Pengujian Rangkaian LCD Karakter 2x16 Program keseluruhan rangkaian KESIMPULAN SARAN

bila diaktifkan akan membuat LED yang tersambung pada pin PD.7-nya akan berkedip. Berikut ini merupakan listing programnya: regfile = m8535.dat crystal = 4000000 Config Portd = Output Do Set Portd.7 Waitms 250 Reset Portd.7 Waitms 250 Loop Ketika program ini diaktifkan pada rangkaian mikrokontrolernya, maka LED yang terhubung pada pin PD.7 akan berkedip terus menerus. Dengan demikian, maka rangkaian mikrokontroler tersebut dinyatakan dalam kondisi baik.

4.3 Pengujian Rangkaian LCD Karakter 2x16

Untuk menguji rangkaian LCD, maka dibuatlah rangkaian sebagai berikut ini: Universitas Sumatera Utara Gambar 4.3 Pengujian Rangkaian LCD Kemudian, pada mikrokontroler dimasukkan program sebagai berikut: regfile = 8535def.dat crystal = 12000000 Config Lcd = 16 2 Config Lcdpin = Pin , Rs = Portc.1 , E = Portc.0 , Db4 = Portc.4 , Db5 = Portc.5 , Db6 = Portc.6 , Db7 = Portc.7 Cursor Off Cls Do Locate 1 , 1 Lcd Hello World Loop Ketika program dieksekusi oleh mikrokontroler, maka pada display LCD akan muncul tulisan “hello, world” pada layar LCD.

4.4 Program keseluruhan rangkaian

regfile = 8535def.dat crystal = 11059200 Dim Waktu1 As Byte Dim Waktu2 As Byte Dim Waktu3 As Byte Dim Waktu_normal As Byte Config Portb = Input Config Porta = Output Universitas Sumatera Utara Universitas Sumatera Utara Universitas Sumatera Utara Universitas Sumatera Utara Universitas Sumatera Utara BAB V KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Dari hasil evaluasi kerja dapat diambil beberapa kesimpulan dalam penelitian ini. Kesimpulan yang dapat diambil oleh penulis adalah : 1. Penggunaan sensor fotodioda sebagai sensor kepadatan kendaraan sangat mudah terganggu oleh cahaya 2. Sebagai pengatur sistem kinerja alat ini membutuhkan mikrokontroler, untuk mengatur kerja sensor yang bekerja pada traffic light. 3. Rangkaian Mikrokontroler sangat di butuhkan untuk mengatur sensivitas sensor kepadatan kendaraan.

5.2 SARAN

1. Dengan beberapa perbaikan komponen dan sistem kerja alat ini ,maka alat ini akan bekerja lebih baik 2. Agar sempurna maka setiap Traffic Light harus dikendalikan Microkontroler secara otomatis Universitas Sumatera Utara DAFTAR PUSTAKA Andi, Nalwan Paulus.2004.Panduan Praktis menggunakan dan Antarmuka Modul LCD M1632.Jakarta:PT.Elex Media Komputindo. Budiharto, Widodo.2005.Panduan Lengkap Belajar Mikrokontrorel Perancangan Sistem dan Aplikasi Mikrokontrorel .Jakarta:PT.Elex Media Komputindo. Budioko, Totok. 2005. Belajar dengan mudah dan cepat pemograman bahasa c dengan sdcc small device c compiler pada mikrokontrorel ATMEGA 8535 AT89C51 Teori ,Simulasi dan aplikasi .Edisi Pertama.Yogyakarta:PENERBIT GAVA MEDIA Wahyudin ,Didin .2007 .Belajar mudah Mikrokontrorel dengan bahasa Basic menggunakan bascom -8051.Yogyakarta :c.v.andi offset. Universitas Sumatera Utara LM139, LM239, LM339 Low-power quad voltage comparators Features ■ Wide single supply voltage range or dual supplies for all devices: +2 to +36 V or ±1 V to ±18 V ■ Very low supply current 1.1 mA independent of supply voltage ■ Low input bias current: 25 nA typ ■ Low input offset current: ±5 nA typ ■ Low input offset voltage: ±1 mV typ ■ Input common-mode voltage range includes ground ■ Low output saturation voltage: 250 mV typ; I SINK = 4 mA ■ Differential input voltage range equal to the supply voltage ■ TTL, DTL, ECL, MOS, CMOS compatible outputs Description This family of devices consists of four independent precision-voltage comparators with an offset voltage specification as low as 2 mV maximum for LM339A, LM239A and LM139A. Each comparator has been designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible. These comparators also have a unique characteristic in that the input common mode voltage range includes ground even though operated from a single power supply voltage. N DIP14 Plastic package D SO-14 Plastic micropackage P TSSOP14 Thin shrink small outline package Q QFN16 3x3 Plastic micropackage July 2011 Doc ID 2159 Rev 3 119 www.st.com 19 Universitas Sumatera Utara Pin and schematic diagram LM139, LM239, LM339 1 Pin and schematic diagram Figure 1. Pin connections top view Output2 1 Output1 2 V + CC 3 14 Output3 13 Output4 12 11 10 9 8 V CC - Inverting input1 Non-inverting input1 Inverting input2 Non-inverting input2 4 5 6 7 Non-inverting input4 Inverting input4 Non-inverting input3 Inverting input3 Figure 2. Schematic diagram 14 LM139 V CC 3.5 A 100 A 3.5 A 100 A Non-inverting input V O Inverting input V CC 219 Doc ID 2159 Rev 3 Universitas Sumatera Utara LM139, LM239, LM339 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Symbol V CC V ID V IN R thja R thjc T stg T j T LEAD ESD Absolute maximum ratings Parameter Supply voltage Differential input voltage Input voltage Output short-circuit to ground 1 Thermal resistance junction to ambient 2 DIP14 SO-14 TSSOP14 QFN16 3x3 Thermal resistance junction to case 2 DIP14 SO-14 TSSOP14 QFN16 3x3 Storage temperature range Junction temperature Lead temperature soldering 10 seconds Human body model HBM 3 Machine model MM 4 Charged device model CDM 5 Value ±18 or 36 ±36 -0.3 to +36 Infinite Unit V V V 80 105 100 45 °CW 33 31 32 14 -65 to +150 +150 260 500 100 1500 °CW °C °C °C V 1. Short-circuits from the output to V CC + can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V CC + . 2. Short-circuits can cause excessive heating. These values are typical. 3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor internal resistor 5  Ω. This is done for all couples of connected pin combinations while the other pins are floating. 5. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Doc ID 2159 Rev 3 319 Universitas Sumatera Utara Absolute maximum ratings and operating conditions LM139, LM239, LM339 Table 2. Symbol V CC V ICM Operating conditions T amb Parameter Supply voltage Common mode input voltage range = 25° C Value 2 to 32 ±1 to ±16 0 to V CC + - 1.5 Unit V V T oper Operating free-air temperature range - LM139, LM139A - LM239, LM239A - LM339, LM339A -55, +125 -40, +105 0, +70 °C 419 Doc ID 2159 Rev 3 Universitas Sumatera Utara LM139, LM239, LM339 Electrical characteristics 3 Table 3. Electrical characteristics Electrical characteristics at V CC unless otherwise specified + = +5 V, V CC - = GND, T amb = +25° C LM139A - LM239A LM339A Min. Typ. 1 LM139 - LM239 LM339 Min Typ. 1 Symbol Parameter Unit Input offset voltage 1 T min T amb T max Input offset current T min T amb T max Input bias current I + or I T min T amb T max Large signal voltage gain V CC = 15 V, R L = 15 k Ω - 2 V IO 3 I IO 25 I IB Max. 2 4 25 100 100 300 5 25 Max. 5 9 50 150 250 400 mV nA nA A VD V o = 1 V to 11 V 50 200 50 200 VmV Supply current all comparators V CC V CC = +5 V, no load = +30 V, no load I CC 1.1 1.3 2 2.5 1.1 1.3 2 2.5 mA Input common mode voltage range 3 V CC = 30 V T min T amb T max Differential input voltage 4 Low level output voltage V ID = -1 V, I SINK = T min T amb T max 4 mA V ICM V CC + -1.5 V CC V CC + -2 + V ID V CC + -1.5 V CC V CC + -2 + V V V OL 250 400 700 250 400 700 mV High level output current V CC T min = V o = 30 V, V ID = T amb T max I OH 1 V 0.1 0.1 1 1 nA A Output sink current ID = 1 V, V o = 1.5 V Response time 5 L = 5.1 k Ω connected to V CC V R + I SINK 6 16 6 16 mA t re 1.3 1.3 s  Doc ID 2159 Rev 3 519 Universitas Sumatera Utara Electrical characteristics LM139, LM239, LM339 Table 3. Electrical characteristics at V CC + = +5 V, V CC - = GND, T amb = +25° C unless otherwise specified continued LM139A - LM239A Parameter Min. LM339A Typ. LM139 - LM239 LM339 Min Typ. Max. Symbol Unit Max. Large signal response time R L = 5.1 k Ω connected to V CC trel + , e l = TTL, V ref = +1.4 V 300 300 ns 1. At output switch point, V o  1.4 V, V CC + from 5 V to 30 V, and over the full common-mode range 0 V to V CC + -1.5 V. 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V CC damage. + -1.5 V, but either or both inputs can go to +30 V without 4. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V or 0.3 V below the negative power supply, if used. 5. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals, 300 ns can be obtained. 619 Doc ID 2159 Rev 3 Universitas Sumatera Utara LM139, LM239, LM339 Electrical characteristics curves 4 Figure 3. Electrical characteristics curves Supply current vs. supply voltage Figure 4. 80 60 40 20 Input current vs. supply voltage 1 0.8 0.6 T amb = -55°C 9 T amb = 0°C T amb = -55°C V i R i = 0V = 10  Ω T amb = 0°C T amb T amb = +25°C Tamb = +70°C = +25°C 0.4 0.2 T amb = +125°C T amb = +125°C R = 10 20 30 40 10 20 T amb 30 = +70°C 40 SUPPLY VOLTAGE V SUPPLY VOLTAGE V Figure 5. Output saturation voltage vs. output current Figure 6. 1 10 Response time for various input overdrives - negative transition 6 Input overdrive : 5mV 5V 5 4 5.1k Ω 20mV e I 3 e o 2 1 100mV -50 -100 T amb = +25°C 0 0.5 1 TIME s 1.5 2 Out of saturation 10 T amb = +125°C -1 10 -2 10 T amb T amb = +25°C = -55°C 10 -3 10 -2 -1 1 2 10 10 10 10 OUTPUT SINK CURRENT mA Figure 7. Response time for various input overdrives - positive transition 20mV T amb = +25°C 6 5 4 3 2 1 00 50 Input overdrive : 100mV 5mV 0.5 1 TIME s 1.5 2 Doc ID 2159 Rev 3 719 A n NT RE R U C T P U N I m A UR RE NT C S UP P L Y E G A T L V O L T A GE V O OL T A GE T U P T U O V INP UT V V m V T UR A T IO N SA 1 V E m V T A GE V OL T A G OL V INP UT OUT P UT Universitas Sumatera Utara Typical applications LM139, LM239, LM339 5 Figure 8. Typical applications Basic comparator V CC = 5 V 15 k Ω Figure 9. Driving CMOS 5 V 100 k Ω +V ref +V ref 14 LM139 1 4 LM139 V O -V ref -V ref Figure 10. Driving TTL 5 V Figure 11. Low frequency op amp 5 V 15 k Ω 10 k Ω 14 LM139 +V ref ~ e l 1 4 LM139 100 k Ω A V = 100 e o 0.5 F -V ref 1 k Ω Figure 12. Low frequency op amp 5 V e o = 0 V for e l = 0 V Figure 13. Transducer amplifier 5 V 15 k Ω Magnetic pick-up 10 k Ω 3 k Ω 1 4 LM139 2N 2222 ~ e l 0.5 F 1 4 LM139 20 M Ω e o 100 k Ω A V = 100 1 k Ω e o 10 k Ω 819 Doc ID 2159 Rev 3 Universitas Sumatera Utara LM139, LM239, LM339 Typical applications Figure 14. Time delay generator V C C = +15V 10 k Ω 15 kΩ 200 k Ω 3 k Ω 10 M Ω 10 k Ω 14 LM139 V 30 V 3 V CC t o t 3 3k Ω 10 k Ω 10 k Ω V CC t o 14 LM139 51 k Ω V C1 10 M Ω t A 14 LM139 V O2 V ref. V 2 V CC t o t 2 Input gating signal V CC 0.001 F 3 k Ω 10 M Ω 51 k Ω 10 k Ω V C1 V 3 V 2 V 1 t t t 1 1 4 LM139 V O1 t t 3 t 4 V 1 51 k Ω V CC t t 1 2 Figure 15. Low frequency op amp with offset adjust 5 V Offset adjust 100 k Ω 5 V R 2 1 M Ω 1 M Ω R S R 1 Figure 16. Zero crossing detector single power supply 5 V 5.1 k Ω 100 k Ω 5.1 k Ω 100 k Ω 5.1 k Ω 15 k Ω 1 4 LM139 0.5 F R1 100 k Ω e l e l ~ 2N 2222 1 4 LM139 1N4148 1 k Ω 20 M Ω e o 10 k Ω Figure 17. Two-decade high-frequency VCO V CC 100 k Ω V CC 100 k Ω Frequency control voltage input Vcontrol 500 pF 1 4 LM139 0.1 F 20 k Ω 3 k Ω 5.1 k Ω 0.01 F 3 k Ω 1 4 LM139 Output 1 V CC 2 Output 2 50 k Ω 20 k Ω V CC 2 1 4 LM139 V CC = + +250 mV 700 Hz 3 0 V Vcontrol fo +50 V 100 kHz Doc ID 2159 Rev 3 919 Universitas Sumatera Utara Typical applications LM139, LM239, LM339 Figure 18. Limit comparator V CC Figure 19. Crystal-controlled oscillator V CC = 15 V 12 V 2R S 10 k Ω 1 4 LM139 200 k Ω 2 k Ω V ref high 100 k Ω Lamp R S V CC 0.1 F 1 4 LM139 e o e I ~ f = 100 kHz 2R S 1 4 LM139 2N 2222 200 k Ω V ref low Figure 20. Zero crossing detector 15 V Figure 21. Comparator with a negative reference 15 V 5.1 k Ω 5.1 k Ω 14 LM139 e o 1 4 LM139 e o e I ~ e I ~ 5 V 15 V 15 V 1019 Doc ID 2159 Rev 3 Universitas Sumatera Utara LM139, LM239, LM339 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ® packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: www.st.com. ECOPACK ® is an ST trademark. Doc ID 2159 Rev 3 1119 Universitas Sumatera Utara Package information LM139, LM239, LM339

6.1 DIP14 package information