear ditentukan penyelesaiannya
65
65
69
68
70
70
68
68
68
Persamaan kuadrat ditentukan penyelesaiannya
Pertidaksamaan kuadrat ditentukan penyelesaiannya
65
65
67
65
70
70
67
67
67
Persamaan kuadrat disusun berdasarkan akar-akar
yang diketahui
Persamaan kuadrat baru disusun berdasarkan akar-
65
68
70
68
67
65
66
70
67
Indikator
Nilai KKM
SK
penyelesaian masalah
4. Menerapkan konsep logaritma
Memecahkan masalah
berkaitan dengan konsep
aproksimasi kesalahan
1. Menerapkan konsep kesalahan
pengukuran
2. Menerapkan konsep operasi
hasil pengukuran
Memecahkan masalah
berkaitan dengan sistem
persamaan dan
pertidaksamaan linear dan
kuadrat
1. Menentukan himpunan
penyelesaian persamaan dan
pertidaksamaan linear
2. Menentukan himpunan
penyelesaian persamaan dan
pertidaksamaan kuadrat
3. Menerapkan persamaan dan
pertidaksamaan kuadrat
69
69
68
67
KKM
Standar Kompetensi
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
65
65
70
67
Sistem persamaan linear dua dan tiga variabel dapat
ditentukan penyelesaiannya
Sistem persamaan dengan dua variabel, satu linear,
dan satu kuadrat dapat ditentukan penyelesaiannya
65
67
70
67
65
65
70
67
1. Mendeskripsikan macammacam matriks
Matriks ditentukan unsur dan notasinya
Matriks dibedakan menurut jenis dan relasinya
65
65
70
70
70
70
68
68
68
2. Menyelesaikan operasi matriks
Dua matriks atau lebih ditentukan hasil penjumlahan
atau pengurangannya
Dua matriks atau lebih ditentukan hasil kalinya
65
69
70
68
68
65
68
70
68
Matriks ditentukan determinannya
Matriks ditentukan inversnya
65
65
68
66
70
70
68
67
Kompetensi Dasar
Indikator
akar persamaan kuadrat
Persamaan dan pertidaksamaan kuadrat diterapkan
dalam menyelesaikan masalah kompetensi keahlian
4. Menyelesaian sistem
persamaan
Memecahkan masalah
berkaitan dengan konsep
matriks
3. Menentukan determinan dan
invers matriks
Nilai KKM
KD
SK
67
68
68
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
ANALISIS KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2011/2012
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
: TKR dan Farmasi
:X
:2
Kompetensi Dasar
Indikator
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Nilai KKM
Indikator
KD
SK
69
KKM
69
Menyelesaikan masalah
program linear
Menerapkan logika
matematika dalam
pemecahan masalah yang
berkaitan dengan pernyataan
majemuk dan pernyataan
berkuantor
1. Membuat grafik himpunan
penyelesaian sistem
pertidaksamaan linear
Pertidaksamaan linear ditentukan daerah
Sistem pertidaksamaan linear dengan dua variabel
ditentukan daerah penyelesaiannya
68
68
70
69
70
70
69
69
69
2. Menentukan model matematika
dari soal cerita (kalimat verbal)
Soal ceritera (kalimat verbal) diterjemahkan ke
kalimat matematika
Kalimat
matematika
ditentukan
daerah
penyelesaiannya
68
68
70
69
69
68
68
70
69
3. Menentukan nilai optimum dari
sistem pertidaksamaan linear
Fungsi obyektif ditentukan dari soal
Nilai optimum daitentukan berdasar fungsi obyektif
68
68
70
66
70
70
69
68
69
4. Menerapkan garis selidik
Garis selidik digambarkan dari fungsi obyektif
Nilai optimum ditentukan manggunakan garis selidik
68
68
66
65
70
70
68
68
68
1. Mendeskripsikan pernyataan
dan bukan pernyataan (kalimat
terbuka)
2. Mendeskripsikan ingkaran,
konjungsi, disjungsi, implikasi,
biimplikasi, dan ingkarannya
Pernyataan dan bukan pernyataan dibedakan
Suatu pernyataan ditentukan nilai kebenarannya
68
68
72
72
70
70
70
70
70
Ingkaran, konjungsi, disjungsi, implikasi, dan
biimplikasi dibedakan nilai kebenarannya
Ingkaran, konjungsi, disjungsi, implikasi, dan
biimplikasi ditentukan nilai kebenarannya
68
69
70
69
69
68
68
70
69
69
Standar Kompetensi
Kompetensi Dasar
3. Mendeskripsikan invers,
konvers, dan kontraposisi
4. Menerapkan modus ponens,
modus tollens, dan prinsip
silogisme
dalam menarik kesimpulan
Menerapkan perbandingan,
fungsi, persamaan, identitas
trigonometri dalam
pemecahan masalah
1. Menentukan dan menggunakan
nilai perbandingan suatu sudut
2. Mengkonversi koordinat
kartesius dan kutub
3. Menerapkan aturan sinus dan
kosinus
4. Menentukan luas segitiga
Intake
Siswa
(A)
68
Skor
Komplek
sitas
(B)
69
Daya
Dukung
(C)
70
68
69
70
69
Modus ponens, modus tollens, dan silogisme
dijelaskan perbedaannya
Modus ponens, modus tollens, dan silogisme
digunakan untuk menarik kesimpulan
Penarikan kesimpulan ditentukan kesahihannya
68
71
70
70
68
69
70
69
68
68
70
69
Perbandingan trigonometri suatu sudut ditentukan dari
sisi-sisi segitiga siku-siku
Perbandingan trigonometri dipergunakan untuk
menentukan panjang sisi dan besar sudut segitiga
siku-siku
Sudut-sudut diberbagai kuadran ditentukan nilai
perbandingan trigonometrinya
68
69
70
69
68
67
70
68
68
66
70
68
Koordinat kartesius dan koordinat kutub dibedakan
sesuai pengertiannya
Koordinat kartesius dikonversi ke koordinat kutub
atau sebaliknya sesuai prosedur dan rumus yang
berlaku
68
68
70
68
68
66
70
68
Aturan sinus digunakan untuk menentukan panjang
sisi atau besar sudut pada suatu segitiga
Aturan kosinus digunakan untuk menentukan panjang
sisi atau besar sudut pada suatu segitiga
68
67
70
68
68
66
70
68
Luas segitiga ditentukan rumusnya
Luas segitiga dihitung dengan menggunakan rumus
68
68
69
69
70
70
69
69
Indikator
Invers, konvers, dan kontraposisi ditentukan dari suatu
implikasi
Invers, konvers, dan kontraposisi ditentukan dari suatu
implikasi dan ditentukan nilai kebenarannya
Nilai KKM
Indikator
KD
69
69
SK
69
68
68
68
69
68
KKM
Standar Kompetensi
Kompetensi Dasar
Indikator
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Nilai KKM
Indikator
KD
68
SK
luas segitiga
5. Menerapkan rumus
trigonometri jumlah dan selisih
dua sudut
Rumus trigonometri jumlah dan selisih dua sudut dan
sudut rangkap digunakan untuk menyelesaikan soal
Rumus trigonometri perkalian serta jumlah dan selisih
sinus dan kosinus digunakan untuk menyelesaikan
soal
68
66
70
68
68
66
70
68
6. Menyelesaikan persamaan
trigonometri
Identitas
trigonometri
digunakan
dalam
menyederhanakan persamaan atau bentuk trigonometri
Persamaan trigonometri ditentukan penyelesaiannya
68
66
70
68
68
66
70
68
68
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN DIKLAT 2010/2011
Kompetensi Keahlian ``
Kelas
Semester
Standar Kompetensi
Memecahkan masalah yang
berkaitan dengan fungsi,
persamaan fungsi linear,
dan fungsi kuadrat
: TKR
: XI
:3
Kompetensi Dasar
Indikator
Nilai KKM
Intake
Siswa
(A)
62
62
Skor
Komplek
sitas
(B)
64
60
Daya
Dukung
(C)
62
62
Indikator
KD
SK
KKM
Mata
Diklat
63
61
62
62
62
62
1. Mendeskripsikan perbedaan konsep
relasi dan fungsi
Konsep relasi dan fungsi dibedakan dengan jelas
Jenis-jenis fungsi diuraikan dan ditunjukkan
contohnya
2. Menerapkan konsep fungsi linear
Fungsi linear digambar grafiknya
Fungsi linear ditentukan persamaannya jika
diketahui koordinat titik atau gradien atau
grafiknya
Fungsi invers ditentukan dari suatu fungsi linear
62
62
63
63
62
62
62
62
62
64
62
63
3. Menggambar fungsi kuadrat
Fungsi kuadrat digambar grafiknya
Fungsi kuadrat ditentukan persamaannya
62
62
62
61
62
62
62
62
62
4. Menerapkan konsep fungsi kuadrat
Fungsi kuadrat digambar grafiknya melalui titik
ekstrim dan titik potong pada sumbu koordinat
Fungsi kuadrat diterapkan untuk menentukan
persamaannya, jika diketahui grafiknya
62
61
62
62
62
62
60
62
61
Fungsi eksponen digambar grafiknya
Fungsi eksponen ditentukan persamaannya, jika
diketahui grafiknya
62
62
60
60
62
62
61
61
5. Menggambar grafik fungsi eksponen
61
Standar Kompetensi
Skor
Komplek
sitas
(B)
60
Daya
Dukung
(C)
62
62
62
60
60
62
62
61
61
Pola bilangan, barisan, dan deret diidentifikasi
berdasarkan ciri-cirinya
Notasi sigma digunakan untuk menyederhanakan
suatu deret
62
66
62
63
62
65
62
63
Nilai suku ke-n suatu barisan aritmatika ditentukan
menggunakan rumus
Jumlah n suku suatu deret aritmatika ditentukan
dengan
62
65
62
63
62
65
62
63
Nilai suku ke-n suatu barisan geometri ditentukan
menggu-nakan rumus
Jumlah n suku suatu deret geometri ditentukan
dengan menggunakan rumus
Jumlah suku tak hingga suatu deret geometri ditentukan dengan menggunakan rumus
62
64
62
63
62
64
62
63
62
63
62
62
1. Mengidentifikasi sudut
Satuan sudut dalam derajat dikonversi ke satuan
sudut dalam radian atau sebaliknya sesuai
prosedur
62
65
62
63
63
2. Menentukan keliling bangun datar dan
luas daerah bangun datar
Suatu bangun datar dihitung kelilingnya
Daerah suatu bangun datar dihitung luasnya
Bangun datar tak beraturan dihitung luasnya
62
62
62
65
65
64
62
62
62
63
63
63
63
3. Menerapkan transformasi bangun datar
Transformasi bangun datar dideskripsikan menurut
62
61
62
62
62
Kompetensi Dasar
6. Menggambar grafik fungsi logaritma
Menerapkan konsep barisan
dan deret dalam pemecahan
masalah
1. Mengidentifikasi pola bilangan,
barisan, dan deret bilangan
2. Menerapkan konsep barisan dan deret
aritmatika
3. Menerapkan konsep barisan dan deret
geometri
Menentukan kedudukan
jarak dan besar sudut yang
melibatkan titik, garis, dan
bidang dalam ruang
dimensi dua
Nilai KKM
Intake
Siswa
(A)
62
Indikator
Fungsi logaritma dideskripsikan sesuai dengan
ketentuannya
Fungsi logaritma diuraikan sifat-sifatnya
Fungsi logaritma digambar grafiknya
Indikator
KD
61
61
63
SK
63
63
63
63
KKM
Mata
Diklat
Standar Kompetensi
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
62
61
62
62
Unsur-unsur bangun ruang diidentifikasi berdasar
ciri-cirinya
Jaring-jaring bangun ruang digambar pada bidang
datar
62
65
62
63
62
65
62
63
2. Menghitung luas permukaan bangun
ruang
Luas permukaan bangun ruang dihitung dengan
cermat
62
63
62
62
62
3. Menerapkan konsep volume bangun
ruang
Volume bangun ruang dihitung dengan cermat
62
62
62
62
62
4. Menentukan hubungan antara unsurunsur dalam bangun ruang
Jarak antara unsur dalam ruang dihitung sesuai
ketentuan
Besar sudut antar unsur dalam ruang dihitung
sesuai ketentuan
62
62
62
62
62
62
62
62
62
Kompetensi Dasar
Indikator
jenisnya
Trasnformasi bangun datar digunakan untuk
menyelesaikan permasalahan program keahlian
Menentukan kedudukan
jarak dan besar sudut yang
melibatkan titik, garis, dan
bidang dalam ruang
dimensi tiga
Nilai KKM
Intake
Siswa
(A)
1. Mengidentifikasi bangun ruang dan
unsur-unsurnya
KD
SK
63
62
Lebaksiu, 16 Juli 2010
Mengetahui :
Kepala Sekolah,
Guru Mata Diklat,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
Mata
Diklat
KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN DIKLAT 2010/2011
Kompetensi Keahlian ``
Kelas
Semester
Standar Kompetensi
: TKR
: XI
:4
Nilai KKM
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
SK
Konsep vektor dan ruang lingkup vektor
dideskripsikan menurut ciri-cirinya
Operasi pada vektor diselesaikan dengan rumus
yang sesuai
62
65
62
63
63
63
62
64
62
63
Konsep vektor dan ruang lingkup vektor
dideskripsikan menurut ciri-cirinya
Operasi pada vektor diselesaikan dengan rumus
yang sesuai
62
63
62
62
62
63
62
62
1. Mendeskripsikan kaidah pencacahan,
permutasi, dan kombinasi
Kaidah pencacahan, permutasi, dan kombinasi
digunakan dalam menentukan banyaknya cara
menyelesaikan suatu masalah
62
63
62
63
62
2. Menghitung peluang suatu kejadian
Peluang suatu kejadian
menggunakan rumus
dengan
62
62
62
62
62
1. Menerapkan konsep lingkaran
Unsur-unsur lingkaran dideskripsikan sesuai ciricirinya
Persamaan lingkaran ditentukan berdasarkan
unsur-unsur yang diketahui
Garis singgung lingkaran dilukis dengan benar
Panjang garis singgung lingkaran dihitung dengan
62
63
62
62
62
62
62
62
62
62
62
65
63
62
62
63
62
Kompetensi Dasar
Indikator
KKM
Mata
Diklat
62
Menerapkan konsep vektor
dalam pemecahan masalah
Menerapkan konsep vektor dalam
pemecahan masalah
2. Menerapkan konsep vektor pada
bangun ruang
Memecahkan masalah
dengan konsep teori
peluang
Menerapkan konsep irisan
kerucut dalam memecahkan
masalah
dihitung
62
62
62
Standar Kompetensi
Nilai KKM
Intake
Siswa
(A)
Skor
Komplek
sitas
(B)
Daya
Dukung
(C)
Indikator
KD
Unsur-unsur parabola dideskripsikan sesuai ciricirinya
Persamaan parabola ditentukan berdasarkan unsurunsur yang diketahui
Grafik parabola dilukis dengan benar
62
62
62
62
62
62
61
62
62
62
63
62
62
Unsur-unsur elips dideskripsikan sesuai ciricirinya
Persamaan elips ditentukan berdasarkan unsurunsur yang diketahui
Grafik elips dilukis dengan benar
62
62
62
62
62
61
62
62
62
63
62
62
Unsur-unsur hiperbola dideskripsikan sesuai ciricirinya
Persamaan hiperbola ditentukan berdasarkan
unsur-unsur yang diketahui
Grafik hiperbola dilukis dengan benar
62
62
62
62
62
61
62
62
62
63
62
62
Menjelaskan arti limit fungsi di satu titik melalui
perhitungan nilai-nilai disekitar titik tersebut
Menjelaskan arti limit fungsi di tak hingga melalui
grafik dan perhitungan
62
64
62
63
62
62
62
62
Menggunakan sifat-sifat limit dalam menghitung
nilai limit
Menentukan nilai bentuk tak tentu dari limit fungsi
Menghitung limit fungsi aljabar dan trigonometri
dengan menggunakan sifat-sifat limit.
62
63
62
62
62
62
62
60
62
62
62
61
Kompetensi Dasar
Indikator
SK
benar
2. Menerapkan konsep parabola
3. Menerapkan konsep elips
4. Menerapkan konsep hiperbola
Menggunakan konsep limit
fungsi dan turunan fungsi
dalam pemecahan masalah
1. Menggunakan konsep limit fungsi dan
turunan fungsi dalam pemecahan masalah
2. Menggunakan sifat limit fungsi untuk
menghitung bentuk tak tentu fungsi
aljabar dan trigonometri.
62
62
63
62
62
KKM
Mata
Diklat
Standar Kompetensi
Kompetensi Dasar
3. Menggunakan konsep dan aturan
turunan dalam perhitungan turunan fungsi
4. Menggunakan turunan untuk
menetukan karakteristik suatu
fungsi dan memecahkan masalah
Indikator
Menjelaskan konsep arti fisis (sebagai laju
perubahan) dan arti geometri dari turunan
Menghitung turunan fungsi yang sederhana
dengan menggunakan definisi turunan
Menjelaskan sifat-sifat turunan fungsi
Menentukan turunan fungsi aljabar dan
trigonometri dengan menggunakan sifat-sifat
turunan
Menentukan turunan fungsi komposisi dengan
menggunakan aturan rantai
Menentukan fungsi monoton naik dan turun
dengan menggunakan konsep turunan pertama
Menggambar sketsa grafik fungsi dengan
menggunakan sifat-sifat turunan
Menentukan koordinat titik ekstrim grafik fungsi
Menentukan persamaan garis singgung sebuah
fungsi
Nilai KKM
Intake
Siswa
(A)
62
Skor
Komplek
sitas
(B)
64
Daya
Dukung
(C)
62
62
63
62
62
62
62
65
61
62
62
63
62
62
60
62
61
62
61
62
62
62
64
62
63
62
62
63
61
62
62
62
62
Indikator
KD
63
62
SK
62
Lebaksiu, 16 Juli 2010
Mengetahui :
Kepala Sekolah,
Guru Mata Diklat,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM
Mata
Diklat
ANALISIS KRITERIA KETUNTASAN MINIMAL (KKM)
SMK DIPONEGORO LEBAKSIU
TAHUN PELAJARAN 2011/2012
Kompetensi Keahlian
Kelas
Semester
Standar Kompetensi
Menggunakan konsep
integral dalam memecahkan
masalah
: TKR dan Farmasi
: XII
: 5 dan 6
Kompetensi Dasar
1. Memahami konsep integral tak
tentu dan integral tentu
2. Menghitung integral tak tentu
dan integral tentu dari fungsi
aljabar dan fungsi trigonometri
yang sederhana
3. Menggunakan integral untuk
menghitung luas daerah dibawah
kurva dan volume benda putar
Menerapkan aturan konsep
statistika dalam pemecahan
masalah
1. Mengidentifikasi pengertian
statistik, statistika, populasi, dan
sampel
Nilai KKM
Intake
Siswa
(A)
71
Skor
Komplek
sitas
(B)
69
Daya
Dukung
(C)
70
71
65
70
69
71
66
70
69
Menetukan nilai integral suatu fungsi dengan cara
substitusi
Menentukan nilai integral suatu fungsi dengan cara
parsial
Menentukan nilai integral suatu fungsi dengan cara
substitusi trigonometri
71
65
70
69
71
65
70
69
71
65
70
69
Menghitung luas daerah yang dibatasi oleh kurva
dan/atau sumbu-sumbu koordinat dengan
menggunakan integral.
Menghitung volume benda putar dengan
menggunakan integral
71
67
70
69
71
66
70
69
Statistik dan statistika dibedakan sesuai dengan
definisinya
Populasi dan sampel dibedakan berdasarkan
karakteristiknya
71
71
70
71
71
71
70
71
Indikator
Menentukan integral tak tentu fungsi aljabar dan
trigonometri
Menentukan integral tertentu fungsi aljabar dan
trigonometri
Menyelesaikan masalah yang melibatkan integral
tentu dan tak tentu
Indikator
KD
SK
70
69
69
69
69
71
70
KKM
70
Standar Kompetensi
Kompetensi Dasar
Indikator
Nilai KKM
Intake
Siswa
(A)
71
71
Skor
Komplek
sitas
(B)
68
68
Daya
Dukung
(C)
70
70
Indikator
KD
70
70
70
70
2. Menyajikan data dalam bentuk
tabel dan diagram
Data disajikan dalam bentuk tabel
Data disajikan dalam bentuk diagram
3. Menentukan ukuran pemusatan
data
Mean, median, dan modus dibedakan sesuai dengan
pengertiannya
Mean, median, dan modus dihitung sesuai dengan
data tunggal dari data kelompok
71
67
70
69
71
68
70
70
Jangkauan, simpangan rata-rata, simpangan baku,
jangkauan semi kuartil, dan jangkauan persentil
dittentukan dari suatu data
Nilai standar ditentukan dari suatu data
Koefisien variansi ditentukan dari suatu data
71
68
70
70
71
71
68
68
70
70
70
70
4. Menentukan ukuran penyebaran
data
SK
70
Lebaksiu, 16 Juli 2011
Mengetahui :
Kepala Sekolah,
Guru Mata Pelajaran,
Drs. Moh. Fatah, M.MPd.
Dedy Iswanto, S.Pd.
KKM